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Abstract: Based on an approximate formula of factoring an odd composite number, the article deduces a 

distribution for factors in big odd composite number and designs an algorithm to pick up the factors. 

Mathematical deduction is presented in detail and numerical experiment is made on some big numbers. 

Experiment shows that the algorithm is as efficient as the Pullard’s Rho algorithm for conventional numbers. 
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I. Introduction 
Factorization of integers has been an unsolved problem ever since the ancient time. Form the old trial 

approach and the Fermat approach to modern approach of number field sieve, human being have tried colorful 

efforts to solve the problem, as summarized in article [1]. Nevertheless, a better resolution has been appealed 

from both mathematicians and researchers of information security. Consequently, study of the problem never 

ceased. Recent years, literatures on the problem can frequently be seen in several occasions. In article [2], 

Jongsoo Park and Mathology Sys tried to do factorization using multiplication table; in article [3], W Aldrin, 

Wanambisi Shem Aywa, Cleophas Maende and Geoffrey Muchiri Muketha raised a mathematical model, 

namely a formula, to approximate factors of a composite number. In article [4] and [5], WANG built sieves of 

odd composite numbers and obtain approaches to factorize large numbers via factorization of small numbers. 

Articles [6] and [7] put a new approach to analyze odd numbers by binary tree and obtained new criterions for 

prime numbers and factorization of odd numbers. It can see that, article [3] did not give an algorithm or a detail 

procedure to realize the mathematical model though it presented a few special samples to demonstrate the 

correctness of the formula. Meanwhile, an algorithm called sequential searching algorithm in article [7] is a little 

slower than the Pollard’s rho algorithm. Therefore, it is worth to have a try to an algorithm that can make the 

idea in article [3] realizable in a relative speed. This article mainly combines the mathematical model in article 

[3] with the sequential algorithm in article [7]. An algorithm is designed and relative tests are made. 

Experiments show that, the combined algorithm is as efficient as the Pullard’s Rho algorithm. 

 

II. Preliminaries 
2.1 Symbols and Notations 

This article continues using the symbols and notations that are given in article [7] unless specially commented. 

2.2 Lemmas 

Lemma 1 (see in [3]). Let m pq  be a large composite integer of decimal digit length 5l  and difference 

| | 0p q d   ; then the prime factors p and q are approximately 
2( )

2 2

d d
p m    and 

2( )
2 2

d d
q m   . 

Lemma 2(see in [7]). Let 
( , )mN pq   be an odd composite number such that 1 2

( , )2 1 2 1m m

mN 

      and 

2m  , where p and q are odd coprimed numbers that fit 3 p q  ; let symbols ( , )
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(2) There are exact 
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(3) the distribution of ( , )
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on level m+1 is as 

figure 1 illustrates. 

Fig.1 Distribution of Critical Nodes (m>2) 

Lemma 3( see in [8]) The floor function of a real number x, denoted by x    that is defined by  

1x x x          satisfies 
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(3) x n x n         for integer n. 

 
III. Theoretic Conclusions and Proofs 

Corollary 1. Let 
( , )mN pq   be an odd composite such that 1 2

( , )2 1 2 1m m
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Note that, when m>2 it yields 
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Consequently 
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Since p and q are both odd numbers, the corollary obviously holds. 
□  

Corollary 2. Let m>2 and 
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Proof. By Lemma 1, p and q are approximately calculated respectively by  
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Now simplify the inequalities (1) and (2). Note that 
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IV.  Algorithm Design and Experiments 
 According to the corollaries that are proved in previous section, algorithm to search p and search p 

(SpSq) for factorization of odd numbers can be designed and experiments can be made as follows.  
 

4.1 Algorithm Design 

======== SpSq Algorithm==========  

Input: Odd composite number N(0,0) 

Step 1. Calculate searching level: 2 (0,0)log 1K N    ; 

Step 2. Calculate:  
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Step 3. Calculate reference node: (0,0)

1

1

(0,0)( ,2 1)
2 1K

N K

K
ul N N




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Step 4. Calculate: 2 , 2L L R R

p p p pI ul I I ul I    , 2 , 2L L R R

q q q qI ul I I ul I    ; 

Step 5. Search in [ , ],[ , ]L R L R

p p q qI I I I  the first odd number that has common divisor with N(0,0). 

===============End of Algorithm ============== 
 

4.2 Numerical Experiments 

To test the new algorithm, numerical experiments are made on a Dell PC with 2.99Ghz CPU 

and 8G memories. For comparative purpose, 10 big numbers are tested by both Pullard’s Rho 

algorithm and the new algorithm designed previously and the results are list in table 1. Seen from 

figure 2, it knows that, the two algorithms are almost equally efficient.  
 

Table 1 Experiment on Some Big Integers 
N’s Factorization Computing time( in seconds) 

Pollard’s Rho SpSqAlgorithm 

N1= 1123877887715932507=2991558973756830131 15 70 

N2=1129367102454866881=2586988943655660929 1 4 

N3=29742315699406748437=37217342379915205819 139 5 

N4=35249679931198483=59138501596052983 4 16 

N5=208127655734009353=430470917483488309 148 190 

N6=331432537700013787=1140982192904800273 14 66 

N7=3070282504055021789=14362221732137748993 240 281 

N8=3757550627260778911=16053127234069700393 6 16 

N9=24928816998094684879=34791292371652460573 40 155 

N10=10188337563435517819=70901851143696355169 31 42 
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Fig.2 Pullard’sRho vs. SpSq Algorithm 
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V. Conclusion 
It is necessary for a scientific researcher to implement and make test of his theoretic idea. Comparisons 

or comparative study of kinds of different models can make it clear for a decision. For this purpose, this article 

combines the idea that was raised in article [3] and the theory that was put forward in article [7] and realizes an 

approach to factorize integers. The author hope it could be a useful exploration and a valuable reference in 

theoretic study and technical development. 
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