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Abstract: A study of the SIS model of malaria disease with a view to observing the effects of self and cross-
diffusion on spatial dynamics is undertaken. Three different cases based on self-diffusion and cross-diffusion are
chosen for the investigation. Two cases of cross-diffusion without self-diffusion are also considered in order to
see the effects of diffusion on the transmission of malaria. Basic reproductive numbers and bifurcation values
are calculated for each case. A series of numerical simulations based on self and cross-diffusion is performed. It
is observed that with positive cross-diffusion and self-diffusion in the system, there is a significant increase in
the proportion of both infected human and mosquito populations. The proportion of infected humans increases
markedly with cross diffusion in the system. This also gives rise to some oscillations across the domain.
Keywords: Self and Cross-Diffusion, Disease-free equilibrium state, Endemic equilibrium state, Basic
reproduction number, Numerical simulations, Bifurcation Values.

I.  Introduction

Malaria is one of the serious infectious diseases incubated by the Plasmodium parasite and transmitted among the human pop-
ulation through female Anopheles mosquitoes. It still remains as one of the most common and deadly human diseases [1]. It is
estimated that 45% of the world’s population lives in malaria- endemic areas. The majority of the casualties are children under
five years old. Pregnant Women are also quite susceptible to this disease. Most infectious cases resulting in mortality occur in
sub-Saharan Africa. It has been estimated that 80% of infectious and 90% of fatal cases occur in Africa |2]. The main factors for
malaria to be endemic are the environmental conditions prevailing in countries with tropical climates that allow mosquitoes and
malaria parasites to reproduce rapidly. For instance, the high moisture, moderate-to-warm temperatures and water catchments
are responsible for the spread of malaria. The disease can lead to severe complications involving cerebrum, kidneys, lungs and
other organs of the human body. Clinical side effects, such as fever, chills, vomiting, muscular pains, heavy headache and sweats
may occur within a few days of a bite from an infected mosquito [34].

Malaria infections by debilitate of the immune system, thus rendering people more susceptible to becoming infected with HIV|6].
In non-stable malaria regions, malaria disease increases mortality in advanced HIV patients by 25% [13]. Malaria also increases
morbidity rates. It continues to be a great global health and socio-economic problem. In particular, it places great burdens
on developing countries. It is noteworthy that poverty is a major factor responsible for the spread of Malaria. For instance,
populations in poor communities may have bad sanitation and inadequate and such conditions permit mosquitoes to reproduce
in large numbers. Being poor, people are not able to bear the cost of a mosquito net or even protective screens for the windows
of their houses. A dark clammy room is a favorite hiding place for mosquitoes. An increase in the number of vectors living
within the human population leads to an increase in bites by infected mosquitoes. This is how infected Anopheles mosquitoes
infect populations from poor backgrounds with the malaria parasite|29|.

Malaria disease is considered a global problem, and many scientists, researchers and other epidemiologists have worked on dis-
covering the dynamics and transmission of malaria. Mathematicians have made considerable progress through mathematical
modelling giving an understanding into the interaction between the human (host) and mosquitoes (vector) populations, This
has led to greater knowledge of the dynamics of malaria and how to combat it. The first mathematical model for malaria
transmission was introduced by Sir Ronald Ross in 1916 [30]. This model was extended and modified as an ODE model by Me
Donald |21, 22|. ODE models with acquired immunity were studied later by Dietz [10], Bailey |5| and Aron [4]. Probabilistic
models and further developed models were studied by Doolan et al [11] and Ngwa et al [3).

It is usually considered that populations distribute non-homogeneously and thus develop movement strategies. The diffusion
processes can possibly define various intensity levels of the population size which can further give rise to different levels of
movements. Such movements can be described by considering the concentration of a species or group alone ( passive or self-
diffusion) and in relation to those of other species or groups (cross-diffusion). In general, endemic models that include self and
cross-diffusion can enable better understanding of population dynamies |14|. Self-diffusion is the term for the movement of people
from higher to lower concentration region. Cross-diffusion refers to the flux population of one species or group due to the presence
of other species or groups. The study of self and cross-diffusion has gained considerable interest in the field of population dy-
namics, mainly due to their ability to predict some important characteristics of the spatial distribution of species populations [19].
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The phenomenon of cross-diffusion diffusion in nature can be characterised as the propensity of the susceptible to avoid the
infected [33]. Cross-diffusion expresses the population flux of a given subpopulation affected by the presence of other subpop-
ulations. The cofficient value for the cross-diffusion can be negative, zero or positive. Positive cross diffusion, d,,. refers to
movement of the susceptible, S towards lower density of the infected V. while negative cross diffusion denotes susceptible, s
diffusing towards higher densities of the infected, v [33]. The dynamics of interactive populations with self and cross-diffusion
are investigated by researchers Levin |15| Levin and Segel, [16], Okubo and Levin 28|, Mimura and Murray |26] and Mimura
and Kawasalki [27].

In this paper, SIS mathematical model of malaria, including self and cross-diffusion in the system of differential equations,
is studied. The main aim of this study is to consider transmission of disease under the impact of self and cross diffusion in
the system. The SIS malaria model is solved numerically under various initial human and mosquito population distribution
cases. Stability of the system, reproduction number and bifurcation values under disease free equilibrium(DFE) and endemic
equilibrium(EE) are also considered.

I1. The SIS Model in the Presence of Self and Cross-Diffusion
2.1 Formulation of the Model
This model is a generic compartment model on the mosquito-borne disease, malaria [24, 9, 17, 36, 18, 25|. The human population
is divided into the two compartments susceptible, S and infectious, I. The density of the total human population is N, where
N =8 + I. The mosquito population is divided into the two compartments susceptible, I/ and Infectious, V. The density of the
total mosquito population is M, where M = U + V. The model consists of the following system of differential equations:

as sV

= BN a4l (1)
% ~ S\" ol — 41 @
% — M - 35\1 ol 3)

where S.I.UV and V' express the densities of susceptible humans, infected humans, susceptible mosquitoes and infectious
mosquitoes respectively. The biological meanings of the parameters and their values are given in Table 1.

Assume that s.i.u and v, represent proportions of human and mosquito populations and 1 reperesented as follows:

8 L U .V b QM
s=x.i=x,u=q,0=q and ¥ = ag.

where s +7 = 1 and u + v = 1. The system of differential equations with incorporating self and cross diffusion can be written
as:

% = bh(l—s]—wsi:+5i+d1$+dsu% (5)
% = sv—(bn+4d)i+ ngT‘ii + dm% (6)
% = bn(l—u)— Pui + dg% (7)
% — PBui—bmu+ d4$ (8)

where x is a spatial variable, d; and dy are the self-diffusion coefficients for humans, dy and d4 are the diffusion coefficients for
mosquitoes and, d,, d;, are the cross - diffusion coefficients.

Table 1: Interpretation of parameters

| Parameter | Interpretation Values
o Human infection rate 0.4°
Is} Mosquito infection rate 0.7
b Human birth rate 0.00005°
b Mosquito birth rate 0.02°
[k Human natural death rate -
o Mosquito natural death rate -
) Recovery rate of human 0.01¢

* Vincent Margiotta, Lucas Oglesby, Teresa Portone and Brittany Stephenson|23]
B Nakul Chitnis, James M. Hyman and Jim M. Cushing|8].
“Lou, Yijun and Zhao, Xiac-Qiang|15].
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2.2 Boundary and initial conditions
The domain of all the computations is considered as [-2,2]. The Boundary conditions are selected as follows:

ds(=2,t)  9i(=2t) Ou(-2,t) Ov(-2.1) 0 9)
or B dzr ox - ar (
ds(—2,t)  Oi(=2,¢)  odu(-2,t) dv(-2.1)
dr - dr oz - dr =0 (10)
The initial condition is as follows:
so = 0.7ezp(—(x +1)?) -2<zrg2
ip = 0.3exp(—(x +1)?) -2<r<2
uy = 0.4(’..1‘})(—52'2) 2552
v = 0.6exp(—527) —2<r<?2

The graphs of the initial condition are shown in Fig 1. It shows the proportion of susceptible humans greater than the proportion
of infected humans. The distribution of the human population is concentrated toward the left half of the main domain [-2,2]. The
initial proportion of susceptible mosquitoes has been assumed to be less than the initial proportion of infected mosquitoes. The
mosquito population is distributed symmetrically around the middle of the domain [-2,2].

The values of the self-diffusion coefficients are chosen as, dy = 0.05 (km2.day=1), dos = 0.001 (km2.day='), ds = 0.0125
(km?.day™1), dy = 0.0025(km?.day=') and be all constant. The parameter values Az = 0.1 and Af = 0.025 are used in the
numerical computations. Values of self and cross diffusion coefficients for the five different cases studied are given in Table 2.

Table 2: Diffusion Coefficient Values by Case (km?.day~1!)
Case di da dsg dy dsy diu
1 0.0500  0.0010 0.0125 0.0025  0.0000 0.0000

2 0.0500 0.0010 0.0125 0.0025 +0.0150 +0.012
3 0.0500 0.0010 0.0125 0.0025 -0.0150  0.0000
4 0.0000  0.0000 0.0000  0.0000 +0.0150 +0.012
5 0.0000  0.0000 0.0000 0.0000 -0.0150  0.0000

~ Susceptible humans
Infected humans
Susceptible mosquitoes

Infected mosquitoes

Figure 1: Initial condition

2.3 Basic Reproduction Number without Diffusion
The point of equilibrium for disease-free equilibrium is

Po(1,0,1,0)

and the point of endemic equilibrium is

Pt(‘;t i+ ut t*) _ ((5 T bh)(B |"bm) 1.',‘.3 _abm _bhbm (w+a+bh)bm tr"l’.B_(Sbm _bhbm)
T A B+ +by) T B+ +by) T W (B4by) T V(B4 bn)

= ( 0.025209, 0.974791, 0.028475, 0.971524)

DOI: 10.9790/5728-1301046476 www.iosrjournals.org 66 | Page



A Numerical Study of the Spread of Malaria Disease with Self and Cross-Diffusion in the System

One of the important aspects of epidemic models is the basic reproduction number, Ry. It indicates whether the disease will
spread through the population or die out. It is given by the average number of secondary infectious cases infected by a “typical”
infections individual in a totally the susceptible population [20]. In order to calculate the basic reproduction number, the next
generation matrix operator method described |35] is used. Here, matrix JF, the matrix of the new infection and 1/, the matrix of
the transition between compartments are given as

v (0 +by)i
| Pui _ by v
F = 0 and v = 0
0 0

The derivatives of F and 1/ at the point of disease - free equilibrium Py are F' and V given by :

(0N by O
Fﬁ(ﬁo)‘mdlf( 0 bm)

The matrix FV 1 is

— 0
FV ]_: ( 5 ba,‘ )
(84D )

The basic reproduction number, Ry is the dominant eigenvalue ( the spectral radius of the product) of FV =1 | so
_ [—uB
Ro =/ zz5.05

2.4 Stability Analysis of Equilibria of SIS Model
2.4.1 Stability Analysis of Disease-Free Equilibrium (DFE) in the Absence of Diffusion
In order to compute the stability of disease-free equilibrium, the variational matrix of the system equations (5) —(8), is calculated

as

—by, — a 4 0 —s
W= o -5 — by, 0 s
0 —uB —if—b, O
0 uf3 i3 —bm
The variational matrix at the disease-free equilibrium point FPy(1,0,1,0), is given
_bh 15 0 —2;"1
Wo = 0 -6 — bh 0 P
0 -8 b, 0
0 3 0 —b,

The characteristic equation of this matrix W%t the point of free-equilibrium Pj, can be written as

MEp A 1A 4 ped+py =0, (11)

where

P =6+ 2by + 2b,,.

po = — U8 + b3 + 26b,, + b2, + by (6 + 4by,) .

p3 = 2bpbe, + b (—1h8 + b)) + by (=108 + 26b,, + 202,)

pa = bpby, (=08 + (6 + by )by ) -

Here, py. pa. p3 and py are computed using the technique applied by Chakraborty [7].
Routh-Hurwitz stability criteria are p1 > 0, p3 > 0, pg >0 and

pipaps —p3 — pipa > 0 = —UBbnbm + 6bab2, + b7bE, > 0
= U8+ (6 +bp)by >0
P !
@t bn)bm
Thus the disease-free equilibrium is stable when Ry = ﬁ < 1.

Routh-Hurwitz stability conditions of disease-free equilibrium are given in Table 3.

Table 3: Routh-Hurwitz Stability criteria of Disease-Free Equilibrium

Point of equilibrium P P P 1 pipaps — p3 — pipa Stable/unstable

(1,0,1,0) 0.0501 0.000804502 4.0601x10~% 2.01x10-0  1.46656x10-10 Stable

2.4.2 Stability Analysis of Endemic Equilibrium in the Presence of Diffusion

In order to study the stability of endemic equilibrium, the equations (5)-(8) are linearized about the point of equilibrinm, P*,
to compute the small perturbations sy (z,t), iy(z.t), uy(z,t) and vy (. ).
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% = ay151 + ay2iy + ag3uy + agvy + dl% + d‘“'% "
% = @151 +agiy + agguy + asgvy + d]% ek % "
% = a3181 + azsi; +agauy +aavs +ds %2:21 Y
% = aqns +agaiy +agguy +agvy + d‘l% )

where ayq, a1, a5 ete. are the elements of the variational matrix V* computed by using a method similar that of [31]. Suppose
a Fourier series solution exists of Eqgs.(12)-(15) of the form

si(z,t) = Z spe™tcos(kz), (16)
iz, t) = Z-ike)“cos(k'r). (17
wy(x,t) = Zuke’”cos(kz‘), (18)
vz, t) = Z-m\-e‘“cos{kr)_ (19)
where k = &7, (n = 1,2,3,...) is the wave number for node n. Substituting the values of s1,i1, ujand viin the Eqgs. (12)-(15),

the equations are transformed into

Z(an — (E]_kg — A)sg + Za-]_gik + Z(blg‘u{.;\- +
k k

k
> (ars — dek?)o =0, (20)

3
Zﬂzlﬁk + Z(ﬂ-zz — dgk? — N)ij + Z(ﬂzz — diuk?)ug +
k k 3

Z@w;; =0, (21)
&

> asip + Y (ass — dsk? — Auy, =0, (22)
k k

Z&uik + Zﬂmuk +Z(ﬂ44 — dgk® — A)v. =0, (23)
& k &

The variational matrix V¢ for the Eqs. (20) (23) is

a1l — dllicz a1z ais (@14 — dsvk2)
Vi _ a1 agy — dak?  agzg — dpk? az,
0 a39 a3 — d3k2 0
2
0 a2 s agy — dik

The characteristic equation for the variational matrix V¢ can be written as
M+gAN+ @A +@aA+a=0 (24)

where gy g2, g3 and gy are computed with the technique used in |7]. The Routh-Hurwitz conditions are given as:
91>0,g3>0, 94> 0and g1g20s — g3 — 971 > 0 .

Numerical caleulations of the Routh-Hurwitz conditions for Cases 1,2 and 3 at the point of equilibrium considered are given in
Table 4

P = (0.025209, 0.974791, 0.028475, 0.971524)

Table 4: Routh-Hurwitz Stability criteria of equilibria

Case 0 g a3 a4 919293 — 9391 — g3 Stable/unstable
1 1.28301 0.419831 0.0119453 0.0000471502 0.00621841 Stable
2 1.28301 0.419733 0.0120357 0.0000531203 0.00654333 Stable
3 1.28301 0.419621 0.0118019 0.0000398621 0.00643513 Stable

The basic reproduction number with self and cross-diffusion, Rg is obtained the same way as described in subsection 2.3, where

Rd _ Aldsk2a41b,, )
0 = \/ TTaF= 0+ (datds k" —diy # k2 B+ da k20 da k2by, Fd2 k25, 85, F 05 b )

Values of the reproductive numbers for Cases 1, 2 and 3 considered in the Table 2 are given in Table 5.
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Table 5: Basic Reproductive Number, RS
Case | values of R

1 9.95542
2 10.7489
3 10.6399

2.5 Excited Mode and Bifurcation Value

In order to determine the first excited mode of oscillations n, the same technique is applied as used in [7]. In Case 1, n = 1 is the
first mode of excitationit being closest to the vertical axis with the least value of a, of the function f(k) = g19203 — 03 — 9794
Similarly, n = 1 is the first mode of excitation for Cases 2 and 3.

Bifurcation values of the human transmission rate, v and bifurcation values of human recovery rate, § are given in Table 6.

Table 6: Bifurcation Values of the Parameters & and § with Self and Cross- Diffusion
, Original values | Bifurcation values
Cases _ .
o 4 o i)

1 0.4000 | 0.01 | 0.44713 | 0.01017
2 0.4000 | 0.01 | 0.37620 | 0.01321
3 0.4000 | 0.01 | 0.35231 | 0.01010

e In Casel, with self diffusion the bifurcation value of human infection rate, « is greater than the corresponding with self
and cross-diffusion as in Case 2 and 3.

e In Case 2, where cross-diffusion dg,, and d;, have positive values, the bifureation value of the transmission rate of human
infection with cross diffusion is smaller than the corresponding value in Case 1.

e There is a sharp increase in the bifurcation values of human infection rate, o in Case 1. This implies that the system
remains stable for higher value of human infection rate, o with Case 1.

e The human recovery rate, §, stabilises the system at lower bifurcation values in Cases 1 and 3 than in Case 2.

2.6 Numerical scheme

The operator splitting technique [12, 32, 37| has been applied to solve the SIS malaria model equations. The equations are
divided into two parts as sub-equations. The first part is the set of nonlinear reaction equations, which are considered for the
first half of the time step as follows:

1ds

25 = M-8 —dsvtdi (25)
%% = v — (bn + 8)i, (26)
%% — b(l - u) — Bui, (27)
% % —  Bui— by, (28)

The second part of the system of equations consists of the linear diffusion equations, to be used for the second half-time step:

%% = dlgTZ.;+dsv%r e
3o = i i >
s = g -

The Forward Euler scheme is used with the above system of equations to convert to

si_'_% = si + At (bh(l — sf;) — L,qfcvi + c’i-z‘f;) \ (33)
a7 = i At (vt — (bn — 0)if) , (34)
u}i_'_% = u‘;c + At (bm(l — uf;) — .j"uizi) . (35)
-1.',{_'_% = vl + At (Sui?i — bﬂ-ﬁ,‘i) . (36)
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where s7.ii,u; and v} are the approximated values of s, i, u and v at position —2 4+ kAa for k = 0.1,... and time jAt,
igd Gyl il i1

j=0,1,... and si+7 ,ii+7 ,-u:::? and U'::+Z represent the values at the hall-time step. In the same way, for the second half-time

step,

+1 i+2 It i+3 + +1
S‘; - S-:c Ty [&m]g ( i_f—'zgi 7+Bi+?)+
ig L ipl i L
day (uifj; —2ltT 4 vi:f) , (37)
G+t itd At (.;+% i+d .j+g)
= + ds T, 2 +1 +
k k (B)? k1 k [
i+1 +1 +1
diu (-uic_f —2ultE uiﬁ_f) , (38)
1 i+ At i+1 i+1 e L
AL L dsw (ufif oty u;j:f) . (39)
gty gty g Bt (g ath ol 10)
Uk = Y% 4 (a)? Uk—1 Uk Vi1 ) (

The stability condition for numerical solution of the differential equations is

(‘2;; <05 n=1,2 3,45

The values dy = 0.05 (km?.day—'), dy = 0.001(km2.day—1),dy = 0.0125(km?.day—1),
dy = 0.0025 (km?.day™), dey=0.0150(km?.day™ ), diy=0.012(km>.day™"), Az = 0.1 and /At = 0.025 are used in each case
considered here.

2.7 Numerical Solutions

In this section the numerical solutions of the differential equations including self and cross-diffusion in cases with three different
cases of values for cross-ditfusion, d,, and d;, are considered . Figs.2-4 illustrate the following results.

2.7.1 Casel

Fig. 2, illustrates the outcome ofthe numerical solution with self-diffusion only. In this case, it is observed that the population
of humans and mosquitoes spread over the domain [-2,2]. There is a considerable decrease during the first five days in the
population of susceptible humans in the domain [-1.6, 0.4]. After that, the decrease in this proportion continues until ¢+ = 20
days in the domain [-2, 1]. In the domain [1,2], the proportion of susceptible humans increases slightly during the first five days
and after that this proportion stays at the same level, as shown in Fig. 2(a). The human infected population increases befor
t = 5 days in the domain |-1,1], but outside this domain there is not significant growth. After that, in the domain [—2,0], the
population spreads steadily. In the domain [0, 1], the increase in proportions gets slower after ¢ = 10 days, as shown in Fig. 2(b).
The proportion of susceptible mosquitoes declines dramatically in the first five days, in the domain [-0.5,0.4] as shown in Fig.
2(c). After t = 10 days, a slow decrease occurs in the domain [-0.6,0.4|. In the domain [-2.-0.6], the proportion of susceptibles
starts to increase during the ten five days, after that this proportion slightly reduces in this period. In the domain [0.6,2], there
is a significant increase with the passage of time as shown in Fig. 2(e). Meanwhile, the infected proportion of mosquitoes spreads
toward the left side of the domain [-2,2] as shown in Fig. 2(d). The infected proportion of mosquitoes increases significantly
until # = 5 days. This increase becomes very slow after t = 10 days in the domain [-0.4,0.2|, as indicated by the peak values.
Outside this domain there is some inerease during the twenty days, as shown in Fig. 2(d).

2.7.2 Case 2

Fig. 3, illustrates the outcome of the numerical solution with sell and cross-diffusion. Here cross diffusion ds, and d;. have
positive values, meaning that both of susceptible and infected human populations move to lower densities of susceptible and

= 1 1 :
(£} Susceptible Mosqutocs () nfected Mosguitos

Figure 2: Solutions of Case | with Self and without Cross-Diffusion
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infected mosquito populations, respectively. There is an increased proportion of susceptible human as compared to Case 1
without cross-diffusion. An upward trend is recorded in the growth of infected humans at the peak. There is also significant
change in the pattern formation with fluctuation over the domain |0,1.2] compared to Case 1. There is also a decrease in the
infected proportion of mosquitoes as compared to Case 1, as shown in Fig.3(d).

2.7.3 Case 3

Fig. 4, illustrates the outcome of the numerical solution with self and cross-diffusion d,,,. The value of d,,, s negative here, causing
the a movement of the susceptible human population towards higher concentrations of infected mosquitoes. The proportion of
susceptible humans declines significantly over the domain [2, 0.2]. The proportion of infected humans, under the effect of
negative cross diffusion, has increased remarkably over the period 20 day period as shown in Fig. 4(b). .As shown in Fig, 4(d),
the proportion of infected mosquitoes increases considerably in the first ten days, and after that there is not much increase in
the domain [-0.5, 0.2].

3 The SIS Model in the Presence of Cross-Diffusion Only

In this section, the effect of cross-diffusion without self-diffusion on the spread of disease is considered for two different cases,
Case 4 and Case 5. The values Az = 0.1 and At = 0.025 are usedfor the parameters of the numerical computation. The values
of the cross-diffusion coefficients d.,,, and d;,, are taken as given in Table2.

3.1 Stability Analysis of Equilibria of SIS Malaria Model with Cross-Diffusion Only.

In order to analyse the stability of endemie equilibrium in the presence of cross diffusion, the Routh Hurwitz criteria are given
as:
c1 =0, 03 >0, 4 >0 and c1c253—c§ —cfr:.l =0:

Numerical values of the Routh Hurwitz criteria for each of cases at the point of equilibrinm Py = (0.025209, 0.974791, 0.028475, )
are given in Table 7.

- ]
(a)Susceptible Humans
u
10

A

L1

() Susceptible Mosquitoes (d)Infected Mosquitoes

Figure 3: Solutions of Case 2 with Self and Cross-Diffusion
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0E-

=8

L L 1
- -1 0 1 2

(o) Susceptible Humans
']

4

A

=8
[ ki Ly
- - [ 1 H
{c) Susceptible Mosguitoss (d)Infected Mosquitoes
Figure 4: Solutions of Case 3 with Self and Cross-Diffusion
Table 7: Routh-Hurwitz stability criteria of equilibria with cross-diffusion only.
Clase oy o o cq cicacy — [‘?(.'4 - rg Stable/ unstahle
4 112106 0301777 000571422  2.38212x10°° 0.00189754 Stable
5 112106 0301875 000546772 -2.33713x 108 0.00182375 Unstable

3.2 Basic Reproduction Number with Cross-Diffusion

The reproduction number with cross diffusion, Fg?, is obtained using the same technique as given in Section 2. Thus the
reproduction number, with cross-diffusion only is:

E'd _ by
) T By (i k2 5+ 0+ by, )

The values of By? for Cases 4 and 5 are given in Table 8.

Table 8: Basic Reproductive Number | Ap?
Case | Value of Rj?
4 10.0092
5 10,3489

3.3 Bifurcation value

Bifurcation values of the human transmission rate, o and human recovery rate, 4 are given in Table 9.

In Case 4 the bifurcation value of human infection rate, o, is smaller than the bifurcation value of human infection in Case
5. This implies that the system remains stable for lower value of human infection rate, o with Case 4, while the system becomes
stable with higher bifurcation value in Case 5.

Also, the bifurcation value of human recovery rate 4, in Case 4 is greater than the bifurcation value of human recovery rate
in Case 5. That means the system stabilises with higher bifurcation values of human recovery rate in Case 4 than in Case 5.

Table 9: Bifurcation Values of o and 4 with Cross Diffusion
value chosen | Bifurcation value

¥ & v &
4 0.4000 | 0.01 | 0.40104 | 0.01211
5 0.4000 | 0.01 | 0.57120 | 0.01001

Cases
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3.4 Numerical Solutions

Numerical solutions of the differential equations (5)-(8) with the inclusion in the system of cross-diffusion only have been obtained
for two cases with different values d.,, and d;,, pair.

3.4.1 Case 4

Fig. 5, illustrates the outcome of the numerical solution for Case 4 with cross diffusion only. Here cross-diffusion coefficients,
dey and dj,, have positive, meaning that both susceptible and infected human proportions move to areas lower of density of
susceptible and infected mosquitoes, respectively. The proportions of susceptible human proportions are shown in Fig. 5(a).
Over the domain [-2, 0.4, there is a decrease in proportion of susceptible human during the first five days. This decrease in
proportions continues until ¢ = 20 days. During the same time, the proportion of susceptible humans increases slightly in the
domain [1.2,2] as shown in Fig. 5{a). However, the proportion of susceptible mosquitoes over the domain [-0.5,0.5] decreases
significantly during the first five days as shown in Fig. 5(ca). There is also some reduction in the proportion of susceptible
mosquitoes between ¢ = 5 and ¢ = 10 days. Regarding the infected mosquitoes, the proportion increases with the passage of
time, but the most significant increase occurs during the first ten days, as shown in Fig.5(d).
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Figure 5: Solutions of Case 4 with Cross-Diffusion Ounly
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Figure 6: Solutions of Case 5 with Cross-Diffusion Only
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3.4.2 Case5

Fig. 6 shows the outcome of the numerical solution for Case 5 with cross diffusion only. Here cross diffusion ., is negative. This
implies that the susceptible human population moves to a domain of higher infected mosquitoes density. The effect of negative
cross-diffusion in the system on the proportion of infected humans is evident in Fig. 6(b). The overall trend shows fluctuation
with a remarkable change in the structure of the proportion of infected humans. In the process, susceptible mosquitoes also get
infected becunase of the increase of infected human proportion in the domain [—1,1]. Thus there is increase in the proportions of
infected mosquitoes as compared to Case 4.

4 Discussion and Conclusion

An SIS malaria model with the inclusion of self and cross-diffusion in the system has been studied numerically. Three different
cases with the inclusion of self and cross-diffusion coefficients in the system are considered. Two cases of pure cross-diffusion
in the system are examined under the same initial population distribution. The results have been compared to observe the
effects of self and cross-diffusion on the population distribution of infected humans and mosquitoes leading to the spread of
malaria disease. Reproduction numbers are obtained both for disease-free(DFE) and endemic equilibrium(EE). The stability of
the equilibrinm with DFE and EE is established using the Routh-Hurwitz stability criterion. The bifurcation values of human
infection rate, o and recovery rate, § are also calculated.

In presence of only self-diffusion in the system as in Case 1, a considerable reduction in the proportion of susceptible human and
mosquito populations is observed. There is significant change in the pattern of distribution of their proportions along with spread
all over the domain. Infected proportions of both humans and mosquitoes have increased with a spread all over the domain [-2,2|.

In Case 2, where both self and cross-diffusion are present in the system with da, and d;, having poesitive values, the susceptible
and mfected human populations move to a lower-densities of infected and susceptible mosquitoes, respectively. During the period
of 20 days, the susceptible proportion of humans decreases considerably in the domain |-2, 0| as compared to Case 1, without
cross-diffusion. The susceptible mosquito proportion decreases and the pattern of distribution is fairly close to Case 1. The pro-
portion of infected mosquitoes is observed moving to the left of the domain [-2,2| with a reduced proportion of the spread under
the impact of the cross diffusion for the susceptible human to the infected mosquitoes during the same time as compared to Case 1.

In Case 3, with self-diffusion and negative cross diffusion ds,. the proportions infected of humans and mosquitoes surge consid-
erably during the time period of 20 days as compared to other cases.

In Case 4, d,, and d;,, have positive values. There is a significant decrease in the proportion of susceptible humans and
mosquitoes until ¢ = 10 days, thereafter remaining steady in the domain [—2,0]. The proportions of the infected population of
humans and mosquito have a substantial increase in the domain [—2,0].

In Case 5, the cross diffusion, d,, is negative and d;, is equal zero. The proportion of susceptible humans has markedly
decreased, with the some fluctuations. The proportion of infected humans exhibts considerable influence of negative cross dif-
fusion on the infected population. The infected humans has increased and fluctuates in the domain [1,0.4]. The mosquito
proportion shows the same behaviour as with and without self-diffusion in the system as in Cases 1, 2 and 3.

Numerical values of reproduction number for all cases have been calculated. Reproduction number is minimised in the absence
of cross diffusion, thus showing that the disease spreads slowly as compared to other cases where both cross diffusion along with
self diffusion are present in the system. The numerical results show that the self-diffusion and cross-diffusion of the population
have great impact on the dynamics of population density variation and thus influence the spread of the malaria epidemic.

The results can be summarised as

e The system remains stable with considerable higher values of infection rate, a, with self-diffusion. Thus self-diffusion is
responsible for accelerating the spread of disease.

e The system remains stable with the reduced values of infection rate, o under self and negative cross-diffusion. Thus self
and cross-diffusion together in the system decelerate the spread of disease.

¢ The system remains stable with the highest value of o, with pure negative cross-diffusion in the system, thus promoting
the highest rate of spread of the disease.

s The system remains stable with the highest value of recovery rate, 4 with self and positive cross-diffusion. Thus maximum
recovery is possible with self and positive cross-diffusion in the system.

¢ The system remains stable with the lowest value of recovery rate, § with pure negative cross- diffusion. Thus minimum
recovery is possible with pure negative cross-diffusion in the system.

Negative cross- diffusion in the system introduced the instability in the system.

Initial distribution of populations of humans and mosquitoes does make a difference to the spread of the disease.

Reproduction numbers show that malaria disease has considerable chances of becoming endemic with the inclusion of
cross-diffusion along with self diffusion in the system.
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