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On the K-Fibonacci Hankel and the 4 X 4 Skew Symmetric K-
Fibonacci Matrices.
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Abstract: In this paper we define the k-Fibonacci Hankel matrices and then we study the different norms of
these matrices. Next we find the relation between the Euclidean norm, the column norm and the spectral norm
of these special matrices. Finally, we study the 4x4 skew symmetric k-Fibonacci matrices and find an interesting
formula for a sum of the k-Fibonacci numbers.
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. Introduction
One of the more studied sequences is the Fibonacci sequence [8, 9], and it has been generalized in many ways
[7]. Here, we use the following one-parameter generalization of the Fibonacci sequence [3, 4].
1.1. Definition of the k-Fibonacci numbers.

For any integer K >1, the k-Fibonacci sequence, say {Fk’n}n " isdefined recurrently by: F , =0, F , =1
and I:k,n+1 = k Fk,n + Fk,n—l
Note that for k=$ the classical Fibonacci sequence is obtained and for k=2 it is the Pell sequence.

k+vk?+4

Characteristic equation of the definition is I’ =Kkr+Llwhose solutions are o, = Tand
k—vk*+4 _ _ _ : :
o, = # It is easy to prove that these solutions verify the following relations:

0,0,=-1, 0,+0,=K, 0,-0,=Nr’+4, c°=ko+1,0,>0, o,<0.

For the properties of the k-Fibonacci numbers, see [3, 4].
n

ol -0
—L "2 and the Catalan Identity is

In particular, the Binet Identity for the k-Fibonacci numbersis F, , =
0170,

FenrFoner = Fon =)™ R2 0.1)

k,n—r
From the Catalan Identity, we find the Simson Identity:

FenaFona = sz,n +(=1)" 0.2)

z 1
Moreover, Z F;= E( Fent Fen —1) and the sum of the odd k-Fibonacci numbers is
j=0

< 1
F j+ =—F n+

. . . . . . 1
Finally, we define the k-Fibonacci numbers of negative index as Fk,—n =(-D" Fk,n
If F ,=2instead 0, we obtain the k-Lucas numbers L, ,. Among its properties, highlight the following:
L,=01 +03, L, =Fa+Foa Loy =ED"L, . See[2] for the properties of these numbers.

1.2. Some formulas for the k-Fibonacci numbers.
In [1], the following theorem is proved: For h > 0, the sum of the products of two k-Fibonacci numbers is

m 1 ()" +1
Sm,r = Zl Fk,j Fk,j+r = E(Fk,mﬁ-llzk,mﬂ - 2 Fk,rj (0.3)
j=
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From this formula we will find an expression for the number F_:

nt il 1 " +1
m o F z I:k Fk j+r Z Fk F k,j+r I:k,m+r = E(Fk,erle,mH _% I:k,rj_ I:k,ml:k,m+r
j=1 = But,
1 D" +1 1 D" +1
= E((Fk,mﬂ -k Fk,m)Fk,m+r _T I:k,r] = E[ Fk,m—le,mH _T I:k,m+r
m-1
from the formula (1.3) and directly, itis S, = i(F I (]')TH' Fk,rj and equalizing these
expressionsitis F . =F F . —-F K.
Particular cases:
o 1
Sm,O = Z sz,j =7 I:k,m I:k,erl 0.4)
i1 k
L D" +1
Z k j+1 [Fk,m—le,m+l - 2 (0-5)
j=t
2m-1 1 1 5
SZm—l,l = Z Fk,j Fk,j+l = E( Fk,Zm—le,2m+l _1) = E Fk,zm (0.6)
j=1

1.3. Matrix norms.
The following matrix norms are defined in [5, 10].

Let A= (aij )be an m x nmatrix.

e The Frobenius or Euclidean norm of the matrix A is defined as||A||E = (Zmlzn:‘aij ‘ZJ
i=1 j=1

e The column norm of A is defined as ||A|| = maXZ‘au‘ which is simply the maximum absolute column
I<j<n

sum of the matrix.

e The row norm of A is ||A|| = maxZ‘au‘ which is simply the maximum absolute row sum of the
®©1<j<m

matrix.
e  The spectral norm of A is the largest singular value of A i.e. the square root of the largest eigenvalue of the
positive-semidefinite matrix A'A where A" denotes the conjugate transpose of A; that is

[All, = A (A A) = 0, ()

Evidently, if A is an x nsymmetric matrix, the column norm and the row norm coincide and the spectral norm is
the absolutely biggest eigenvalue of A called the spectral radius.
1.4. Principal minors of a matrix.

Let A be an m x nmatrix and h an integer with 0 <h <m and h <n. Ah x h minor of A is the determinant of
a h x h matrix obtained from A by deleting m — h rows and n — hcolumns [11].

If A is an m x nmatrix, | is a subset of {1, 2,..., m} having h elements and J is a subset of {l, 2,..., n} with h

elements, then we write [A]I 5 for the h x hminor of A that corresponds to the rows with index in | and the
columns with index in J.
If 1 =], then [A]| | is called a principal minor of A and we will indicate it as [A]h .

n
Characteristic polynomial of an n x nmatrix A is P(i)z(—l)”(i”—Z[A]h ﬂ""hj. Evidently,
h=1

[A], =trace(A)and [ A] =det(A).
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I1. On The K-Fibonacci Hankel Matrices.

Let the sequence {t| }IeN be. The Hankel matrix of this sequence is the n x nmatrix ( )such that a; =1, ;.

If all t,are the k-Fibonacci numbers, t, = F, |, the k-Fibonacci Hankel matrix is defined as the n x nmatrix

(aij)such that a; = F ;. ie
Fk,l F Fk,s Fk,n—l Fk,n
Fk,z Fk,S Fk,4 Fk,n Fk,n+l
(FkH )n = Fk,s Fk,4 Fk,s Fk,n+l Fk,n+2
Fk,n Fk,n+l Fk,n+2 Fk,zn—z Fk,2n—1

It is obvious that all k-Fibonacci Hankel matrix is symmetric. Moreover, |(F,H),|=|(F,H),| =1, and for
n=>3itis |(Fk H )n| = O because each row is a linear combination of the two preceding rows.

Moreover, the characteristic polynomial of (FH), is PB(A1)=1-Aand that of (F H),is
P,(1) =" —(k* +2)A+1.

1.5. Theorem 1

For N >1, the characteristic polynomial of the k-Fibonacci Hankel matrix (F,H), is

_ (_1\n gn-2 Z_M 2 ( 1) B
P(2) = (-1)"2 [/1 s kz(Fkn - D 1)

Proof. For n=1,2, the preceding equations coincide with this last equation for n=1 and n= 2, respectively.
For n >3, each row from the third is a linear combination of the two preceding rows. Then all principal minor

[FkH ]h = 0Ofor h > 3and consequently, the only non-null coefficients of the characteristic polynomial (other

than A"is 1) are those of A" “and A"2.

The coefficient of A" "is the sum of the principal minors of order 1:
1

JZ_;(|F,(H |1)J_ =trace(F,H) = ,Z‘ Pz =1

The coefficient of A" is the sum of the principal minors of order 2. To find this coefficient, we will apply the
Catalan Identity (1.1) to the principal minors of order two.

First row: The sum of the principal minors whose first entry is Fk’l, after applying the formula (1.3) is

S z Z(F Fk 2j-1 ) ZFKZJ kn—le,n

j=2
Second row: The sum of the prmmpal minors  whose  first entry s Fkya, is

Fk,Zn .

kl

k,j Fk 2j-1

n [F E . n
SZ :Z ° ! :Z(FkBFk,Zj& ) ZFKZJ kn 2Fk,n—l
j=4 I:k,j I:k,2j—l j=4

VI , : . 1
The sum of the principal minors whose firstentry is F, ¢, is S; = E Fen_sFionz . etc.

Finally, and taking into account the formula (1.3), the sum of all principal minors of order 2 of the k-Fibonacci

n-2 _N" _
Hankel matrix is 1 Z Fk nj k njil = i‘ (%[Fﬁnl +(1)T:LD , and this is the coefficient of A" .
j=1
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1.6. Eigenvalues of (Fk H )n

Evidently, (FkH)n has n — 2 null eigenvalues and the non-singular eigenvalues are

)"-1
Ao =7| Fan _\/Fzzn —4[szn - )2 J . Of course, taking into account this matrix is symmetric,

these two non-singular eigenvalues are real.
And the spectral norm of the k-Fibonacci Hankel matrix ( Fk H )n is

1 -N" -1
||(FkH)n||2 =4 ZE e 2n +\/F22n _4[Fk2,n +%j

1.7. Theorem 2

1
The Euclidean norm of the k-Fibonacci Hankel matrix is [|(F, H )n”E = E\/sz’zn —2F., —(-D)"+1

Proof. Summing the squares of the entries by rows, and taking into account Formula (1.2) and later (1.4) and
(1.3), the Euclidean norm of the k-Fibonacci Hankel matrix is:
n+1 n+2 2n-1

(”(FkH)n”E) ZFKZJ +ZFk21 +ZFk21 t +Z R
2n-1 n-1 |j
Z(ZFKZJ+ZFKZJ+ZF1<ZJ+ +ZFKJ]_( szzJ

=1 il
1 1 ot
k (F I:k n+1 I:k,n+l|:k,n-¢-2 + I:k,n+2 I:k,n-¢-3 teeet I:k,2n—1|:k,2n ) _E I:k,j I:k,j+1
=1
1w 1(1 2 (—1)" +1
k { = I:k ij j+ 22 K, j+1] K [E sz,Zn _E[Fk,n—le,ml _TJJ
1

1

2 2
kz(Fan 2Fkn—l kn+l+( l) +1) k (Fan 2Fkn_( 1) +l)
after applying the Simson Identity and the proof is complete.

ltn=1, then [[(FH),|. = %«/kaz 2R, +2=1.

Taking into account the expressions of the eigenvalues, it is easy to prove ||(FkH)n||E =1M12 +ﬂ.22 and,

consequently, ||(Fk H)., ||2 < ||(Fk H), ||E

1.8. Theorem 3
The  column  norm (or the row norm) of the k-Fibonacci Hankel  matrix s

”(FkH)n” ”(F H) ||oo ( k2n—l+ Fk 2n Fk,n—l_ Fk,n)

Proof. From the definition of k-Fibonacci numbers, K >1, and consequently, the sequence F, ={Fk‘n}n | i

positive and increasing So, and taking into account the sum formula,
|(FH) ” Zij ZFKJ ZFKJ ( k,2n 1+Fk2n I:k,n—l_I:k,n)'
In particular, for the classical Fibonacci numbers ||(FH) || F..—F.

Andifn=1, |(FH )1”1 = E(Fk,l +F.—-Fo-R)=1
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1.9. Theorem 4

Forn>1, ||(FkH)n||E < ||(FkH)n||l

Proof. We must prove

I:k2,2n - 2Fk2,n - (_1)n +1< k(Fk,Zn—l + I:k,2r1 - I:k,n - l:k,n—l)2

= k(sz,Zn—l + Fk2,2n + sz,n—l + sz,n) + 2k(Fk,Zn—le,Zn + l:k,n—le,n) - 2k(Fk,2n—1Fk,2n)(F,n—le,n)

But taking into account Fk2,2n <k Fk2,2n and —2Fk21n <k F?

k,n?

In short: for n > 1, the relationship ||(|:k H)n”2 < ||(|:k H)n”E < ||(Fk H)n”1 is verified.

the proof is complete.

I11. On The 4 X 4 Skew Symmetric K-Fibonacci Matrices.

An X nmatrix (ai’j ) is skew symmetric if for all i j itis & ; =—a;; [12]. Consequently, all the elements of the
principal diagonal are null and then tr(A)=0. Moreover, if n is odd, det(A)=0.
0 a -b c
) ) ) -a 0 d e
Let us consider the skew symmetric matrix M =
b -d 0 f
-c e —-f O

Then, det(M) = (af +be+cd)?, its Euclydean norm is |||V| ||E = \/2(a2 +bP+c*+d?+e’ + f?) its

1
characteristic equation is A* + 50 /”M ||E A% +det(M) =0, and consequently, any eigenvalue is real.

1.10.  On the 4 x 4 skew symmetric k-Fibonacci matrices.

Let us suppose the entries in the previous matrix are a=F . ,, b=F ., .., f =F  ¢Then the 4 x 4
0 I:|<,r+1 _Fk,r+2 I:k,r+3
_Fk,r+1 0 I:k,r+4 I:k,rJrS

I:k,r+2 _Fk,r+4 0 Fk,r+6
_Fk,r+3 _Fk,r+5 _Fk,r+6 0

skew symmetric k-Fibonacci matrix has the form (FM) =

According to the above formula itis det(FM) =(F, ,F ..c +F
rove J(FM)[E = ——2—(Lupse — Lar)

p E k(k2 +4) k,2r+13 2r+1

1.11.  Determinant of the $4\times4$ skew symmetric k-Fibonacci matrix.

We expand the formula of the determinant in order to obtain a more reduced formula. We will use the Binnet

(k2 +4)(Fk,r+le,r+6 + I:k,r-¢—2|:k,r+5 + Fk,r+3Fk,r+4)

_ r+1 r+1 r+6 r+6 r+2 r+2 r+5 r+5 r+3 r+1 r+4 r+4
—(O'l —0'2 )(O'l —02 )+(Gl —O'z )(Gl —0'2 )+(O'l —0'3 )(O'l —0'2 )

dentity. = o™ + o2 —(=1)" (o} +03) + o + 0t —(-1) (0 + o) + o

+0," = (=) (o, + )

=3y 57 + G (Lk,S —Ls+ Lk,l) =3l 57+ =D’ Fes

2 o
r+2Firis T FriaFiria) and it is easy to

from where
1 r
Fk,r+le,r+6 + I:k,r+2|:k,r-¢-5 + I:k,r-¢-3|:k,r+4 = m(gl‘k,hﬂ + (_1) Fk,G)
3Lk 2r+7 + (_l)r Fk 6 i
> det(FM) =| Zzre ] ~
k“+4
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1
k?+4
Forinstance: fork=1ndr=0, itis FF, + F,F, + F,F, = %(3-29 +8)=19

And ﬁna”y' Fk I:k,r+6 + I:k,r+2 I:k,r+5 + I:k,r+3 I:k,r+4 =

(3Lk,2r+7 + (_:l-)r Fk,G) (31)

Jr+1

1.12.  Extension of this last formula.
Now we will try to find an extension of this last formula for a general case with the condition n is even. To
prove it, we need the following formulas [2]:

i i
o} Ty o Y
c,0,=-1—> [—1] =(-1)'c,” and [—2J =(-1)'0;? (32
o, 0
i(_l)j I—k _ (_1)“ Lk,a(n+1)+r + (_1)a+n Lk,an+r + (_1)r Lk,a—r + I‘k,r (3.3)
par A L. +(-D*+1 '
Ifa=2andr=-2n-1, then
¢ (_1)“ I‘k,a(n+1)+r = (_1)“ I‘k,2n+2—2n—1 = (_l)n Lk,l = (_1)“ k
¢ (_1)a+n Lk,an+r = (_1)” Lk,2n—2n—1 = (_1)“ Lk,—l = _(_1)” k
hd (_1)r Lk,afr = _Lk,2+2n+l = _Lk,2n+3
® Lk,r = Lk,—2n—1 = _Lk,2n+1
. +(-D*-1=L ,+1+1=k*+4
a 2
and the formula (3.3) takes the form
n , -1
é(_]')J Lk,2j—2n—1 = m(Lk,2n+3 + Lk,2n+1) (3.4)
1.12.1. Lemma
For all n, itis
2 2
(k +3)Lk,2n+1 - Lk,2n+3 = (k +4) I:k,2n (3'5)
Proof. The Left Hand Side of this formula is
LHS = ((O_l ~o, )2 _1)(0_12n+1 + (722”+l) _(0_12n+3 + 022n+3)
:(O_lz +O_22 +1)(O_lzn+1+o_22n+1)_o_lzn+3 _0_22n+3
:O_lZn+3 +(O_lo_2)20_12n—1+o_22n+3 +(O_20_l)20_22n—l+0_12n+1+o_22n+1 _012n+3 _022n+3
2n-1 2n-1 2n+1 2n+1
=0, 40, +o, 4o
And the Right Hand Side is
2n 2n
o, —O
RHS = (o, _0-2)2 ———*=(o _0_2)(0-12n _0_22n)
0,-0,
— 0_12n+1 _(O_laz)O_ZZn—l _(Gzal)GlZn—l +622n+1 — Glzn—l +622n—1 +612n+l +622n+1 — LHS
Then we will prove the general formula

y 1
JZ; k,r+j" k,r+2n+l-j k?_ +4( k,2r+2n+1 ( ) k,Zn) ( )

Proof. Taking into account the Binet Identity and the formulas (3.2), (3.4), and (3.5):
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n 1 n
_ r+j r+j r+2n+l-j r+2n+l-j
ZFk,r+ij,r+2n+1—j b +4Z(0_1 —0, )(0_1 —0, )

j=1 j=1

1 : 2r+2n+1 2r+2n+l 2n+1 0-2 2n+1
= 2|0 ~(-D"o™| 2| ~(-D'o
k*+445 o, 0'2

(Lk,2r+2n+1 ( 1)( 1) ( 2n— 2]+1+O_22n—2j+1))

244 =l
4 (Lk,2r+2n+l _(_1)r(_1)j Lk,2n—2j+1)
=1
1 ” o
14 (Lk,2r+2n+1 + (_1) (_1)J Lk,2j—2n—1)
=1
Z Lk,2r+2n+l + (_1)r Z (_1)j Lk,2j—2n—l - Lk,—Zn—l
244 =} =0
1 (1
14 MLy orioni +(=1) (m(_Lk,Znﬂ - Lk,2n+3)+ Lk,2n+1j

( k,2r+2n+1 + (_1)r kz—]:+_4((k2 + 3) I-k,2n+1 - Lk,2n+3 )j

kz (nLk 2r+2n+1+( 1) Fk Zn)

In particular, for n =3, formula (3.1) is obtained.
Finally, similarly to the above formula it can be shown

- 1 r+n
Z Fk,r+j Fk,r+2n—j K+ (n Ly orion + (= 1D’ Feana— (1) )
i
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