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Some Qualitative Approach for Bounded Solutions of Some
Nonlinear Diffusion Equations with Non-Autonomous
Coefficients: Oscillation Criteria

Tadie

Mathematics Institut , Universitetsparken 5 2100 Copenhagen, Denmark 1

Abstract:
This work investigates some oscillation criteria for the equation

V.- <a(x,u)®u(Vu) p +elx,u)de(u)+ f(x,u)=0 xcQCR".

This has been largely done for cases where the coefficients @ and ¢ are autonomous
(i.e. not depending on the unknown function ). Using some Picone-type formulas we
show that if those coefficients are continuous. positive and bounded away from zero
flx.1)

dalr)

non-trivial solution of the equation is oscillatory.

and for small |f|. 0 < = O(|t|®) with 6 > o > 0. then any bounded and
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I. Introduction
1.1 Preliminaries
Nonlinear elliptic equations arise in many different domains in pure and applied Math-
ematics. In particular in Nonlinear Diffusion problems.
( slow. fast diffusion flows....) (see e.g. [1] ). The general equation has the form

—V- (Kl (x, 2. Vu)) +b(x,u, Vu) = 0. (1)

According to the requirements of the given phenomena and characteristics of the problem.
this equation can be put into various forms when the coefficients fulfill some specific con-
ditions. Let Q C R” be an open domain and W := Q x R x R”. In this work. we will
be concerned about some models of problems coming from the following general type of
problems:

(7) V- {A(x u.Vu)Vu} +K(x, 2. Vu)u+ f(x,u) =0: x<Q

where for somem >0, Vx€Qand ¥ €R", (1.2)
(if) AcClx,u,Y: (m, )): KcCQxRxR" R):
(i#ii) feC(Q xR, R).

In the sequel a solution of (1.2)(i) will be any # € R () which satisfies weakly the equation
(1) where

R(Q) :={we ' (Q)[CHQ) : A(x,w,VW)Vwe C (T }. (1.3)

Among other. one of the important qualitative aspects of the solutions ( when they are
bounded ) of those problems is the oscillation criteria when that solution is obtained ( or
extended ) in an unbounded domain Q. say. The oscillatory criteria have been mainly
investigated in the literature for the cases where the coefficients ( 4(..) and X(..) ) are
autonomous ( i.e. independent of the unknown functions #, Vu,..) (see[4.6.5.11.12]
and references therein ).
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A function # is said to be oscillatory in Q if ¥R > 0. it has zeros in
Qg := {x € Q: |x| > R} and strongly oscillatory if its support has non-void open.
bounded and connected components in any .

1.2 Some recalls on equations with autonomous coefficients

It is about proiblems whose equations are of the type

V- {A(x)d)a(Vu) } +C(x)®g () + F(x,2,Vu) = 0. x€Qp (PO)

where o > 0 and ®(S) := |S|*S. For this type of equations. in [6] the theorems 1.5
and 2.4 for one-dimensional cases and 3.1. 3.2 and 3.3 for multidimensional ones offer
interesting results when the coefficients 4 and C are strictly positive functions and some
boundedness conditions set on F.

In the hypotheses the coefficients 4 and C are required to keep ( each ) the same sign
mainly for technical reasons: the results we establish rely on the fact that the corresponding
“half-linear equations

V. {A(x)d%,(Vu) +C(x) Dy () =0

are odd in the sense that if # solves the equation. so will —u. Those results were
obtained via usage of some Picone-type formulae and comparison principles.
Results for such problems with o= 1, namely

V. {a(u)Vzl} + C(x)ue+ f(x,2) = 0  have been investigated in [8].

I1. Models Problems And Main Resultys
In the sequel we define the following:
V¥y>0, scR and SER" ¢y(s) :=|s|" s and ®,(S) := |S]""1S and after easy
and elaborate calculations, they have the forrlowing properties:

shy(s) = [s|™ s s0l(s) =¥y(s) and  Gy(st) = Oy(s)dy(1):
Sd,(S) = |S|""! and ®,(TS) = dy(T)D,(S): (2.1
and for a function s and S=Vs, sV[du(s)] = uSdh,(s).

For the type of equation we will be dealing with. say

V- {a(x, u)(DY(Vu)} +e(x,u)d(u) + f(x,u) =0 x€Q,

we first lay down the following hypotheses on the coefficients:

[ For some v, m> 0
(a): the coefficients @ € C}(Q xR, (m, o) ) and
c € C(QAXR, (m, ) ):
(H) (b): @ and c are even in their secong argument
re. V(x,7) e Qx R, a(x,t)=a(x,—t)and c(x,7)=c(x,—1).

®: () fecC(QxR,R) satisfies Q(x(’:)) >0 V(x,t)eQxR\{0}and

(i) 30 > o |f(x,1)| = O(|t|®) for small [¢|.
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The conditions on f mainly the (ii) ensures that for smaff |u|, ©¢y(z) remains the leading
term ensuring that the solution cannot have a compact support. (seee.g. [1])

2.1 Problems without damping terms

The first model problem is the following:
under thew hypotheses in (H). we consider
for QCR": o,m>0: ¢:=0¢yand d:= D, the equation

V- {a(x, u)®d(Vu) } +e(x,u)d(u)+ fx,u) =0 x€Q. 2.2)

It is important to note that from (f) above . the function f is a restoring function in 7 ( i.e.
V(x,s) € Q xR\ {0}, sf(x,s)>0).ifwu is a solution of the equation (2.2). so would be
—u: thus we can say that # is non-oscillatory if # is eventually strictly positive or eventually
strictly negative, because a and ¢ are set positive.

With Q extended to the whole space the following result will be obtained:

Theorem 2.1. Assume that a, c, f satisfy the hypotheses in (H).
Then any non-trivial and bounded solution u of (2.2) in the whole R" is oscillatory in
the sense that it has zeros in any exterior domain Qg of R”.
Next we have this slight different result for one-dimensional equations:

Theorem 2.2. Given the functions

(H1) : % , D C(R, R") and the increasing B € C'(R, R") ,

any bounded and non-trivial solution of

{B(u)d)a(u')} +D(u)bo(u) =0 t€Qr: u(R)>0
is strongly oscillatorv.

Remark 2.2
As we will see in the proof, the same conclusion holds for the equation

{B(u)d)u(u')} +D(u)dpg(e) =0 1t<=Qr: u(R)>0

provided that B > 0. (see also [6. 7] )

2.2 Problems with damping terms

In terms of oscillation character. when the coefficient a satisfies (H)(a). the equation (2.2)
and

v. d v ”“ ”)o(v ) S5 ")q)( T A ) (2.3)
a(x, n( ge)
are equivalent in the sense that whenever one oscillates so does the other. For the
. Va(x,u . " . "
equation (2.3), ﬁd’(‘?u) denotes its damping term. Thus for the model of this type

of problem we consider in £2 the problem

,

(z) V. {d)( Vu)} +B(x.u) D(Vu) +C(x.u)b(wu) + F(x,u) = 0

where
S (7)) 3becHQ xR, RB) such that Yu & C‘l (R", R) (2.4)

Vb(x,u) = B(x,u) := Vib(x,1)|:. ut = b(\ T3] PR v 7

\ (477) and Cand F are as ¢ and f in (H)‘

We will establish the following result:
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Theorem 2.3. Under the hypotheses in (2.4)(iii),assume that

a) ether b(x,t)=b(t) and YtcR b'(t)>0 or

b) x+ e(x,t) is increasing and unbounded in |x| while for some continuous non-
negative function p € C(R), |Vib(x,t)| <p(t) Yxe Q.

Then any non-trivial and bounded solution of the equation is oscillatory.

I11. Basic Picone-Type Formulae
Given two ( supposedly ) solutions # and v in Q respectively of

(a) V. {A(x, u, Vu)Vu} +K(x,u, Vu)u+ f(x,u) =0 and

(3.1)
(6) V- {Al(x, v, Vv)Vv} + K (x, v, Vy)v+ fi(x,v) =0,
wherever v#£0 .
u?
V- {uA(x, u,Vu)Vu— —4 (o, v, V\-')Vv} = [A —Alj| |Vu|2
¥ (3.2)
+A12(1(, 1-‘) + W |:K1 —K] _*_112{& — Z}
v ou
where Yw,z € C!, the nonnegative 2-form Z is defined by
w w w i
Z(w,z) := |Vw|]* —2=VwVz + |§Vz|2 = (Vw— T_V:) : (3.3)

This type of formula is the main tool for establishing the results. In fact (3.2) is valuable
only in a domain where v is non zero. Thus if say v # 0 in a domain D and #|;p =0 then
the integration of (3.2) over D would give 0 at the left.

So if it happens that the right hand of (3.2) is strictly positive ( or negative ) in that D.
we have a contradiction implying that v has zero inside that D.

1V. Equations Without Damping Terms
Given a bounded region Q C R”, an o, m > 0, and

in the sequel. unless indicated otherwise ¢ (@) := ¢y (D),

we consider the equation (2.2) under the hypotheses (H).
AS seen in (3.2)-(3.3). if v,w are solutions for
V- {a1(x,v)®(Vv)} +e1(x,v)d(v) + fi(x,v) =0 and
V- {a(x,u)®(Vu)} +c(x,u)d(u) + f(x,u) = 0 respectively.
formally wherever v # 0

f

u

V- {ua(x, u)®(Vu) — Ild)(‘—)al(x,\')d)(Vv)} =

< [a(x, u) —ay(x, V)J |Vu|°‘+l +ay(x,v)Calu,v)+ (4.1)

2] [cl (x,v) —elx, ")] +ut {fqui)‘ - fd(:([;fz)l) }

\
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where ¥z, y € C'(Q) the non-negative two-form Gy, (Y > 0) 1s defined by
Gy(z.y) == V2" — (y+ l)I%VyI"‘l %Vy- vz +v|§VyI" 1 (4.2)
which 1s positive and i1s zero only if Jue RB; =z=uy ([11, 12]).
These types of equations are found in various Reaction Diffusion problems like flows
through porous media, Plasma Physics ([11, 9]).
Unless indicated otherwise, in the sequel the coefficients a;(x..) in the principal parts

of the equations and ¢;(x, .) of the half-linear part will fullfil the hypotheses in (H).

4.1 Proof of Theorem 2.1

Proof. Let u be such a bounded solution and b = |u|... It is known that for A4(x) ==
maxy<p {a(x.7)}

V. {A(x)CD(Vw)} +mo(w) =0

1s oscillatory given the hypotheses on af...) ( see [6] ).
Assume that # >0 insome Qp = {x € B"; |x| > R}. With this w, (4.1) reads in Qp

V- {wA(x)CD(Vu-') —\N)(:—:')a(x, u)<b(Vu_)} = [A(x) —a(x, u)] |Vwjet!

(4.3)
+a(x,u)Cy(w,u) +wtl [c(x, u) —m] +wotl M
o(u)
whose integration over any nodal set D(w) C £z would give
0= [p(w) { [A(_.\‘) —a(x, u)J | Vap|&+1 4
a(x, 1) G (W, 1) +w™! He(x,u) —m] et %%l}{[:\ =0
which 1s absurd if # = 0 in Qf. Therefore # > 0 in 2z cannot hold for any R = 0,
O

4.2 Proofof Theorem 2.2

Proof. Althnough this result can be an application of Theorem 2.1. we provide here an
analytical proof.
With
increasing B e C'Y(R, R*) and % . DeC(R, R,

if for some R =0 E bounded and non-trivial solution # of
{B(u)(b“(u’)} + D)o (tt) =0 tEQr: w(R) >0

is strictly positive and bounded then from the equation

1 () B (1) o (1t ) +B() [patd))' = B (1) /| + B(a0) [0 (a0 )]

= —D(u)do(u) <0 in Qg.

This implies that [0q(2')]’ = 2"dL (') = o|e/|* 12/ < 0. So. " < 0 in Qz and being
bounded. 2’ > 0 and decreases to zero there.

Thus if #(#) >0 ¥¢> R. it increases to its upper bound in Q. Let M := supq u(t)
M From the equation
B(u)’ 1

Ox(2/(2)) < 02/ (T))—0M(t—T), ¥Vt> T which is eventually strctly negative. con-
flicting with the fact that 2/ > 0 in Q7. Therefore no bounded and non-trivial solution of
the equation can be eventually positive.

and & ‘= ulin[,,( T), M)
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V. Equations With Damping Terms
Let

{beC‘(R"xR, (0, 00)): B(x,1) := Vb(x,1): (5.1)

c(x,t) and f(x,?) are as those in (H) .

Let for some strictly positive C € C(R, (0, ) « and v be respectively solutions of

(7) V- {@(Vu)} +B(x,u) - ®(Vu) +c(x,u)d(u) + f(x,u) = 0:

5.2)

(i) \'E {dl(Vv)} +mo(v) =0.

Assume that # 3 0 insay.D C R, Then in D easy calculations show that with
[(v,u) :=v®(Vv) — \-(I)(qu).
u
the corresponding Picone-type formulae are:
V. {b(x. u)T'(v,u) } = b(x,u) {Ca(v, u)+
Jxu) ]y s v (5.3)
i(x _ » Bl(x.u) - -V
[c(x,u) m-+ o) [v|* 7 +vB(x,u) - D( : u)

+B(x,u)-T'(vu).
5.1 Proofof Theorem 2.3
Proof- .

We chose as before m := miny <5 {c(x,7)}.
Assume that there is such a solution # for (2.4)(i) such that |u|.. = b.

V- {(D(Vv)} +md(v) =0

is oscillatory and as in (5.3)(a). a version of Picone-type formula for v and u reads

V- { BT | = B - T+ 50 { Lo+

[c(x, B)—m+ L(x—i)] [v|%t! 4 vB(x,u) - dD(XVu) } ;
o(u) u

a) The equation (5.2)(1) is unchanged if b is replaced by b(u) +A, YA€ R. If we
assume that # > 0 in some Qp . then for any such A. the integration of (5.4) over any nodal
set D(v') C Qg gives

(5.4)

FED)T], nr
) ]""

+vB(x,u) -(I)(%Vu)}dx—i— /D(w )B(x, u)-T(v,u)dx.

0= (b(u) + 1) {C_,a(v, u)+ [c(x, B)—m—+

D(vt)

For this to hold for any arbitrary A, each integrand has to be zero in D(v") and in particular

Ca(vyu) + [c(x, B)—m+ fq();"’;)] [v|** - vB(x,u) -d)(%Vu) =0. (5.5)

DOI: 10.9790/5728-1301042229 www.iosrjournals.org 26 | Page



Some Qualitative Approach for Bounded Solutions of Some Nonlinear Diffusion Equations with Non..

v ; -
But vB(x,u) - ®(=Vu) = vb/'(u)|Vu|*1|Vu|**1 > 0 and each term in the equation above
g ; u . S g g

is non-negative. Therefore the assumption that such a bounded non-trivial solution « can
remain strictly positive eventually is not possible.

b) In this case. the segment |e(x,B) —m+ d()( )1) [v|*+ 4 vB(x,u) - ¢(%Vzl) re-

mains strictly positive eventually as ¢(x,7) is unbounded and
v ,
[vB(x,u) - ®(=Vu)| < const. |v|**1.
u
Therefore that segment is eventually positive.

V1. Some Applications
Oscillation criteria for a porous medium equation with source (see [3])
Such an equation ( in steady form ) can be

\'Z {d)a(VV(x))}—i-d)p(u) =0 xeR":n>1;

B, o, p>0: with V(x):=dp(a) = |u(x)[Pulx) .

(6.1)

As V- {{u(x) B u(x)} := V- {(u(x)?)B-12u(x)}, V-®u (VY (x)) = B u(x) | B~ Dby, (Vir)

and the equation in (6.1) becomes

’ (i) V- {|u(x)|°‘w”d)a(Vu)}—{-ﬁ‘“d)p(u) =0;: xeR";

¢ and wherever u # 0, it becomes for F(u,Vu) := B (6.2)
(ii) V- {(I)a(Vu)} +F(u,Vu) + B %0p(u) =0: xeR".
One-dimensional problem
In one-dimension. for V(¢) = |u(t)|P~'u(t), after some calculations
/
{|u|<'5““°‘ ¢a(u’)} +0p() =0, 1> 0. (6.3)
Wherever u # 0. this equation is equivalent to
f u
)Y +aB—1)—=/|* B % d,(u) =0, t > 0.
{oats)} +a(B—1)slu*+1-+8-% 8y ) -~

where ¢ :=p+(1—-B)oo= p+o—Po.

Theorem 6.1. Letf
oa>0,B>1 and p+o > of.
Then any bounded and non-trivial solution of (6.4) is oscillatory i.e. (6.3) is oscillatory.

Proof. Assume that there is a bounded and non-trivial solution # € C?([0, e)) such that
u(r) >0 insome Qg, R> 0.

When p+o>of, g¢g>0.InQz the middle term of (6.4) is positive and the result is
an application of Theorem 2.4 of [6].
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Multidimensional problem
From Theorem 3.3 of [6] we have

Theorem 6.2. If q = o or p = oy then (6.2)(ii) is oscillatory as
wuF(u,Vu) > 0 Yu # 0.

6.1 Radially symmetric solutions

If there is a radially symumetric solution with V(7) := ¢p(n(|x])) = |e|P~ Ve » := |x| of the
equation. then easy calculations give

{,.n llu(,.)lu(p l)¢ﬂ("1)}

and for ease writing we consider

i ¢p(u) =0, r=0

{7"1|u(r)|°‘(B‘l)¢a(u')} +7 1¢,(u) =0, r>o0. (6.5)

If we assume that # > 0 in say. Qz then there this equation in # becomes

(i) {I”IQ)a(u } 0‘(5—1)’| e

+ 7 Hu| P, () =0 or (6.6)
!/ 7n—1
@) {rieu) | + HEEI e iy =0

with
a(B—1)"1

= [/|%"1 > 0 there. (6.6) is

qg=p+0o—of. Because # >0 in Qr —
oscillatory if

{rﬂ'-%»a(u')} +7" g (u) = 0: u(0) =0: o (R)=b>0 &9

is oscillatmy (see [6])
’e recall also that similarly (6.7) is oscillatory in Qz: R > 0 if

{d)a(u’)} + ¢a w)+¢g(u) =0: r>R is.
”n—

As the term

d)a(u ) has the form [log(7”" !)]"0x(2/) ( damping term). (6.7) will
be oscillatory if (as g= o+ (p—af) )
7
{d)a(u')} +|ufP~ B ou(u) =0: r>R is. (6.8)
From [2] if # € C?>(Q) is a non negative solution then a Pohozaev formula for « reads

o , - u(R)¥*! n—(a+1) ‘
{ et MR 20D o (R)um) |

b [% ¥ 1] /OR 7 Yu(r)?tidr, VR > 0.

(6.9)

+ 1.

o ] n(cB —p)
Defme TeBar)i= [ ymr D) “”] T larD@p+ta—aB+1)
As #(0)=0and #/(0) > 0, #(7) > 0 insome (0, ).

If 3R; :=min{R> 0| #'(R)=0}.then

Riu(Ry)7+1

R1
n—1 AN\g+1 g,
P =1 (OL,B,p)/O T ru(r)? T dr
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and obviously such an R; would not exist if I'(a, 3, ) < 0. Thus any chance of finding an
oscillatory solution for (6.7) requires that ['(a, B, p) > 0 i.e.

if (6.7) is oscillatory then

o n(o—q) N n(of —p) (6.10)
Hebr) =G nern T = erDera—Brn 7' 7"

Notice that if g < o then this necessary conditition holds (as in Theorem 6.2 above).
We finally have the following result for the radially symmetric equation (6.5). as appli-

cations of results in [6]:

Theorem 6.3. Given o.> 0 and B > 1, if ether

a p=of or

B Osp-ufie pro+l—of)(a+l)

n
c) 0<p<af,
then any non-trivial and bounded solution for (6.5) is strongly oscillatory.

Proof. First each of the conditions a)-c) implies that the necessary condition (6.10) holds.
The theorem 1.5 of [6] applies to (6.7) if a) holds:

the Theorem 1.3 of [6] applies to (6.8) if b) holds and the theorem 1.4 of [6] applies to

(6.8) if ¢) holds. O
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