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Abstract : The tensor product G®H of two graphs G and H is well-known graph product and studied in
detail in the literature. This concept has been generalized by introducing 2-tensor product G®, H and it has
been discussed for special graphs like P, and C, [5]. In this paper, we discuss G®, H, where G and H are
connected graphs. Mainly, we discuss connectedness of G®, H and obtained distance between two vertices in
it.
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I. Introduction
The tensor product G®H of two graphs G and H is very well-known and studied in detail ([1], [2],
[3]. [4]). This concept has been extended by introducing 2—tensor product G®, H of G and H and studied

for special graphs [5]. In this paper, we discuss connectedness of G ®, H for any connected graphs G and H .
We also obtained the results for the distance between two verticesin G®, H .
If G=((G),E(G)) is finite, simple and connected graph, then d(u,u’) is the length of the shortest path

between u and u’ in G. For a graph G, a maximal connected subgraph is a component of G. For the basic
terminology, concepts and results of graph theory, we refer to ([1], [6], [7])-

We recall the definition of 2—tensor product of graphs.

Definition 1.1 [5] Let G and H be two connected graphs. The 2—tensor product of G and H is the graph

with vertex set {(u,v):ueV(G),veV(H)} and two vertices (u,v) and (u’,v') are adjacent in 2—tensor
product if ds(u,u’)=2 and d, (v,v')=2. Itis denoted by G®, H .

Note that G®, H is a null graph, if the diameter D(G) <2 or D(H) < 2. So, throughout this paper we assume
that G and H are non-complete graphs.

1. Connectedness of ©®:H
this section, first we consider the graphs G and H, both connected and bipartite with

N?(w) = ¢; VweV(G)UV(H), where N?(u) ={u’ eV (G):d,(u,u’) =2}

In usual tensor product G®H , the following result is known.

Proposition 2.1 [4] Let G and H be connected bipartite graphs. Then G®H has two components.

Note that in case of G®, H, the similar result is not true. We discuss the number of components in G®, H

with different conditionson G and H .

We fix the following notations

Let V(G)=U,wU, and V(H)=V, LV, with U; and V;, (i, j=1,2) are partite sets of G and H
respectively. Then, V(G ®, H) =W,, UW,, UW,, UW,, with W, =U, xV,
Remark 2.2 If (u,v) and (u’,v') are from different W;;, then (u,v) and (u’,v’) can not be adjacentin G®, H
as dg(u,u)=2 ord, (v,v)=2. So, G®, H has at least four components. Suppose (u,v) and (u’,v’) arein
the same W . Then d(u,u’) and d, (v,v") are even.
Proposition 2.3 Let G and H be connected bipartite graphs. If d;(u,u’) and d, (v,v") are of the same form,
4k or 4k +2, (k € INU{0}) then (u,v) and (u’,v") are in the same component of G®, H .
Proof.Let (u,v) & (u',v") eU, xV, .Suppose, B :u=u, >u, —>...—>u, =u’'and
P iv=v, >V, >...—>V, =V' are paths between u, u" and v, v' respectively.

Suppose 1(R) =4k /4k+2 and I(P,) =4t/4t+2 with k <t . First assume that k =0 = t, then there is a
path P or P’ between (u,v) and (u’,v") in G®, H as follows:
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Pr(Ug, Vo) = (U, V) == (Uy Vi) = (U o Vo) = Ugges Vi) = -0 > Uy, V) = (U, V)
P’ (Ugs Vo) = (Uyy V) = = (U Viari2) = (g Viaa) = (Ugon Viaris) = -+ = (Ugio0 Vi) = (U, V).
Next, assume that k=0, i.e. I(R)=0 or 2,ie u=u" or u=u, »>u —>u,=u". Now as N°(u)=¢ ,
JaeV(G) such that d;(u,a)=2. So, in case of I(P,)=0 and I(P,) = 4t, we get the path between (u,v) and
(u,v") in G®, H as follows:
uv)=@u,v,) > @v,)—>Wv,)—>...>Uv,).

Next if I(R)=2 and I(P,)=4t+2, then we get the path between (u,,v) and (u,,v) in G®, H as
follows:
(U, V) = (U, Vo) = Uy, Vy) = (Ug, V) = (Uy, V) == (Uy, V) = (Uy, V)
Thus in all cases there is a path from (u,v) to (u’,v") in G®, H . Which completes the proof.
Remarks 2.4
[i] Suppose (u,v) and (u’,v") are in same W;. Butif d;(u,u’) and d, (v,v') are not of the same form, then
(u,v) and (u’,v") may be in different components. So, U, xV, give at most two components. Thus G®, H has

at most eight components.
[ii] Suppose A(G)<2 and A(H)<2, A(G) and A(H) are maximum degree of G and H respectively.

Then G and H are either path or cycle. If the cycle is of the form C,, , then in each of the cases, P, ®, P, ,
P, ®,C,, and C,, ®,C,, have eight components [5].

Next, we discuss the conditions on G and H under which G®, H has 4, 5 or 6 components.
Proposition 2.5 Let G and H be connected bipartite graphs and at least one of the graphs contains a cycle
C,., (I€IN). Then G®, H has exactly four components.

Proof. Let (u,v) and (u’,v) bein U, xV,. As we have seen in Proposition 2.3, if d;(u,u’) and d, (v,v') are of
the same form 4k or 4k + 2, then U, xV, gives connected component.

Let B and P, be two paths between u—u’ and v—v' in G and H respectively, as we have considered in
Proposition 2.3. Suppose I(R,) and I(P,) are of the different form.

Suppose H contains a cycle C,,, with V(C,,,) ={X, %,.-.., X,,,}. Then select a vertex from C,,,, which is
nearest to v, =V’ and also it is in V; . Suppose this vertex is x;. Since v, and x; both are in V,, we get a path

P R c R
2 0 >X, 4142 X; 0 sy =V

R, from v, to x; of even length. We consider a walk W :v =v, >V

n n

between v and v’ in H . Then,
IW) = 1(R) +2(1(R)) +1(Cyy,,) = 1(R,) +2(2t) + (4 +2) = I(R,) +4t" +2.
Thus, if 1(P,) =4t+2 or 4t, then I(W)=4q or 4q+2. So, inany case, I(R) and I(W) are of the same form
and therefore, as in Proposition 2.3, we can show that there is a path between (u,v) and (u’,v’) in G®, H . So,
U, xV, gives a connected components in G®, H . Thus, G®, H has four components.
Next, we assume that the graphs G and H do not contain a cycle of the form C,,,, . We prove that the number
of components in G®, H is depending upon A(G) as well as A(H).
Let AU,)=max{d(u):ueU;} and A(;,)=max{d(v):veV,}; i=1,2 and for aeV(G),

N(@) ={beV(G):d;(ab)=1}.
Proposition 2.6 Let G and H be connected bipartite graphs with A(G) <2 and A(H) >3.
(@ If A(V,)<2 and A(V,) >3, then G®, H has six components.
(b) If A(V,)=3 and A(V,) >3, then G®, H has four components.
Proof. We know that U, xV,, U, xV,, U, xV, and U, xV, give disconnected subgraphsin G®, H .
(a) Fixed U, xV,. We shall show that U, xV, gives connected subgraph of G®, H . Let z €V, with d(z)>3
and N(z) ={w,,w,w,,..}cV,.

Fixed (u,,V,) €U, xV, with v, =w,. Let (u',v') be any vertex in U, xV, . Suppose, P, and P, are paths
between u=u, to u" and v=v, to v' in G and H , as we have considered in Proposition 2.3. If I(R) =4k or
4k +2 and I(P,) =4t or 4t+2, then the result is clear.
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Next, suppose I(R)=4k and I(R,) =4t+2; k<t with k#0=t. First, we show that for v, —v, >V, there
is a path between (u,,V,) and (u,,v,) in G®, H.

Case (1) Suppose z =V, in V,.

If v, zw, in V, as given in figure.1, then (uy,v,) — (U,, W) = (Uy, W,) — (U,,Vv,) = (U,,V,) is a path between
(Uy,Vv,) and (u,,v,) in G®, H.

figure.1

If v, =w, in V,, then, (u,,v,) = (u,,w,) — (u,,V,) is the required path.

Case (2) Suppose z=v, inV,.

If w=v,=w, in V,, then (u,,v,) — (U,,w,) —>(u,,V,) is the path and if v, =w,, then consider the path
(Ug, Vo) = (Uy, W) = (Up,V,) In G®, H.

Thus in each case there is a path between (u,,v,) and (u,,v,) in G®, H. Also as in Proposition 2.3 there is a
path from (u,,v,) to (u,,V,,,) in G®, H. Hence there is a path from (u,,v,) to (V') in G®, H. By
similar arguments if 1(P)=4k+2 and I(R,) =4t, then also there is a path between (u,,v,) and (u’,v’) in
G®, H. So, U, xV, gives a connected componentin G®, H .

Thus if d(z) >3 with z €V, , then the other partite set V, contribute connected components U, xV, and U, xV,
inG®,H.

Here as A(U;)<2 and A(V,)<2, U, xV, as well as U, xV, each give two components in G®, H . So, the
graph G®, H has six components.

(b) In this case A(V,)=3 and A(V,)=3. So U, xV,, U, xV, and U,xV, and U, xV, will give connected
components in G®, H . So, the graph G®, H has four components.

Corollary 2.7 Let G and H be connected bipartite graphs with A(G) >3 and A(H) > 3.

(@ If AU,)<2 and AU,) =3 aswell as A(V,) <2 and A(V,) >3, then G®, H has five components.

(D) If AU,)=3 and A(V,)=3; (i=1,2), then G®, H has four components.

Proof. (a) In this case A(U,)>3 and A(V,)>3. Since A(U,) >3, the other partite set U, contribute connected
components U, xV, and U, xV, in G®, H. Similarly as A(V,)>3, U, xV, and U, xV, give connected
componentsin G®, H .

Further as A(U,)<2 as well as A(V,)<2, corresponding to other partite set U, and V,, we get two
components for U, xV, in G®, H . Thus the graph G®, H has five components.

(b) By similar arguments as given in Proposition 1.6, for A(U;)>3; i=1,2, we get connected components
U, xV,, U, xV,, U,xV, and U, xV, in G®, H. Thus, the graph G®, H has four components.

In general from Remarks 2.4, Proposition 2.6 and Corollary 2.7, we can summarize the number of components
in G®, H as follows:
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H A(F;) <2 AT <2, A(T;) 23, A(F) 23,

A(F,) <2 AV, )23 AF,)<2 AV, )23
AT 22, AU,) =2 (g 6 6 4
AU 2. AU 23 g 5 5 4
AU 23, MU 2 [ s 5 4
AU)23, AU 23 |4 4 4 4

Next, we discuss connectedness of G®, H for non-bipartite graphs. First we shall prove the following
Proposition:

Proposition 2.8 labelnon Let G be a non-bipartite connected graph with N?(u) # ¢, Vu €V (G) . Assume that
G contains C,,, 1 >1. Then between every pair of vertices, there exists a walk of length 4k as well as
4k +2; (ke INU{0}) formin G.

Proof. Since G is non-bipartite, it contains an odd cycle. Suppose G contains C,,, with
V(C,.,) ={X,- - Xy}, 1 >1. Let u and u’ be in V(G) with path P:u=u, »>u, >...—> U, , =u’, where
I(P)=ds(u,u") =2t +1.

Suppose u and u’ are on C,,,. Then clearly there is a path between u and u’ of even length.

Next, assume that u, u'eV(C,,,). Assume that u; is the nearest vertex from the cycle C,,, and x; is the
corresponding nearest vertex of V(C,,,). Suppose Py is the path between u; and x; in G. Then there is a

walk W' between u and u’ in G as follows:

part of P R R part of P

’ C, !
W':u=u, u; > X —2 X, u'.
Then IW") =1(P)+1(C,,,) +2I(R) = (2t +1) + (21 +1) + 2I(R,) , which is of even length.
If necessary travelling on the cycle more than once, we get length of the walk in both the form 4k as well as
4k +2 in G. If I(P) is even, then by same arguments as above we get a walk of length 4k and 4k +2 in G.

Thus in all cases there is a walk between u and u’ of length 4k aswell as 4k +2 formin G.
Note that since |1 >1, in every walk W':u=w, ->w, —...—>Ww,_ =u’ between u and u’ in above cases, we

u.

get dg (W, w,,)=2.
Now onwards, whenever we consider a non-bipartite graph, we assume that it contain a cycle C,,, (1 >1).
Proposition 2.9 Let G and H be two connected graphs. Suppose G is a non-bipartite graph. Then,
(a) the graph G®, H has two components, if H is a bipartite graph.
(b) the graph G®, H is connected, if H is a non-bipartite graph.
Proof. (a) Suppose H is a bipartite graph. It is clear that U xV, and U xV, give two disconnected subgraphs in
G®,H.

Let (u,v) and (u’,v") bein U xV,.

Let path B between u and u’ in G and path P,:v=v, >v, >...—>Vv, =V'; (n is an even integer)
between v and v’ in H be as follows:
Since G is non-bipartite graph, by Proposition 1.11, there are walks between u and u’ of length of the form
4k as well as 4k +2. Since n is an even integer, as we have discussed in Proposition 2.3, we get a path
between (u,v) and (u’,v") in G®, H. Thus U xV, gives a connected component, which proves (a) .
(b) Let (u,v) and (u',v") be in UxV . Since G and H both are non-bipartite graphs, there exist walks
between v and V' of length 4k as well as 4k +2 form. So, as above we get the result.
Corollary 2.10 Let G and H be two connected graphs. Then G®, H is connected if and only if G and H

both are non-bipartite graphs.

Note that the similar result for usual Tensor product is as follows:

Proposition 2.11 [7] Let G and H be connected graphs. Then G®H is connected graph if and only if either
G or H isnon-bipartite.
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I11. Distance between two vertices in ©®2H
In this section, we discuss the distance between two vertices in G®, H for G and H both are connected and

N*(w) # ¢, YW eV (G) UV (H) .

First we define dg(u,u') and d: (u,u”) for u and u’ in V(G), where G is a connected graph.
Definition 2.1 Let G = (U, E) be a connected graph and u,veU . Then,

Q) d(;(u,u’) is defined as the length of a shortest walk W :u=w, —>w, —...—>w, =u’ between u and u" of

the form 4k (k € IN) in which d;(w,w,,)=2 for i=0,2,4,...,4k-2. (2) d;(u,u') is defined as the length
of a shortest walk W :u=w, ->w, —...—>w, =u" between u and u’ of the form 4k +2 (k >0) in which
de(W,w,,)=2 for i=0,2,4,...,4k .

do(uu)<d, (U, if dg(uu) =4k

ok

Note that d;(u, u")= :
dg (u,u") <dg(u,u’), if dg(u,u’) =4k +2

If there is no such shortest walk, then we write d; (u,u) = (d: (u,u’) = ).
Remark 3.2
[i]1 If G isanon-bipartite graph, then d;(u,u’) <oo and d:(u,u’) < oo forevery u,u’ eV (G), by
Proposition 1.8.
[ii] If G is a bipartite graph and even, also if d;(u,u’) is an even number 4k, then d: (u,u”) may not be
finite.
For example, if G=FR,:u, —>u, >...—>UuU, >U,, then d;(u,u;)=4 but d:(ul,us):oo. However, if
G=C,,then dy(u,u;) =4 but dg (u,u;)=6<oo.

Now we fix the following notations:
Let G=(U,E) and H=(V,E,) be connected graphs.Then V(G®, H)=UxV . Fix u,u’eU,

suppose d; =dg(u,u’) =m with path B:u=u, >u, »>...—>u, =u" and v,v' eV, d, =d, (v,v') =n with
path P,:v=v, >V, >...—>Vv, =V’ . Denote d = dG®2H((u,v),(u’,v')). We assume that (u,v) and (u’,v’) are

in the same component of G®, H , i.e., d <.
Proposition 3.3 If d; and d,, are of the same form 4k or 4k +2, then d = Max {% dg, % d, }

Proof. Let d; =4k and d,, =4t; k<t. Then using paths B, and P, from u to u’ and v to v' in G and H
respectively, there is a path

Pr(u,v) = (U, Vo) = (U, V) = (Ugyr V) = (Ugy s Vagsn) = (U, Vigea) =+ (U, V) = (U V)
between (u,v) and (u’,v') of length 2t in G®,H. So, d s2t=%dH = Max{% de,%dH}. Similarly if
d; =4k+2 and d, =4t+2, then path

P (U, V) = (Ug, Vo) = (Uy, Vo) = > Uy Viaraz) = (Ugir Viera) = (U2 Vagss) =+ - > (Uggei0 Vi) = (U7, V)
between (u,v) and (u’,v") of length 2t+1in G®, H.So, d <2t+1= % d, = Max{% dG,%dH}.
Conversely suppose that d <co with the path (u,v) = (U,,Vv,) = U, V) —>...—> Uy, v,) =W, V) in G®, H.
Then dg(u;,u;,,) =2=d,(v,,v,,); Vi. So, there is a walk W, :u=u, »>a, »>u, »>...—U, =u’ of length 2d
between u and u’ in G with u, #u,,. Similarly we get a walk W,, between v and v' in H . Hence d; <2d
and d, <2d. So, Max{%de,%dH}sd . Thus we get Max{%de,%dH}=d .
Next, we consider the case in which d; and d,, are not in same form, but both are even.

Proposition 3.4 If d, =4k and d, =4t+2,then d = Min{Max{% de,%d;}, Max{% d:,%dH}}.
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Proof. First we prove that d < Min{Max{% dg. % d,: } Max{

N
o
© 3
N
o
I

%/_/
—

If d; o= d: , then it is clear.

Suppose d,:<oo. Suppose d, =4k and d;:4t’;kst’. Then there is a shortest walk
W, :v=w, ->w, —>...—>w,, =V such that d,(w,w_,)=2 for i=0,2,4,...,4t"-2. So, using path P, and
walk W,, we get a path between (u,v) and (u’,v) in G®,H, as in Proposition 3.3. So,

d<at'= %d; = Max {%de, %d;}.Similarly, if d, =4k'+2, thend < Max{%d:édH }

. 1 1 - 1 ~1
Hence we get d <Min {Max {Ede, EdH}’ Max {Ede ’EdH }}
For the reverse inequality, as d <o, as we have seen in Proposition 3.3, there are walks W, and W, between
u-u' and v-Vv' respectively with IW,)=2d =1(W,). Also, as d; =4k and d, =4t+2, we get
d,=d, <d, and d, =d,, <d, .
Suppose d is even. Let d =2p.Then IW;)=4p=I1W,). So, d; <4p as well as d; <4p. Thus
Max{dG,d;}=Max{d;,d,j}s4p=2d. If d=2p+1, then I(W,)=4p+2=I(W,). So, d. <4p+2 and

d: <4p+2 and therefore Max{d:,dH}s 4p+2=2d.Hence

Min{Max{%dG,%d;},Max{%d:,%dH}} - Min{Max{%d;,ld;

> ,Max{ld:,ld:}}sd

} 2 2
Corollary 3.5 Let d, be an odd integer.
d, }} .

First we prove that d < Min{Max{% d; , % d,: } Max{% d:, % d:}}

(i) If g is odd, then d = Min{Max{% d;,%d; } Max{% de

1

2
(ii) If dg =4k , then d = Min{Max{% dG,%d;}, Max{% d:,%dH }
d

H

. 1 -1 - 1.1
(iii) If d; =4k +2,then d = Mln{Max{E dG,EdH}, Max{i dg. >

Proof. (i) Suppose If d; , and d,, both are odd integers.

Suppose Max{% d;,%d;}=oo= Max{% d:,%d:}.Then it is clear.

Suppose Max{% d;,%d;}«n. Therefore d; =4k’ and d,: =4t"; k'<t’. Then using walks W, and
W,, we get a path between (u,v) and (u’,v'), as in Proposition 3.4 by replacing P, by W,. So,

d sMax{%d;,%d;}. Similarly, if d, =4k’+2 and d,, =4t'+2, then d sMax{%d:,%d:}. Hence we

. 1.~1 - 1 =1 =
get d < Mln{Max{EdG,EdH}, Max {Ede ’§dH H
Conversely, as d < oo, as we have seen in Proposition 3.4, we get
. 1.1, 1 ~1 ~
Mln{Max{EdG,EdH}, Max{EdG ,EdH }}Sd .
(ii) If d; =4k, then dg = d; and hence the result follows.

(iii) If dg =4k +2, then dg = d: and hence the result follows.
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