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Abstract : The tensor product G H  of two graphs G  and H  is well-known graph product and studied in 

detail in the literature. This concept has been generalized by introducing  2-tensor product 
2G H  and it has 

been discussed for special graphs like 
nP  and 

nC  [5]. In this paper, we discuss 
2G H , where G  and H  are 

connected graphs. Mainly, we discuss connectedness of 
2G H  and obtained distance between two vertices in 

it.   
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I. Introduction 
The tensor product G H  of two graphs G  and H  is very well-known and studied in detail  ([1], [2], 

[3], [4]).  This concept has been extended by introducing 2 tensor product 
2G H  of G  and H  and studied 

for special graphs [5].  In this paper, we discuss connectedness of 
2G H  for any connected graphs G  and H . 

We also obtained the results for the distance between two vertices in 
2G H . 

If = ( ( ), ( ))G V G E G  is finite, simple and connected graph, then ( , )Gd u u  is the length of the shortest path 

between u  and u  in G . For a graph G , a maximal connected subgraph is a component of G . For the basic 

terminology, concepts and results of graph theory, we refer to ([1], [6], [7]). 

We recall the definition of 2 tensor product of graphs.  

Definition 1.1 [5] Let G  and H  be two connected graphs. The 2 tensor product of G  and H  is the graph 

with vertex set {( , ) : ( ), ( )}u v u V G v V H   and two vertices ( , )u v  and ( , )u v   are adjacent in 2 tensor 

product if  ( , ) = 2Gd u u  and ( , ) = 2Hd v v . It is denoted by 
2G H .  

Note that 
2G H  is a null graph, if the diameter ( ) < 2D G  or ( ) < 2D H . So, throughout this paper we assume 

that G  and H  are non-complete graphs.  

 

II. Connectedness of  2G H  
this section, first we consider the graphs G  and H , both connected and bipartite with 

2 ( ) ; ( ) ( )N w w V G V H    , where 2 ( ) = { ( ) : ( , ) = 2}GN u u V G d u u   

In usual tensor product G H , the following result is known.  

Proposition 2.1 [4] Let G  and H  be connected bipartite graphs. Then G H  has two components.   

Note that in case of 
2G H , the similar result is not true. We discuss the number of components in 

2G H  

with different conditions on G  and H . 

         We fix the following notations 

          Let 
1 2( ) =V G U U  and 

1 2( ) =V H V V  with 
iU  and jV , ( , =1,2)i j  are partite sets of G  and H  

respectively. Then,  2 11 12 21 22( ) = with =ij i jV G H W W W W W U V      

Remark 2.2 If ( , )u v  and ( , )u v   are from different ijW , then ( , )u v  and ( , )u v   can not be adjacent in 
2G H  

as ( , ) 2Gd u u   or ( , ) 2Hd v v  . So, 
2G H  has at least four components. Suppose ( , )u v  and ( , )u v   are in 

the same ijW . Then ( , )Gd u u  and ( , )Hd v v  are even.  

Proposition 2.3 Let G  and H  be connected bipartite graphs. If ( , )Gd u u  and ( , )Hd v v  are of the same form, 

4k  or 4 2k  , ( IN {0})k   then ( , )u v  and ( , )u v   are in the same component of 
2G H .  

Proof.Let
1 1( , ) & ( , )u v u v U V    .Suppose,

1 0 1: = =mP u u u u u   and 

2 0 1: = =nP v v v v v     are paths between u , u  and v , v  respectively. 

           Suppose 
1( ) = 4 / 4 2l P k k   and 

2( ) = 4 / 4 2l P t t   with k t . First assume that 0k t  , then there is a 

path P  or P  between ( , )u v  and ( , )u v   in 
2G H  as follows: 
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0 0 2 2 4 4 4 2 4 2 4 4 4 4 4: ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) = ( , )k k k k k k k tP u v u v u v u v u v u v u v  
         . 

0 0 2 2 4 2 4 2 4 4 4 4 2 4 6 4 2 4 2: ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) = ( , )k k k k k k k tP u v u v u v u v u v u v u v      
          . 

 Next, assume that = 0k , i.e. 
1( ) = 0l P  or 2 , i.e. =u u  or 

0 1 2= =u u u u u  . Now as 2 ( )N u  , 

( )a V G   such that ( , ) = 2Gd u a . So, in case of 
1( ) = 0l P  and 

2( ) = 4l P t , we get the path between ( , )u v  and 

( , )u v  in 
2G H  as follows: 

0 2 4 4( , ) = ( , ) ( , ) ( , ) ( , )tu v u v a v u v u v    . 

         Next if 
1( ) = 2l P  and 

2( ) = 4 2l P t  , then we get the path between 
0( , )u v  and 

2( , )u v  in 
2G H  as 

follows: 

0 0 2 2 0 4 2 6 2 4 2 2( , ) = ( , ) ( , ) ( , ) ( , ) ( , ) = ( , )tu v u v u v u v u v u v u v
     .  

Thus in all cases there is a path from ( , )u v  to ( , )u v   in 
2G H . Which completes the proof.  

Remarks 2.4  

[i]  Suppose ( , )u v  and ( , )u v   are in same ijW . But if ( , )Gd u u  and ( , )Hd v v  are not of the same form, then 

( , )u v  and ( , )u v   may be in different components. So, 
1 1U V  give at most two components. Thus 

2G H  has 

at most eight components.  

[ii]   Suppose ( ) 2G   and ( ) 2H  , ( )G  and ( )H  are maximum degree of G  and H  respectively. 

Then G  and H  are either path or cycle. If the cycle is of the form 
4lC , then in each of the cases, 

2m nP P , 

2 4m nP C  and 
4 2 4m nC C  have eight components [5].  

     Next, we discuss the conditions on G  and H  under which 
2G H  has 4 , 5  or 6  components.  

Proposition 2.5 Let G  and H  be connected bipartite graphs and at least one of the graphs contains a cycle 

4 2lC 
 ( IN)l . Then 

2G H  has exactly four components.  

Proof. Let ( , )u v  and ( , )u v   be in 
1 1U V . As we have seen in Proposition 2.3, if ( , )Gd u u  and ( , )Hd v v  are of 

the same form 4k  or 4 2k  , then 
1 1U V  gives connected component. 

Let 
1P  and 

2P  be two paths between u u  and v v  in G  and H  respectively, as we have considered in 

Proposition 2.3. Suppose 
1( )l P  and 

2( )l P  are of the different form. 

Suppose H  contains a cycle 
4 2lC 

 with 
4 2 1 2 4 2( ) ={ , , , }l lV C x x x  . Then select a vertex from 

4 2lC 
, which is 

nearest to =nv v  and also it is in 
1V . Suppose this vertex is jx . Since 

nv  and jx  both are in 
1V , we get a path 

0P  from 
nv  to jx  of even length. We consider a walk 0 4 2 02

0: = =
P C PP l

n j j nW v v v x x v v      

between v  and v  in H . Then,      

2 0 4 2 2 2( ) = ( ) 2( ( )) ( ) = ( ) 2(2 ) (4 2) = ( ) 4 2ll W l P l P l C l P t l l P t
        . 

Thus, if 
2( ) = 4 2l P t   or 4t , then ( ) = 4l W q  or 4 2q  . So, in any case, 

1( )l P  and ( )l W  are of the same form 

and therefore, as in Proposition 2.3, we can show that there is a path between ( , )u v  and ( , )u v   in 
2G H . So, 

1 1U V  gives a connected components in 
2G H . Thus, 

2G H  has four components.  

Next, we assume that the graphs G  and H  do not contain a cycle of the form 
4 2lC 

. We prove that the number 

of components in 
2G H  is depending upon ( )G  as well as ( )H . 

   Let ( ) = max{ ( ) : }i iU d u u U   and ( ) = max{ ( ) : }i iV d v v V  ; = 1,2i  and for ( )a V G , 

( ) ={ ( ) : ( , ) =1}GN a b V G d a b .  

Proposition 2.6 Let G  and H  be connected bipartite graphs with ( ) 2G   and ( ) 3H  .  

(a)  If 
1( ) 2V   and 

2( ) 3V  , then 
2G H  has six components.  

(b)  If 
1( ) 3V   and 

2( ) 3V  , then 
2G H  has four components.  

Proof. We know that 
1 1U V , 

1 2U V , 
2 1U V  and 

2 2U V  give disconnected subgraphs in 
2G H . 

 (a)  Fixed 
1 1U V . We shall show that 

1 1U V  gives connected subgraph of 
2G H . Let 

2z V  with ( ) 3d z   

and 
0 1 2 1( ) ={ , , , }N z w w w V . 

           Fixed 
0 0 1 1( , )u v U V   with 

0 0=v w . Let ( , )u v   be any vertex in 
1 1U V . Suppose, 

1P  and 
2P  are paths 

between 
0=u u  to u  and 

0=v v  to v  in G  and H , as we have considered in Proposition 2.3. If 
1( ) = 4l P k  or 

4 2k   and 
2( ) = 4l P t  or 4 2t  , then the result is clear. 
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Next, suppose 
1( ) = 4l P k  and 

2( ) = 4 2l P t  ; k t  with 0k t  . First, we show that for 
0 1 2v v v   there 

is a path between 
0 0( , )u v  and 

0 2( , )u v  in 
2G H . 

Case (1) Suppose 
1z v  in 

2V . 

If 
2 1v w  in 

1V  as given in figure.1, then 
0 0 2 1 0 2 2 0 0 2( , ) ( , ) ( , ) ( , ) ( , )u v u w u w u v u v     is a path between 

0 0( , )u v  and 
0 2( , )u v  in 

2G H . 

 

 
 

If 
2 1=v w  in 

1V , then, 
0 0 2 2 0 2( , ) ( , ) ( , )u v u w u v   is the required path. 

Case (2) Suppose 
1=z v  in 

2V . 

If 
1 2 2w v w   in 

1V , then 
0 0 2 2 0 2( , ) ( , ) ( , )u v u w u v   is the path and if 

2 2=v w , then consider the path 

0 0 2 1 0 2( , ) ( , ) ( , )u v u w u v   in 
2G H . 

Thus in each case there is a path between 
0 0( , )u v  and 

0 2( , )u v  in 
2G H . Also as in Proposition 2.3 there is a 

path from 
0 2( , )u v  to 

4 4 2( , )k tu v 
 in 

2G H . Hence there is a path from 
0 0( , )u v  to ( , )u v   in 

2G H . By 

similar arguments if 
1( ) = 4 2l P k   and 

2( ) = 4l P t , then also there is a path between 
0 0( , )u v  and ( , )u v   in 

2G H . So, 
1 1U V  gives a connected component in 

2G H . 

Thus if ( ) 3d z   with 
2z V , then the other partite set 

1V  contribute connected components 
1 1U V  and 

2 1U V  

in 
2G H . 

Here as ( ) 2iU   and 
2( ) 2V  , 

1 2U V  as well as 
2 2U V  each give two components in 

2G H . So, the 

graph 
2G H  has six components. 

(b) In this case 
1( ) 3V   and 

2( ) 3V  . So 
1 1U V , 

1 2U V  and 
2 1U V  and 

2 2U V  will give connected 

components in 
2G H . So, the graph 

2G H  has four components.  

Corollary 2.7 Let G  and H  be connected bipartite graphs with ( ) 3G   and ( ) 3H  . 

 (a) If 
1( ) 2U   and 

2( ) 3U   as well as 
1( ) 2V   and 

2( ) 3V  , then 
2G H  has five components.  

(b) If ( ) 3iU   and ( ) 3iV  ; ( =1,2)i , then 
2G H  has four components.  

Proof. (a) In this case 
2( ) 3U   and 

2( ) 3V  . Since 
2( ) 3U  , the other partite set 

1U  contribute connected 

components 
1 1U V  and 

1 2U V  in 
2G H . Similarly as 

2( ) 3V  , 
1 1U V  and 

2 1U V  give connected 

components in 
2G H .  

Further as 
1( ) 2U   as well as 

1( ) 2V  , corresponding to other partite set 
2U  and 

2V , we get two 

components for 
2 2U V  in 

2G H . Thus the graph 
2G H  has five components.  

(b) By similar arguments as given in Proposition 1.6, for ( ) 3iU  ; = 1,2i , we get connected components 

1 1U V , 
1 2U V , 

2 1U V  and 
2 2U V  in 

2G H . Thus, the graph 
2G H  has four components.  

In general from Remarks 2.4, Proposition 2.6 and Corollary 2.7, we can summarize the number of components 

in 
2G H  as follows:  

 

 

 



Connected and Distance in G ⊗2 H  

DOI: 10.9790/5728-1301040107                                           www.iosrjournals.org                                     4 | Page 

 
 

Next, we discuss connectedness of 
2G H  for non-bipartite graphs. First we shall prove the following 

Proposition:  

Proposition 2.8 labelnon Let G  be a non-bipartite connected graph with 2 ( ) , ( )N u u V G   . Assume that 

G  contains 
2 1lC 

, > 1l . Then between every pair of vertices, there exists a walk of length 4k  as well as 

4 2k  ; ( IN {0})k   form in G .  

Proof. Since G  is non-bipartite, it contains an odd cycle. Suppose G  contains 
2 1lC 

 with 

2 1 1 2 1( ) ={ , , }l lV C x x  , > 1l . Let u  and u  be in ( )V G  with path 
0 1 2 1: = =tP u u u u u

   , where 

( ) = ( , ) = 2 1Gl P d u u t  .  

Suppose u  and u  are on 
2 1lC 

. Then clearly there is a path between u  and u  of even length. 

Next, assume that u , 
2 1( )lu V C 

 . Assume that 
iu  is the nearest vertex from the cycle 

2 1lC 
 and jx  is the 

corresponding nearest vertex of 
2 1( )lV C 

. Suppose 
0P  is the path between 

iu  and jx  in G . Then there is a 

walk W   between u  and u  in G  as follows: 

0 2 1 0
0: =

P C Ppart of P part of Pl
i j j iW u u u x x u u      . 

Then 
2 1 0 0( ) = ( ) ( ) 2 ( ) = (2 1) (2 1) 2 ( )ll W l P l C l P t l l P

       , which is of even length. 

If necessary travelling on the cycle more than once, we get length of the walk in both the form 4k  as well as 

4 2k   in G . If ( )l P  is even, then by same arguments as above we get a walk of length 4k  and 4 2k   in G . 

Thus in all cases there is a walk between u  and u  of length 4k  as well as 4 2k   form in G . 

Note that since > 1l , in every walk 0 1: = =pW u w w w u     between u  and u  in above cases, we 

get 
2( , ) = 2G i id w w 

.  

Now onwards, whenever we consider a non-bipartite graph, we assume that it contain a cycle 
2 1lC 

, ( > 1)l .  

Proposition 2.9 Let G  and H  be two connected graphs. Suppose G  is a non-bipartite graph. Then, 

(a) the graph 
2G H  has two components, if H  is a bipartite graph.  

(b) the graph 
2G H  is connected, if H  is a non-bipartite graph.  

Proof. (a) Suppose H  is a bipartite graph. It is clear that 
1U V  and 

2U V  give two disconnected subgraphs in 

2G H . 

         Let ( , )u v  and ( , )u v   be in 
1U V . 

         Let path 
1P  between u  and u  in G  and path 

2 0 1: = =nP v v v v v   ; ( n  is an even integer) 

between v  and v  in H  be as follows: 

Since G  is non-bipartite graph, by Proposition 1.11, there are walks between u  and u  of length of the form 

4k  as well as 4 2k  . Since n  is an even integer, as we have discussed in Proposition 2.3, we get a path 

between ( , )u v  and ( , )u v   in 
2G H . Thus 

1U V  gives a connected component, which proves ( )a .  

(b) Let ( , )u v  and ( , )u v   be in U V . Since G  and H  both are non-bipartite graphs, there exist walks 

between v  and v  of length 4k  as well as 4 2k   form. So, as above we get the result.  

Corollary 2.10 Let G  and H  be two connected graphs. Then 
2G H  is connected if and only if G  and H  

both are non-bipartite graphs.  

 Note that the similar result for usual Tensor product is as follows:  

Proposition 2.11 [7] Let G  and H  be connected graphs. Then G H  is connected graph if and only if either 

G  or H  is non-bipartite. 
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III. Distance between two vertices in  2G H  

In this section, we discuss the distance between two vertices in 
2G H  for G  and H  both are connected and 

2 ( ) ; ( ) ( )N w w V G V H    . 

First we define 
*

( , )Gd u u  and 
**

( , )Gd u u  for u  and u  in ( )V G , where G  is a connected graph. 

Definition 2.1 Let = ( , )G U E  be a connected graph and ,u v U . Then, 

(1) 
*

( , )Gd u u  is defined as the length of a shortest walk  0 1: = =pW u w w w u    between u  and u  of 

the form 4 ( IN)k k  in which 
2( , ) = 2G i id w w 

 for = 0,2,4, , 4 2i k  .  (2) 
**

( , )Gd u u  is defined as the length 

of a shortest walk 0 1: = =pW u w w w u    between u  and u  of the form 4 2 ( 0)k k   in which 

2( , ) = 2G i id w w 
 for = 0,2,4, , 4i k . 

Note that    

* **

** *

( , ) < ( , ), ( , ) = 4
( , )

( , ) < ( , ), ( , ) = 4 2

G G G

G

G G G

d u u d u u if d u u k
d u u

d u u d u u if d u u k

   
 

   

 

If there is no such shortest walk, then we write 
* **

( , ) = ( ( , ) = )G Gd u u d u u   . 

Remark 3.2 

[i]  If G  is a non-bipartite graph, then 
*

( , ) <Gd u u   and 
**

( , ) <Gd u u   for every , ( )u u V G , by 

       Proposition 1.8. 

[ii] If G  is a bipartite graph and even, also if ( , )Gd u u  is an even number 4k , then 
**

( , )Gd u u  may not be 

finite. 

For example, if 
6 1 2 5 6= :G P u u u u    , then 

1 5( , ) = 4Gd u u  but 
**

1 5( , ) =Gd u u  . However, if 

10=G C , then 
1 5( , ) = 4Gd u u  but 

**

1 5( , ) = 6 <Gd u u  . 

Now we fix the following notations: 

Let 
1= ( , )G U E  and 

2= ( , )H V E  be connected graphs.Then 
2( ) =V G H U V  . Fix ,u u U , 

suppose = ( , ) =G Gd d u u m  with path 
1 0 1: = =mP u u u u u    and ,v v V , = ( , ) =H Hd d v v n  with 

path 
2 0 1: = =nP v v v v v   . Denote 

2
= (( , ),( , ))G Hd d u v u v

  . We assume that ( , )u v  and ( , )u v   are 

in the same component of 
2G H , i.e., <d  . 

Proposition 3.3 If 
Gd  and 

Hd  are of the same form 4k  or 4 2k  , then 
1 1

= ,
2 2

G Hd Max d d
 
 
 

. 

Proof. Let = 4Gd k  and = 4Hd t ; k t . Then using paths 
1P  and 

2P  from u  to u  and v  to v  in G  and H  

respectively, there is a path 

0 0 2 2 4 4 4 2 4 2 4 4 4 4 4: ( , ) = ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) = ( , )k k k k k k k tP u v u v u v u v u v u v u v u v  
          

between ( , )u v  and ( , )u v   of length 2t  in 
2G H . So, 

1 1 1
2 = = ,

2 2 2
H G Hd t d Max d d

 
  

 
. Similarly if 

= 4 2Gd k   and = 4 2Hd t  , then path 

 
0 0 2 2 4 2 4 2 4 4 4 4 2 4 6 4 2 4 2: ( , ) = ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) = ( , )k k k k k k k tP u v u v u v u v u v u v u v u v      

           

between ( , )u v  and ( , )u v   of length 2 1t   in 
2G H . So, 

1 1 1
2 1 = = ,

2 2 2
H G Hd t d Max d d

 
   

 
. 

Conversely suppose that <d   with the path 
0 0 1 1( , ) = ( , ) ( , ) ( , ) = ( , )d du v u v u v u v u v     in 

2G H . 

Then 
1 1( , ) = 2 = ( , );G i i H i id u u d v v i   . So, there is a walk 

0 0 1: = =G dW u u a u u u     of length 2d  

between u  and u  in G  with 
1i iu u  . Similarly we get a walk 

HW  between v  and v  in H . Hence 2Gd d  

and 2Hd d . So, Max
1 1

,
2 2

G Hd d d
 

 
 

.  Thus we get Max
1 1

, =
2 2

G Hd d d
 
 
 

. 

Next, we consider the case in which 
Gd  and 

Hd  are not in same form, but both are even. 

Proposition 3.4 If = 4Gd k  and = 4 2Hd t  , then 
* **1 1 1 1

= , , ,
2 2 2 2

G H G Hd Min Max d d Max d d
    
    

    
. 
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Proof. First we prove that 
* **1 1 1 1

, , ,
2 2 2 2

G H G Hd Min Max d d Max d d
    

     
    

.  

If 
* **

= =H Gd d , then it is clear. 

             Suppose 
*

<Hd  . Suppose = 4Gd k  and 
*

= 4Hd t ; k t . Then there is a shortest walk 

2 0 1 4: = =tW v w w w v
    such that 

2( , ) = 2H i id w w 
 for = 0,2,4, , 4 2i t  . So, using path 

1P  and 

walk 
2W , we get a path between ( , )u v  and ( , )u v   in 

2G H , as in Proposition 3.3. So, 

* *1 1 1
2 = = ,

2 2 2
H G Hd t d Max d d

 
  

 
.Similarly, if 

**

= 4 2Gd k   , then
**1 1

,
2 2

G Hd Max d d
 

  
 

. 

Hence we get 
* **1 1 1 1

, , ,
2 2 2 2

G H G Hd Min Max d d Max d d
    

     
    

. 

For the reverse inequality, as <d  , as we have seen in Proposition 3.3, there are walks 
GW  and 

HW  between 

u u  and v v  respectively with ( ) = 2 = ( )G Hl W d l W . Also, as = 4Gd k  and = 4 2Hd t  , we get 

* **

= <G G Gd d d  and 
** *

= <H H Hd d d . 

               Suppose d  is even. Let = 2d p .Then ( ) = 4 = ( )G Hl W p l W . So, 
*

4Gd p  as well as 
*

4Hd p . Thus 

   * * *

, = , 4 = 2G H G HMax d d Max d d p d . If = 2 1d p , then ( ) = 4 2 = ( )G Hl W p l W . So, 
**

4 2Gd p   and 

**

4 2Hd p   and therefore 
**

{ , } 4 2 = 2G HMax d d p d  . Hence 

* ** * * ** **1 1 1 1 1 1 1 1
, , , = , , ,

2 2 2 2 2 2 2 2
G H G H G H G HMin Max d d Max d d Min Max d d Max d d d

          
         

          
 

Corollary 3.5 Let 
Hd  be an odd integer. 

(i) If 
Gd  is odd, then 

* * ** **1 1 1 1
= , , ,

2 2 2 2
G H G Hd Min Max d d Max d d

    
    

    
. 

(ii) If = 4Gd k , then 
* ** **1 1 1 1

= , , ,
2 2 2 2

G H G Hd Min Max d d Max d d
    
    

    
. 

(iii) If = 4 2Gd k  , then 
* * **1 1 1 1

= , , ,
2 2 2 2

G H G Hd Min Max d d Max d d
    
    

    
. 

Proof. (i) Suppose If 
Gd , and 

Hd  both are odd integers. 

First we prove that 
* * ** **1 1 1 1
, , ,

2 2 2 2
G H G Hd Min Max d d Max d d

    
     

    
.  

         Suppose 
* * ** **1 1 1 1
, = = ,

2 2 2 2
G H G HMax d d Max d d

   
   

   
. Then it is clear.  

         Suppose 
* *1 1
, <

2 2
G HMax d d

 
 

 
. Therefore 

*

= 4Gd k   and 
*

= 4Hd t ; k t  . Then using walks 
1W  and 

2W , we get a path between ( , )u v  and ( , )u v  , as in Proposition 3.4 by replacing 
1P  by 

1W . So, 

* *1 1
,

2 2
G Hd Max d d

 
  

 
. Similarly, if 

**

= 4 2Gd k    and 
**

= 4 2Hd t  , then 
** **1 1

,
2 2

G Hd Max d d
 

  
 

. Hence we 

get 
* * ** **1 1 1 1
, , ,

2 2 2 2
G H G Hd Min Max d d Max d d

    
     

    
. 

Conversely, as <d  , as we have seen in Proposition 3.4, we get 

* * ** **1 1 1 1
, , ,

2 2 2 2
G H G HMin Max d d Max d d d

    
    

    
. 

(ii) If = 4Gd k , then 
*

=G Gd d  and hence the result follows. 

(iii) If = 4 2Gd k  , then 
**

=G Gd d  and hence the result follows. 
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