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Abstract: Let G = (V,E) be any graph.A dominating set D of a graph G is a nonsplit dominat- ing if <
V —D = is connected. The minimum cardinality of a nonsplit dominating set is called nonsplit domination
number yns(G). In this paper, we investigate several properties of this parameter.
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I. Introduction

By a graph G = (V,E) we mean a finite, undirected graph without loops or multiple edges.The
order and size of G are denoted by p and q respectively. For graph theoretical terms we refer to Harary
[6] and for terms related to domination we refer Haynes et al.[8] A subset D of V is said to be a
dom- inating set in G if every vertex in V — D is adjacent to atleast one vertex in D. Kulli and
Janakiram introduced the concept of nonsplit domination in graphs [10]. A dominating set D of a graph
G is a nonsplit dominating set if
< V-D > is connected. The nonsplit domination number yns (G) of G is the minimum cardinality of a
nonsplit dominating set. A nonsplit dominating set with cardinality yns (G) is called a yns-set. In this
paper, we investigate several properties of this parameter.

Il. Main Results
Theorem 2.1 [6] For any graph G, x(G) < 1+ A(G).
Proposition 2.2 For any connected graph G, yns(G) < p—1. Further equality holds if and only if G is a
star.
Proof.Every set S € V(G) with |S| =p— 1 is a nonsplit dominating set of
G and soyns (G)<p-1.
If G is a star, clearly yns (G) = p—1. Suppose yns (G)= p—1. If G isnot a star,

then G has an edge e = uv such that both u and v are non - pendent vertices. Now V (G) — {u,v} is a
nonsplit dominating set of G and so yns(G) < p— 2 which is a contradiction. Hence G is a star.

Remark2.3 1. If H is a spanning subgraph of G ,then

Yns(G) < yns(H).

2. If His any spanning subgraph of complete graph Kp with A(H) =p-1
and |E(H )l =2p—3, then Yns(H) = 'Yns(Kp): 1.

Remark 2.4 1.For any graph G,yns(G) = 1 if and only if G = K1 + H
where H is a connected graph or a trivial graph.

2. For any graph G, yns(G) =pif and only if G = Kp .
Theorem 2.5 For a non- trivial tree T, yns(T) > A(T) and yns(T) = A(T)

if and only if T = star or wounded spider.

Proof. Since T is a tree, T has at least A(T) pendent vertices. If T = star then yns(T) = A(T). If
T # star then every nonsplit dominating set must contain all the pendent vertices and so yns(T) >
A(T).

Suppose yns (T) = A(T) and T # star.Let v be a vertex of T such that

degv = A(T). Let S be a yng-set. S contains every pendent vertex of T.As yns(T) = A(T), every
component of T — {v} must contain exactly one vertex of S. So v is adjacent to a pendent vertex. Since
T # star there exists at least one vertex u in T such that d(u, v) > 2. If d(u,v) =3 and u,uq,u2,v is
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the path from u to v, then u,vq,v2 are in the same component of T — {v} say w1(T). Then |S Nwq
(T)| = 2 which is a contradiction. So every vertex of T is at a distance at most two from v. Every vertex
except vin T must have degree

one or 2, otherwise A(T) < the number of pendents. So T = wounded spider. If G = star then yng(T) =

A(T). So when yns(T) = A(T), then T = star or
a wounded spider. Converse is obvious.
Theorem 2.6 For any tree T not isomorphic to P2, yns(T) = 2.

Proof. If diam (T) = 2, then T = K p—1. If u is the central vertex and vq,vp, ... ,Vp—1 are the
pendent vertices then {u,vi} (1 <i < p—1) are non-

Split dominating setsin T.

If diam (T) = 3 and if u, v are the supports then {u,v} is a nonsplit domi- nating set in T.If diam (T
) =4, let P =(v1,v2,v3,v4,v5) be the diametrical path in T. Then {v1,v4} is a nonsplit dominating

setin T. If diam(T ) > 5, let P = (v1,v2,...,vn)(n > 6) be the diametrical path in T.Then {v1,v2}
is a nonsplit dominating set in T. Thus yns(T) = 2.
Lemma 2.7 If G is an isolate - free disconnected graph with at least 2 com- ponents then yns(G)= 2.

Proof. If u and v are two verticeslying in two different components of G, then {u, v} is a minimum
nonsplit dominating set of G and so yns(G) = 2.

Theorem 2.8 If G is a connected graph with at least 2 pendents then yps(G) <

3. Further yns(G)= 2 if and only if G # G1 where G1 is the graph given in
Fig 1

G
uq U

Fig 1

Proof. Claim 1: yns(G) < 3.
Suppose G has at least 3 pendent vertices. Let u, v and w be 3 pendent ver- tices with supports ug, v1
and w1. If up = v1 = wq then {u, ur} is a nonsplit dominating set of G. Since no subset of V (G)

with cardinality 1 can be a
nonsplit dominating set of G, we have yns(G)= 2.

If uy = wj then also as above yns(G)= 2. If up,v1,wp are distinct then obvi-
ously yns(G) = 2. Now let G contain exactly 2 pendent vertices. Let u and v be

2 pendents with supports uq and vi respectively.lf V(G) — {u,v,u1,v1} =0
then yns(G) = 2. If V(G) — {u,v,u1,v1} F 0 then Lu,uy,v1} is a nonsplit
dominating set of G and so yns(G) < 3. So for a connected graph with at least

2 pendents, yns(G) < 3.

Claim 2:yns(G) =3 ifand only if G = Gj.

Since G is connected, G# H + K1 for any connected graph and so by remark

2.4, yns (G) ¥ 1. S0 yns (G)= 2 or 3.Letyns (G)= 3.From claim 1,we can

Conclude that G contains exactly 2 pendent vertices.

Let ug and v1 be the supports of the 2 pendents u and v respectively. If up = vithen {u,u1} is a yns-
set of G.Let u1 and vy be distinct and non-adjacent.

Then {u,x} is a yns-set of G where x € V(G) — {u1,v1,v}, x AN(up) and

N(u1) NN(vy) =0. If V(G) — {u1,v1,u,v} = N() NN(v) then {uq,v}isa

vYns-set of G.

Let ug and v1 be adjacent. If there exists a vertex y such that d(y, v1) > 2 (x
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such that d(x, u1) > 2) then {u,u1 } ({v,v1}) isa yns- set of G. Sod (v1,y) =1forall y € V(G) —

{u}and d(up,y) =1forally e V(G) — {v}. So G = G1. If G = G1 obviously yns (G)= 3 as {u,uz,
v1}is a yns-set of G.
Thus yns(G)= 2 if and only if G is not isomorphic to G1.

Theorem 2.9 If G is a connected graph with at least 2 pendent vertices, then

3 < ns(G) + yns(G) < p + 1. Further yns(G) + yns(G) = 3 if and only if

G 2 K2 and yns(G)+ yns(G) = p+1ifand only if G = K1 p—1 or H where
H is given in Fig 2.

Fig 2

Proof. Clearly yns (G) +vns(G) > 3. If yns(G) +vns(G) = 3, thenyns(G) = 1 and yns(G) = 2. As G
contains at least 2 pendent vertices and yns(G) = 1, by

Remark 2.4(i), G = K2.
By Proposition 2.2 and Theorem 2.8, yns(G)+ yns(G)<p—-1+3=p+2. If
Yns(G) + yns(G) = p+2 thenyns(G) = p— 1 and yns(G)= 3. By Theorem

28 , yns(G)= 3 if and only if G = G1 where G1 is in Figure 1. But for
G1,vns(G) ¥ p—1and so there is no graph G with yns(G)+ yns(G) = p+2.
Hence yns(G) + yns(G) < p+1.

If yns(G) +yns(G) = p+1, then either yns(G)= p—1,vyns(G)= 2 or yns(G) =
p—2,vns(G) = 3. In the former case G = star and in the latter case G = H.
Converse is obvious.

Proposition 2.10 If T is a tree of order p > 3 then yns(T)yns(T ) = p if and only if yns(T) = D
Proof. Follows by Theorgm 2.6.
Proposition 211 If T is a tree of order p > 3, then yns(T) + yns(T ) = p if and only if T has

exactly two supports.
Proof.Follows from Theorem 2.6 and Theorem 2.2 of [14].
Theorem 2.12 Let G be a unicyclic graph with cycle Cp and 3(G) = 1. Then

1. yns(G)= x(G) = 2 if and only if p is even.
2.vyns(G) = x(G) = 3if and only if G = G1, G2 where G1 and G2 are given in

Fig 3.
.
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Proof. (1) If x(G) = 2 then p is even. Conversely, suppose that p is even. If G has two pendent
vertices u, v with supports uq,vq and up ¥ vq, then for any other vertex x € Cp, {u,x} is a yns- set
of G. If uy =vq, then Lu,uy }is ayns- set of G.

(2) If yns(G) = x(G) = 3 then pis odd and Cp = C3 since otherwise yns(G) =

2. If a tree rooted at a vertex of C3 has diameter at least 2, then yns(G) = 2 and so every rooted tree
is a Po. If a vertex u of C3is of degree > 4 then u with any pendent adjacentto u is a minimum
nonsplit dominating set of G

and so every vertex of C3 is of degree < 3. If G = K3°Kj, thenyns(G) = 2and so G = Gy or G2.
Converse is obvious.
Theorem 2.13 If G is a graph with a x(G)-colouring where every colour is used at least for 3 vertices

then yns(G) < x(G).

Proof. Let x(G) = m and let {V1,V2,...,Vm} be the y(G) partition of V(G). For each 1 <i <
m, uj €Vj, S ={u1,u2,...um ¥ is a dominating set in G. As |Vj| > 3 Yi,<V —S > has no isolated
vertices in G. Also for 1 < i < m, every vertex of Vj is adjacent to at least one vertex of every Vj.J ol
and so S is a nonsplit dominating set of G. Hence yns(G) < m = x(G).

Theorem 2.14 Let G be any connected bipartite graph. Then yns(G)+x(G) =p + 1 if and only if G =
Kl,pfl.

Proof. Since x(G) = 2, the result follows by Proposition 2.2.

Theorem 2.15 For any connected graph G, yns(G) + x(G) < p + A(G) and equality holds if G is a star.

Proof. Follows from Proposition 2.2 and Theorem 2.1.

Theorem 2.16 For any connected graph G, yns(G) + diam (G) < 2p — 2.Further (i) yns(G)+ diam
(G) =2p-2ifand only if G=Kz12.

(if) yns(G) + diam (G) =2p—3ifand only if G = K1,3 or G1, where G1 isgiven in Fig 4.

Fig 4

Proof.(i) Since a single vertex is assumed to be connected, yns (G) < p — 1. Since G is connected,
diam(G) < p—1. Hence yns(G)+diam(G) < 2p—2. Sup- pose yns(G)+diam (G) = 2p—2. Then yns(G) =

p-1 and diam(G) = p-1. By Proposition 2.2, yns(G) = p—1 if and only if G = K1 p—1 and

diam(K1,p—1) =2s0 that p = 3. Hence G = K1,2 . Converse is obvious. So (i) is proved.
(if) Suppose yns(G) + diam(G)= 2p — 3. We have yns(G) = p— 1 and

Diam (G)= p—2 or yns(G)= p—-2 and diam(G)= p— 1. In the formercase p=4and G =Ky 3.
In the latter case, Theorem 2.2 of [14], G = G1 where G1 is given in Fig 4. Hence (ii) is proved.

Theorem 2.17 For any graph G, yns(G) +«(G) < p+A(G)—1, where k(G)
is the connectivity of G and equality holds if and only if G = K.
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Proof. For any graph G, yns(G) < p—1 and x(G) < A(G) so that yns(G) +x(G) < p + A(G) — L.
Suppose yns(G) + k(G) = p+ A(G)—1. Then yns(G) = p— 1 and «(G) = A(G). By proposition 2.2, G

= Kg,p—1. But now x(G) =1and so A(G)= 1. Hence G = K1,1 =K. Converse is obvious.

[14].
[15].

[16].
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