Least Square Plane and Leastsquare Quadric Surface Approximation by Using Modified Lagrange's Method

C.V.Rao.

GS Department Assistant professor, JubailIndustrial College, Jubail, KSA.

Abstract: Now a days Surface fitting is applied all engineering and medical fields. Kamron Saniee ,2007 find a simple expression for multivariate LaGrange's Interpolation. We derive a least square plane and least square quadric surface Approximation from a given N+1 tabular points when the function is unique. We used least square method technique. We can apply this method in surface fitting also.

Keywords: Least square, quadric surface, Normal equations

I. Introduction

Least square principle method is one the best approximation method in numerical analysis for line and curve fitting, this method was invented by Lagrange's. A function y = f(x) may be given in discretedata (x_k, y_k) . The best approximation in the least square is defined as that for which the constants c_i , i = 0,1,2,3...n are determined so that the aggregate of w(x)E2 over given domain D is as small as possible, where w(x) > 0 \$ is the weight function for the function whose values are given at N + 1 points $x_0, x_1 ... x_N$.

We have

$$I(c_0, c_1 \dots c_N) = \sum_{k=0}^{N} w(x_k) [f(x_k) - \sum_{i=0}^{n} \emptyset_i(x_k)]^2 = minimum - (1)$$

Where
$$\emptyset_i(x) = x^i$$
, $i = 0,1,2,3...n$ and $w(x) = 1$

The necessary conditions for (1) to have a minimum value is that

$$\frac{\partial I}{\partial c_i} = 0 , i = 0,1,2,3 \dots n.$$

This gives a system of n + 1 linear equations in n + 1 constants. These equations are called normal equations. Then we get approximated nth degree polynomial function of x.

1.Least square plane: Given a discrete data (x_k, y_k) , k = 0, 1, ... N, $N \ge 2$.

Consider
$$\emptyset(x, y) = c_0 + c_1 x + c_2 y$$

Such that $I(c_0, c_1, c_2) = \sum_{k=0}^{N} [z_k - (c_0 + c_1 x_k + c_2 y_k)]^2 = minimum$

Then Normal equations $\frac{\partial I}{\partial c_i} = 0$, i = 0,1,2.

ie.,

$$c_0(N+1) + c_1 \sum x_k + c_2 \sum y_k = \sum z_k$$

$$c_0 \sum x_k + c_1 \sum x_k^2 + c_2 \sum x_k y_k = \sum x_k z_k$$

$$c_0 \sum y_k + c_1 \sum x_k y_k + c_2 \sum y_k^2 = \sum y_k z_k$$

Solving this system of equations we $getc_0$, c_1 and c_2 .

Example 1: Suppose that given data points (-1, 1, -2), (1, 2, 3), (1, 1, 2) that lie on z = f(x, y). These points define uniquely a linear function in two variables,

that he on
$$z = f(x, y)$$
. These points define uniquely a finear function in two variables

$$soz_k = c_0 + c_1 x_k + c_2 y_k$$
, $k = 0,1,2$

The coefficients satisfy the normal equations

$$3c_0 + 1c_1 + 4c_2 = 3$$

$$c_0 + 3 c_1 + 2c_2 = 7$$

$$4c_0 + 2c_1 + 6c_2 = 6$$

Solving these equations we get $c_0 = -1$, $c_1 = 2$, $c_2 = 1$ Thus z = -1 + 2x + y.

II. Least square quadric surface

Given a discrete data (x_k, y_k) , k = 0,1, ... N, $N \ge 5$

Consider
$$\emptyset(x, y) = c_0 + c_1 x + c_2 y + c_3 x^2 + c_4 y^2 + c_5 xy$$

Such that

$$I(c_0, c_1, c_2, c_3, c_4, c_5) = \sum_{k=0}^{N} [z_k - (c_0 + c_1 x_k + c_2 y_k + c_3 x_k^2 + c_4 y_k^2 + c_5 x_k y_k)]^2 = minimum$$

The coefficients satisfy normal equations
$$\frac{\partial I}{\partial c_i}=0$$
, $i=0,1,2,3,4,5$.
$$c_0(N+1)+c_1\sum x_k+c_2\sum y_k+c_3\sum x_k^2+c_4\sum y_k^2+c_3\sum x_k\,y_k=\sum z_k$$

$$c_0 \sum x_k + c_1 \sum x_k^2 + c_2 \sum x_k y_k + c_3 \sum x_k^3 + c_4 \sum x_k y_k^2 + c_5 \sum x_k^2 = \sum x_k z_k$$

$$c_0 \sum y_k + c_1 \sum x_k y_k + c_2 \sum y_k^2 + c_3 \sum x_k^2 y_k + c_4 \sum y_k^3 + c_5 \sum x_k y_k^2 = \sum y_k z_k$$

$$c_0 \sum x_k^2 + c_1 \sum x_k^3 + c_2 \sum x_k^2 y_k + c_3 \sum x_k^4 + c_4 \sum x_k^2 y_k^2 + c_5 \sum x_k^3 y_k = \sum x_k^2 z_k$$

$$c_0 \sum y_k^2 + c_1 \sum x_k y_k^2 + c_2 \sum y_k^3 + c_3 \sum x_k^2 y_k^2 + c_4 \sum y_k^4 + c_5 \sum x_k y_k^3 = \sum y_k^2 z_k$$

$$c_0 \sum x_k y_k + c_1 \sum x_k^2 y_k + c_2 \sum x_k y_k^2 + c_3 \sum x_k^3 y_k + c_4 \sum x_k y_k^3 + c_5 \sum x_k^2 y_k^2 = \sum x_k y_k z_k$$

Solve these equations we get c_0 , c_1 , c_2 , c_3 , c_4 , c_5 .

Example 2: Suppose that given data points (0, 0, 0), (0, 1, -4), (1, -1, 1)

(1, 2, -2), (2, 1, 4), (1, 3, -3)those lie on z = f(x, y). These data points satisfy uniquely a degree of two variable function.

$$z_k = c_0 + c_1 x_k + c_2 x_k + c_3 x_k^2 + c_4 y_k^2 + c_5 x_k y_k$$
, $k = 0,1,2,3,4,5$
The coefficients c_0 , c_1 , c_2 , c_3 , c_4 , c_5 satisfy the normal equations

$$6c_0 + 5c_1 + 6c_2 + 7c_3 + 16c_4 + 6c_5 = -4$$

$$5c_0 + 7c_1 + 6c_2 + 11c_3 + 16c_4 + 8c_5 = 4$$

$$6c_0 + 6c_1 + 16c_2 + 8c_3 + 36c_4 + 16c_5 = -14$$

$$7c_0 + 11c_1 + 8c_2 + 19c_3 + 18c_4 + 12c_5 = 12$$

$$16c_0 + 16c_1 + 36c_2 + 18c_3 + 100c_4 + 36c_5 = -34$$

$$6c_0 + 8c_1 + 16c_2 + 12c_3 + 36c_4 + 18c_5 = -6$$

Solving this system of equations we get

$$c_0 = 0$$
 , $c_1 = -1$, $c_2 = -4$, $c_3 = 1$, $c_4 = 0$, $c_5 = 3$

Thus
$$z = -x - 4y + x^2 + 3xy$$

References

- [1]. M.K.JAIN ,S.R.KIYENGAR AND R.K.JAIN .Numerical methods for scientific and Engineering Computation ,Wiley Eastern Limited, 1985.
- M. Gasca and T. Sauer. Polynomial interpolation in several variables. Advances in Computationalv Mathematics, 12(4):377-410, [2].
- P.J. Olver. On multivariate interpolation. Studies in Applied Mathematics, 116(4):201-240, 2006. [3].
- J.F. Steffensen. Interpolation.Dover Publications, Inc., New York, second edition, 2006. Copyright ©
- [4]. [5]. Kamron Saniee, A simple expression for multivariate Lagrange Interpolation, 2007.