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Abstract: In this paper, we study the two edge-coloring of Km,n such that Km,n contains a monochromatic 
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I. Introduction 
We often encounter problems related the Ramsey numbers [1] in many Mathematical Competitions of 

High School Students. In this paper, we use the ideas of the Ramsey numbers on the checkerboard problems. 

We follow [2] for the notations in graph theory and the definitions of the complete bipartite graph Km,n, and 

follow [3] to construct the correspondence between the checkerboards and complete bipartite graphs.  

Jiong-Sheng Li provides the minimal sizes of k-colored square checkerboards which have 

monochromatic-rectangles in [3], we define the generalized monochromatic-rectangles and discuss the existence 

of such rectangles in an m x n checkerboard. In this paper, we only consider the checkerboards which are 

arbitrarily colored by two colors and we called it two-colored checkerboard.  

In the second chapter, we discuss the minimal columns of the 2-colored checkerboard which has (2, 2)-

monochromatic-rectangles by fixing the rows. At the end, we convert the results to graphic problems. In the 

third chapter, we extend the second chapter to discuss the minimal columns of the 2-colored checkerboard 

which has (2, t)-monochromatic-rectangles by fixing the rows. At the end, we convert the results to graphic 

problems. In the forth chapter, we discuss the minimal columns of the 2-colored checkerboard which has (3, 2)-

monochromatic-rectangles by fixing the rows. At the end, we convert the results to graphic problems.  

In the fifth chapter, we extend the forth chapter to discuss the minimal columns of the 2-colored checkerboard 

which has (3, t)-monochromatic-rectangles by fixing the rows. At the end, we convert the results to graphic 

problems. In the second chapter to the fifth chapter, all results have been proved in [4], but we improve the 

proof such that be more general and we also propose some amendments in the third chapter.  

In the last two chapter, we propose the generalized conclusions. We discuss the minimal columns of the 2-

colored checkerboard which has (s, t)-monochromatic-rectangles by fixing the rows. At the end, we convert the 

results to graphic problems.  By [3] we convert the grids of a checkerboard into the edges of a complete bipartite 

graph, the number of rows and columns correspond to the number of vertices in complete partite sets, x and Y, 

respectively.  

 
Figure 1: m x n checkerboard 

 

If the grid in the i-th row and the j-th column of the checkerboard is black, then the correspond edge 

xiyj in the correspond complete bipartite graph is solid. And the white grid is correspond the dashed edge. The 

following is a 2-colored m x n checkerboard correspond to a 2-coloring Km,n.  

                                                           
 Corresponding author. 
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Figure 2: A 3 x 4 checkerboard 

 
Figure 3: correspond complete bipartite graph of 3 x 4 checkerboard. 

 
Figure 4: A (2, 2)-monochromatic-rectangle 

 
1. (2, 2)-Monochromatic-rectangles in a Checkerboard 

Definition 1 

An m x n rectangle is called a (s, t)-monochromatic-rectangle, if in first column there are s grids including the 

first one and the last one that have the same color, and there are other t-1 columns including the last column that 

are copies of the first column. 

 
Figure 5: A (3, 4)-monochromatic-rectangle 

 



The Existence of (s, t)-Monochromatic-rectangles in a 2-colored Checkerboard 

DOI: 10.9790/5728-1302016478                                          www.iosrjournals.org                                    66 | Page 

1.1 The Case of 2 x n Checkerboard 

If there are two (2, 1)-monochromatic-rectangles of the same color, then the checkerboard has a (2, 2)-

monochromatic-rectangle. Otherwise, there is no (2, 2)-monochromatic-rectangle. Therefore, in a 2-colored 2 x 

n checkerboard a (2, 2)-monochromatic-rectangle may not exist. 

 
Figure 6: There are two (2, 1)-monochromatic-rectangles of the same color in the checkerboard. 

 
Figure 7: There is no two (2, 1)-monochromatic-rectangles of the same color in the checkerboard. 

 
Figure 8: There is no two (2, 1)-monochromatic-rectangles of the same color in the checkerboard. 

 

1.2 The Case of 3 x n Checkerboard 

Definition 2 

In a checkerboard, two (s, 1)-monochromatic-rectangles of the same color are the same, if one is a copy of the 

other one. 

Definition 3 

An n x 1 column contains a (s, 1)-monochromatic-rectangle means that there are s grids of the same color in the 

column. 

Note: An n x 1 column contains at most  
𝑛
𝑠
  distinct (s, 1)-monochromatic-rectangles.  

 

Now, we consider  

Lemma 1 

In every 2-colored 3 x n checkerboard, n = 7 is the smallest number such that there exists a (2, 2)-

monochromatic-rectangle. 

 

Proof. To prove that we need to exhibit a 2-colored 3 x 6 checkerboard that has no (2, 2)-monochromatic-

rectangles. In a column, there are at most  
3
2
  distinct black (2, 1)-monochromatic-rectangles. So we can 

distribute the  
3
2
  distinct black (2, 1)-monochromatic-rectangles and the  

3
2
  distinct white (2, 1)-

monochromatic-rectangles to the 6 columns, then the 2-colored 3 x 6 checkerboards have no (2, 2)-

monochromatic-rectangles. By pigeonhole principle, there are at least   
3×7

2
  = 11  grids of the same color. 

Without loss of generality, let the color be black. Then we have  𝑑𝑖
7
i=1 ≥ 11, where di is the number of black 

grids of the i
th

 column of the checkerboard. Assume 2-colored 3 x 7 checkerboard has a coloring such that there 

is no (2, 2)-monochromatic-rectangle, then any two columns don't contain the same black (2, 1)-
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monochromatic-rectangles, each column contains  
𝑑𝑖

2
  distinct black (2, 1)-monochromatic-rectangles, and the 

total number of distinct black (2, 1)-monochromatic-rectangles is not more than  
3
2
 . So we have  

 

 
𝑑1

2
 +  

𝑑2

2
 + ⋯ +  

𝑑7

2
 ≤  

3
2
 . 

 

Let d1 + d2 + …+ d7 = 11 + t , where t is a positive integer. Then we can transform (\ref{E:1}) to  

 

d1
2
 + d2

2
 + … + d7

2
 ≦ 17 + t 

By Cauchy-Schwarz inequality, we get 

(d1
2 
+ d2

2
 + …+ d7

2
) (1

2
 + 1

2
 + …+ 1

2
) ≧ (d1 + d2 + …+ d7)

2
 ⟹ (17+t) * 7 ≧ (11+t)

2
 

 

So, we have 

t
2
 + 15t + 2 ≦ 0 

But t is positive, we reach a contradiction in the last inequality. Therefore, every 2-coloring of 3 x 7 

checkerboard yields a (2, 2)-monochromatic-rectangle. 

 
Figure 9: Every 2-colored 3 x 7 checkerboard contains a (2, 2)-monochromatic-rectangle. 

 
Figure 10: There is a 2-colored 3 x 6 checkerboard containing no (2, 2)-monochromatic-rectangles. 

 
1.3 The Case of 4 x n Checkerboard 

Lemma 2 

In every 2-colored 4 x n checkerboard, n = 7 is the smallest number such that there exists a (2, 2)-

monochromatic-rectangle.  

Proof. By Lemma 1, in every 2-colored 3 x 7 checkerboard, there is a (2, 2)-monochromatic-rectangle. 

Therefore, in every 2-colored 4 x 7 checkerboard, there is a (2, 2)-monochromatic-rectangle. 

 
Figure 11: Every 2-colored 4 x 7 checkerboard contains a (2, 2)-monochromatic-rectangle. 
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Figure 12: There is a 2-colored 4 x 6 checkerboard containing no (2, 2)-monochromatic-rectangles. 

 
1.4 The Case of 5 x n Checkerboard 

Lemma 3 

In every 2-colored 5 x n checkerboard, n = 5 is the smallest number such that there exists a (2, 2)-

monochromatic-rectangle.  

 

Proof. To prove that we need to exhibit a 2-colored 5 x 4 checkerboard that has no (2, 2)-monochromatic-

rectangles. By Lemma, we have a 2-colored 4 x 5 checkerboard which doesn't have (2, 2)-monochromatic-

rectangles. We rotate the checkerboard, so we have the 2-colored 5 x 4 checkerboard that has no (2, 2)-

monochromatic-rectangles. By pigeonhole principle, there are at least   
5×5

2
  = 13  grids of the same color. 

Without loss of generality, let the color be black. Then we have  𝑑𝑖
5
i=1 ≥ 13, where di is the number of black 

grids of the i
th

 column of the checkerboard. Assume two colored 5 x 5 checkerboard has a coloring such that 

there is no (2, 2)-monochromatic-rectangles, then any two columns don't contain the same black (2, 1)-

monochromatic-rectangles, each column contains  
𝑑𝑖

2
  distinct black (2, 1)-monochromatic-rectangles, and the 

total number of distinct black (2, 1)-monochromatic-rectangles is not more than  
5
2
 . So, we have  

 

 
𝑑1

2
 +  

𝑑2

2
 + ⋯ +  

𝑑5

2
 ≤  

5
2
  

 

Let d1 + d2 + …+ d5 = 13 + t, where t is a positive integer. Then we can transform (\ref{E:2}) to  

 

d1
2
 + d2

2
 + …+ d5

2
 ≦ 23 + t 

 

By Cauchy-Schwarz inequality, we get 

 

(d1
2
 + d2

2
 + …+ d5

2
) (1

2
 + 1

2
 + …+ 1

2
) ≧ (d1 + d2 + …+ d5)

2
 ⟹ (23 + t) * 5 ≧ (13 + t)

2
. 

So we have 

t
2
 + 21 t + 54 ≦ 0 

But t is positive, we reach a contradiction in the last inequality. Therefore, every 2-colored 5 x 5 checkerboard 

yields a (2, 2)-monochromatic-rectangle. 

 
Figure 13: Every 2-colored 5 x 5 checkerboard contains a (2, 2)-monochromatic-rectangle. 

1.5 Summary 
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The case of m x n checkerboard, where m ≧ 6, can be obtained by rotation of the rectangles. For example, 6 x 5 

checkerboard can be considered to 5 x 6 checkerboard, so it has a (2, 2)-monochromatic-rectangle. 

We can convert the above theorems to graphic problems. We have the following proposition. 

 If n > 6, every 2-coloring of K3,n contains a monochromatic K2, 2 

 If n > 6, every 2-coloring of K4,n contains a monochromatic K2, 2. 

 If n > 4, every 2-coloring of K5,n contains a monochromatic K2, 2. 

Example 

Every 2-coloring of K3,7 exists a monochromatic K2, 2 subgraph. 

 
Figure 14: The subgraph induced by {X1, X3,Y2, Y7} is a monochromatic copy of K2, 2. 

 

Example 

Every 2-coloring of K4,7 exists a monochromatic K2, 2 subgraph. 

 
Figure 15: The subgraph induced by {X1, X3, Y2, Y7} is a monochromatic copy of K2, 2. 

 

Example 

Every 2-coloring of K5,5 exists a monochromatic K2, 2 subgraph. 

 
Figure 16: The subgraph induced by {X4, X5, Y2, Y5} is a monochromatic copy of K2, 2. 

II. (2, T)-Monochromatic-Rectangles In A Checkerboard 
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2.1 The Case of 2 x n Checkerboard 

If there are t (2, 1)-monochromatic-rectangles of the same color, then the checkerboard has a (2, t)-

monochromatic-rectangle. Otherwise, there is no (2, t)-monochromatic-rectangle. 

 

2.2 The Case of 3 x n Checkerboard 

Theorem 1 

If n > (6t - 6), where t ≧ 2, then in every 2-colored 3 x n checkerboard. There is a (2, t)-monochromatic-

rectangle.  

Proof. If n = (6t - 6) + 1 = 6t - 5 (We only prove that every coloring of two colors 3n x (6t - 5) checkerboard, 

there is a (2, t)-monochromatic-rectangle.) By pigeonhole principle, there are at least   
6𝑡−5

2
  = 3t − 2 columns 

that have at least two of same color grids. Without loss of generality, let the color be black. Then di≧ 2, i = 1, 2, 

…, (3t - 2) , where di is the number of black grids of the i
th

 column of the checkerboard. Assume two colored 3 x 

(6t - 5) checkerboard has a coloring such that there is no (2, t)-monochromatic-rectangles, then any t columns 

don't contain the same black (2, 1)-monochromatic-rectangles, each column contains  
𝑑𝑖

2
  distinct black (2, 1)-

monochromatic-rectangles, and the total number of distinct black (2, 1)-monochromatic-rectangles is not more 

than (t − 1)  
3
2
 . So we have, 

 
𝑑1

2
 +  

𝑑2

2
 + ⋯ +  

𝑑3𝑡−2

2
 ≤ (t − 1)  

3
2
 . 

Because di ≧ 2, 

 
2
2
 +  

2
2
 + ⋯ +  

2
2
 ≤  

𝑑1

2
 +  

𝑑2

2
 + ⋯ +  

𝑑3𝑡−2

2
 . 

Combining these two results shows 3t - 2 ≦ 3t - 3 ⟹ 1 ≦ 0 leads a contradiction. 

So, If n > (6t - 6), where t ≧ 2, then in every 2-coloring of 3 x n checkerboard. There is a (2, t)-monochromatic-

rectangle.  

 

2.3 The Case of 4 x n Checkerboard 

Theorem 2 

If n > (6t - 6), where s ≧ 2, then in every 2-colored 4 x n checkerboard. There is a (2, t)-monochromatic-

rectangle.  

Proof. By above theorem, in every 2-colored 3 x (6t - 6) checkerboard, there is a (2, t)-monochromatic-

rectangle. Therefore, in every 2-colored 4 x (6t - 6) checkerboard, there is a (2, t)-monochromatic-rectangle. 

 

2.4 The Case of 5 x n Checkerboard 

Theorem 3 

If n > (5t - 6), where t ≧ 2, then in every 2-colored 5 x n checkerboard. There is a (2, t)-monochromatic-

rectangle, where t is even. And  
𝑑1

2
 +  

𝑑2

2
 + ⋯ +  

𝑑𝑛

2
 > (2𝑡 − 3)  

5
2
 , where di is the number of black grids 

of the i
th

 column of the checkerboard. 

 

Proof. Suppose t = 2k - 2, where k is integer greater than two, we use induction on k. If n = (10k - 16) + 1 = 10k 

- 15 (We only prove that every coloring of two colors 5 x (10k - 15) checkerboard, there is a (2k - 2, 2)-

monochromatic-rectangle. 

Basis step: When k = 2, by Lemma, we have in every 2-coloring of 5 x 5 checkerboard, there is a (2, 2)-

monochromatic-rectangle. 

Suppose k = s is true, s ≧ 2 and s is a positive integer for all 2-coloring of 5 x (10s - 15) checkerboard, there is 

a (2, 2s - 2)-monochromatic-rectangle. By pigeonhole principle, there are at least   
5×(10𝑠−15)

2
  = 25s − 37 grids 

of the same color. Without loss of generality, let the color be black. So, we have  𝑑𝑖
10s−15
i=1 ≥ 25s − 37, and  

 
𝑑1

2
 +  

𝑑2

2
 + ⋯ +  

𝑑10𝑠−15

2
 > (2𝑠 − 3)  

5
2
 . 

Induction step: When k = s + 1, n = 10(s + 1) - 15=10s - 5, by pigeonhole principle, there are at least 

  
5×(10𝑠−5)

2
  = 25s − 12 grids of the same color in 5 x (10s - 5) checkerboard. Without loss of generality, let the 

color be black. 

We have  𝑑𝑖
10s−5
i=1 = 25s − 12.By induction hypothesis,  𝑑𝑖

10s−15
i=11 = 25s − 37, so  𝑑𝑖

10
i=1 = 25 and  

𝑑𝑖

2
  is 

the number of black (2, 1)-monochromatic-rectangles in the i
th

 column, I = 1, 2, …, (10s - 5). Assume two 

colored 5 x (10s - 5) checkerboard has a coloring such that there is no (2, 2s)-monochromatic-rectangles, then 



The Existence of (s, t)-Monochromatic-rectangles in a 2-colored Checkerboard 

DOI: 10.9790/5728-1302016478                                          www.iosrjournals.org                                    71 | Page 

any 2s columns don't contain the same black (2, 1)-monochromatic-rectangles, each column contains  
𝑑𝑖

2
  

distinct black (2, 1)-monochromatic-rectangles, and the total number of distinct black (2, 1)-monochromatic-

rectangles is not more than  (2s − 1)  
5
2
 . So we have 

 
𝑑1

2
 +  

𝑑2

2
 + ⋯ +  

𝑑10𝑠−5

2
 ≤ (2s − 1)  

5
2
 . 

By induction hypothesis 

 
𝑑11

2
 +  

𝑑12

2
 + ⋯ +  

𝑑10𝑠−5

2
 > (2𝑠 − 3)  

5
2
 . 

So, we have  

 
𝑑1

2
 +  

𝑑2

2
 + ⋯ +  

𝑑10

2
 <  2s − 1  

5
2
 − (2𝑠 − 3)  

5
2
 ⇒  

𝑑1

2
 +  

𝑑2

2
 + ⋯ +  

𝑑10

2
 < 20. 

Hence,  

(d1
2
 + d2

2
 + …+ d10

2
) - (d1 + d2 + …+ d10) < 40. 

 

d1
2
 + d2

2
 + …+ d10

2
 < 65. 

By Cauchy-Schwarz inequality 

 

(d1
2
 + d2

2
 + …+ d10

2
)*10 ≧ (d1 + d2 + …+ d10)

2
. 

 

So, we have  

62.5 ≦ (d1
2
 + d2

2
 + …+ d10

2
) ≦ 64. 

 

Because di are integer, therefore, (d1
2
 + d2

2
 + …+ d10

2
) must be 63 or 64. 

 

Case1: (d1
2
 + d2

2
 + …+ d10

2
) = 63 

Since 

d2
2
 + d3

2
 + …+ d10

2
 = 63 - d1

2
 

 

and 

 

d2 + d3 + …+ d10 = 25 - d1, 

 

, by Cauchy-Schwarz inequality, we have 

 

(d2
2
 + d3

2
 + …+ d10

2
) *9 ≧ (d2 + d3 + …+ d10)

2
 

That is, 

(63-d1
2
) *9 ≧ (25 - d1)

2
. 

Hence, 

10 d1
2
 - 50 d1 + 58 ≦ 0. 

 

Therefore,  

1.83 ≦ d1 ≦ 3.17. 

By the integrity of d1, we get that d1 must be 2 or 3. Similarly, d2, d3, …, d10 must be 2 or 3. 

But d1 + d2 + …+ d10 = 25, so d1, d2, …, d10 consists of five 2's and five 3's. 

Therefore, d1
2
 + d2

2
 + …+ d10

2
 = 65 ≠ 63 which leads to a contradiction. 

 

Case2: (d1
2
 + d2

2
 + …+ d10

2
) = 64 

Since  

d2
2
 + d3

2
 + …+ d10

2
 = 64 - d1

2
 

 

and  

 

d2 + d3 + …+ d10 = 25 - d1. 

 

by Cauchy-Schwarz inequality, we have 

 

(d2
2
 + d3

2
 + …+ d10

2
)*9≧ (d2 + d3 + …+ d10)

2
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d2 + d3 + …+ d10 ≧ 25 - d1. 

 (64 - d1
2
)*9≧(25 - d1)

2
 

 

10 d1
2
 – 50 d1 + 49 ≦ 0 

 

1.34 ≦ d1 ≦ 3.66 

 

By the integrity of d1, we get that d1 must be 2 or 3. Similarly, d2, d3, …, d10 must be 2 or 3. 

But d1 + d2 + …+ d10 = 25, so d1, d2, …, d10 consists of five 2's and five 3's. 

Therefore, d1
2
 + d2

2
 + …+ d10

2
 = 65 ≠ 64 which leads to a contradiction. 

 

So for all 2-colored 5 x (10s - 5) checkerboard, there is a (2, 2s)-monochromatic-rectangle.  

 

By induction, all k ≧ 2 and k is positive integer, in every 2-colored 5 x (5t - 6) checkerboard, there is a (2, t)-

monochromatic-rectangle, where t=2k - 2. 

Lemma 4 

In every 2-colored 5 x 11 checkerboard, there is a (2, 3)-monochromatic-rectangle.  

Proof. By pigeonhole principle, there are at least   
5×11

2
  = 28 grids of the same color. Without loss of generality, 

let the color be black. Then we have  𝑑𝑖
11
i=1 ≥ 28, where di is the number of black grids of the i

th
 column of the 

checkerboard. Assume two colored 5 x 11 checkerboard has a coloring such that there is no monochromatic-

rectangles, then any three columns don't contain the same black (2, 1)-monochromatic-rectangles, each column 

contains  
𝑑𝑖

2
  distinct black (2, 1)-monochromatic-rectangles, and the total number of distinct black (2, 1)-

monochromatic-rectangles is not more than 2  
5
2
 . So we have  

 
𝑑1

2
 +  

𝑑2

2
 + ⋯ +  

𝑑11

2
 ≤ 2  

5
2
 . 

 

Let d1 + d2 + …+ d11 = 28 + t, where t is a positive integer. Then we have  

 

d1
2
 + d2

2
 + …+ d11

2
 ≦ 68 + t. 

 

By Cauchy-Schwarz inequality, we get 

 

(d1
2
 + d2

2
 + …+ d11

2
) (1

2
 + 1

2
 + …+ 1

2
) ≧ (d1 + d2 + …+ d11)

2
 ⟹ (68 + t)*11 ≧ (28 + t)

2
. 

 

So, we have 

 t
2
 + 45t + 36 ≦ 0. 

But t is positive, the last inequality is contradiction. Therefore, every 2-colored 5 x 11 checkerboard yields a (2, 

3)-monochromatic-rectangle. 

 

 
Figure 17: There is a 2-colored 5 x 10 checkerboard containing no a (2, 3)-monochromatic-rectangle 

 

Theorem 4 

If n > (5t - 5), where t ≧ 2, then in every 2-colored 5 x n checkerboard. There is a (2, t)-monochromatic-

rectangle, where s is odd. And  
𝑑1

2
 +  

𝑑2

2
 + ⋯ +  

𝑑𝑛

2
 > (2𝑡 − 2)  

5
2
 , where di is the number of black grids 

of the i
th

 column of the checkerboard. 
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Proof. Suppose t = 2k - 1, where k is integer greater than two, we use induction on k, If n = (10k - 10) + 1 = 10k 

- 9 (we only prove that every 2-colored 5 x (10k - 9) checkerboard, there is a (2, 2k - 1)-monochromatic-

rectangle. 

Basis step: When k = 2, by Lemma, we have in every 2-colored 5 x 11 checkerboard, there is a (2, 3)-

monochromatic-rectangle. 

Suppose k = s is true, s ≧ 2 and s is a positive integer. Then for all 2-colored 5 x (10s - 9) checkerboard, there is 

a (2, 2s - 1)-monochromatic-rectangle. By pigeonhole principle, there are at least   
5×(10𝑠−9)

2
  = 25s − 22 grids 

of the same color. Without loss of generality, let the color be black. So, we have  𝑑𝑖
10t−9
i=1 = 25s − 22 and 

 
𝑑1

2
 +  

𝑑2

2
 + ⋯ +  

𝑑10𝑠−9

2
 > (2𝑠 − 2)  

5
2
 . 

Induction step: When k = s + 1, n = 10(s + 1) – 9 = 10s + 1, by pigeonhole principle, there are at least 

  
5×(10𝑠+1)

2
  = 25s + 3 grids of the same color in 5 x (10s + 1) checkerboard. Without loss of generality, let the 

color be black. 

We have  𝑑𝑖
10s+1
i=1 = 25s + 3. 

By induction hypothesis,  𝑑𝑖
10s−15
i=11 = 25s − 22, so  𝑑𝑖

10
i=1 = 25 and  

𝑑𝑖

2
  is the number of black-bars in the i

th
 

column, I = 1, 2, …, (10s + 1). 

Assume two colored 5 x (10s + 1) checkerboard has a coloring such that there is no (2, 2s + 1)-monochromatic-

rectangles, then any 2s + 1 columns don't contain the same black (2, 1)-monochromatic-rectangles, each column 

contains  
𝑑𝑖

2
  distinct black (2, 1)-monochromatic-rectangles, and the total number of distinct black (2, 1)-

monochromatic-rectangles is not more than 2s  
5
2
 . So we have 

 

 
𝑑1

2
 +  

𝑑2

2
 + ⋯ +  

𝑑10𝑠+1

2
 ≤ 2s  

5
2
 . 

 

By induction hypothesis 

 
𝑑1

2
 +  

𝑑2

2
 + ⋯ +  

𝑑10𝑠+1

2
 > (2𝑠 − 2)  

5
2
 . 

So, we have  

 
𝑑1

2
 +  

𝑑2

2
 + ⋯ +  

𝑑10𝑠

2
 < 2𝑠  

5
2
 −  2𝑠 − 2  

5
2
 = 20 

Hence, 

(d1
2
 + d2

2
 + …+ d10

2
) - (d1 + d2 + …+ d10) < 40, 

and 

d1
2
 + d2

2
 + …+ d10

2
 < 65. 

By Cauchy-Schwarz inequality 

 

(d1
2
 + d2

2
 + …+ d10

2
)*10 ≧ (d1 + d2 + …+ d10)

2
 

 

(d1
2
 + d2

2
 + …+ d10

2
) ≧ 62.5 

 

Hence, 62.5 ≦ (d1
2
 + d2

2
 + …+ d10

2
) ≦ 64. 

 

Because di is integer, d1
2
 + d2

2
 + …+ d10

2
 must be 63 or 64 

 

Case1: d1
2
 + d2

2
 + …+ d10

2
 = 63 

 

d2
2
 + d3

2
 + …+ d10

2
 = 63 - d1

2
 

 

and 

 

d2 + d3 + …+ d10 = 25 - d1, 

 

, by Cauchy-Schwarz inequality, we have 

 

(d2
2
 + d3

2
 + …+ d10

2
)*9 ≧ (d2 + d3 + …+ d10)

2
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That is, 

(63-d1
2
) *9 ≧ (25 - d1)

2
. 

Hence, 

10 d1
2
 - 50 d1 + 58 ≦ 0. 

 

Therefore,  

1.83 ≦ d1 ≦ 3.17. 

By the integrity of d1, we get that d1 must be 2 or 3. Similarly, d2, d3, …, d10 must be 2 or 3. 

But d1 + d2 + …+ d10 = 25, so d1, d2, …, d10 consists of five 2's and five 3's. 

Therefore, d1
2
 + d2

2
 + …+ d10

2
 = 65 ≠ 63 which leads to a contradiction. 

Case2: (d1
2
 + d2

2
 + …+ d10

2
) = 64 

 

Since  

d2
2
 + d3

2
 + …+ d10

2
 = 64 - d1

2
 

 

and  

 

d2 + d3 + …+ d10 = 25 - d1. 

 

by Cauchy-Schwarz inequality, we have 

 

(d2
2
 + d3

2
 + …+ d10

2
)*9≧ (d2 + d3 + …+ d10)

2
 

d2 + d3 + …+ d10 ≧ 25 - d1. 

 (64 - d1
2
)*9≧(25 - d1)

2
 

 

10 d1
2
 – 50 d1 + 49 ≦ 0 

 

1.34 ≦ d1 ≦ 3.66 

 

By the integrity of d1, we get that d1 must be 2 or 3. Similarly, d2, d3, …, d10 must be 2 or 3. 

But d1 + d2 + …+ d10 = 25, so d1, d2, …, d10 consists of five 2's and five 3's. 

Therefore, d1
2
 + d2

2
 + …+ d10

2
 = 65 ≠ 64 which leads to a contradiction. 

 

 

So for all 2-colored 5 x (10s - 5) checkerboard, there is a (2, 2s + 1)-monochromatic-rectangle.  

 

By induction, for all k ≧ 2 and k be integer, in every 2-colored 5 x (5t - 5) checkerboard, there is a (2, t)-

monochromatic-rectangle, where t = 2k - 1. 

 

2.5 Summary 

We can convert the above theorems to graphic problems. We have the following proposition. 

Let s ≧ 2 

 If n > 6(t - 1), every 2-coloring of K3,n exists a monochromatic K2, t subgraph. 

 If n > 6(t - 1), every 2-coloring of K4,n exists a monochromatic K2, t subgraph. 

 If n > (10t - 16), every 2-coloring of K5,n exists a monochromatic K2,(2t-2) subgraph. 

 If n > (10t - 10), every 2-coloring of K5,n exists a monochromatic K2,(2t-1) subgraph. 

 

III.  (3, 2)-Monochromatic-rectangles in a Checkerboard 

3.1 The Case of 3 x n Checkerboard 

If there are two columns of all grids are of the same color, then the checkerboard has a (3, 2)-monochromatic-

rectangle. Otherwise, there is no (3, 2)-monochromatic-rectangle. 

3.2 The Case of 4 x n Checkerboard 

If every column of a 4 x n checkerboard has two black grids and two white grids, then it doesn't have s a (3, 2)-

monochromatic-rectangle. Therefore, for every two color 4 x n checkerboard, there exists a coloring such that 

has no (3, 2)-monochromatic-rectangles in the 4 x n checkerboard. 

3.3 The Case of 5 × n Checkerboard 

Lemma 5 
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In every 2-colored 5 x n checkerboard, n = 21 is the smallest number such that there exists a (3, 2)-

monochromatic-rectangle. 

Proof. To prove that we need to exhibit a two colored 5 x 20 checkerboard has no (3, 2)-monochromatic-

rectangles. In a column, there are at most  
5
3
  distinct black (3, 1)-monochromatic-rectangles. So we can 

distribute the  
5
3
  distinct black (3, 1)-monochromatic-rectangles and the  

5
3
  distinct white (3, 1)-

monochromatic-rectangles to the 20 columns, then the two colored 5 x 20 checkerboards have no (3, 2)-

monochromatic-rectangles. By pigeonhole principle, there are at least   
21

2
  = 11 columns with at least three 

grids of the same color. Without loss of generality, let the color be black. Then di ≧ 3, i = 1, 2, …, 11, where di 

is the number of black grids of the i
th

 column of the checkerboard. Assume 2-colored 5 x 21 checkerboard has a 

coloring such that there is no (3, 2)-monochromatic-rectangles, then any two columns don't contain the same 

black (3, 1)-monochromatic-rectangles, each column contains  
𝑑𝑖

3
  distinct black (3, 1)-monochromatic-

rectangles, and the total number of distinct black (3, 1)-monochromatic-rectangles is not more than  
5
3
 . So we 

have 

 
𝑑1

3
 +  

𝑑2

3
 + ⋯ +  

𝑑11

3
 ≤  

5
3
 . 

Because di ≧ 3, we have 11 ≤  
5
3
 = 10 which leads to a contradiction from the last inequality. 

So, if n > 21, then for every 2-coloring of 5 x n checkerboard, there is a (3, 2)-monochromatic-rectangle. 

 
Figure 18: There is a 2-colored 5 x 20 checkerboard containing no a (3, 2)-monochromatic-rectangle. 

 

3.4 The Case of 6 x n Checkerboard 

Lemma 6 

In every 2-colored 5 x n checkerboard, n = 21 is the smallest number such that there exists a (3, 2)-

monochromatic-rectangle. 

Proof. By Lemma, in every 2-colored 5 x 21 checkerboard, there is a (3, 2)-monochromatic-rectangle. 

Therefore, in every 2-colored 6 x 21 checkerboard, there is a (3, 2)-monochromatic-rectangle. 

 
Figure 19: There is a 2-colored 6 x 20 checkerboard containing no a (3, 2)-monochromatic-rectangle. 

3.5 Summary 

We can convert the above theorems to graphic problems. We have the following proposition. 

 If n > 20, every 2-coloring of K5,n contains a monochromatic K3, 2. 

 If n > 20, every 2-coloring of K6,n contains a monochromatic K3, 2. 

 

IV. (3, t)-Monochromatic-rectangles in a Checkerboard 

4.1 The Case of 5 x n Checkerboard 

Theorem 5 

If n > 20(t - 1), where t ≧ 2, then in every 2-colored 5 x n checkerboard, there is an (3, t)-Monochromatic-

rectangle. 
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Proof. If n = (20t - 20) + 1 = 20t - 19 (We only prove that every 2-colored 5 x (20t - 19) checkerboard, there is a 

(3, t)-monochromatic-rectangle.) By pigeonhole principle, there are at least   
20𝑡−19

2
  = 10t − 9 columns that 

have at least three of same color grids. Without loss of generality, let the color be black. Then di ≧ 3, i = 1, 2, 

…, (10t - 9), where di is the number of black grids of the i
th

 column of the checkerboard. Assume 2-colored 3 x 

(20t - 19) checkerboard has a coloring such that there is no (3, t)-Monochromatic-rectangles, then any s columns 

don't contain the same black (3, 1)-monochromatic-rectangles, each column contains  
𝑑𝑖

3
  distinct black (3, 1)-

monochromatic-rectangles, and the total number of distinct black (3, 1)-monochromatic-rectangles is not more 

than (t − 1)  
5
3
 . So we have, 

 
𝑑1

3
 +  

𝑑2

3
 + ⋯ +  

𝑑10𝑡−9

3
 ≤ (t − 1)  

5
3
 . 

Because di ≧ 3, we have 10𝑡 − 9 ≤  t − 1  
5
3
 = 10t − 10  which leads to a contradiction. 

So, if n > (20t - 20), where t ≧ 2, then in every 2-colored 5 x n checkerboard, there is an (3, t)-Monochromatic-

rectangle. 

 

4.2 The Case of 6 x n Checkerboard 

Theorem 6 

If n > 20(t - 1), where s ≧ 2, then in every 2-colored 6 x n checkerboard, there is a (3, t)-Monochromatic-

rectangle. 

Proof. By Theorem, in every 2-colored 5 x (20t - 20) checkerboard, there is a (3, t)-Monochromatic-rectangle . 

Therefore, in every 2-colored 6 x (20t - 20) checkerboard, there is a (3, t)-Monochromatic-rectangle. 

 

4.3 Summary 

We can convert the above theorems to graphic problems. We have the following proposition. 

Let s ≧ 2 

 If n > 20(t - 1), every 2-coloring of K5,n exists a monochromatic K3, t subgraph. 

 If n > 20(t - 1), every 2-coloring of K6,n exists a monochromatic K3, t subgraph. 

 

 

 

 

 

V.   (s, 2)-Monochromatic-rectangles in a Checkerboard 

5.1 The Case of (2s - 2) x n Checkerboard 

If every column of a (2s - 2) x n checkerboard has s-1 black grids and s-1 white grids, then it doesn't have a (s, 

2)-monochromatic-rectangle. Therefore, for every two color 2s - 2 x n checkerboard exists a coloring such that 

has no (s, 2)-monochromatic-rectangle in the (2s - 2) x n checkerboard. 

5.2  The Case of (2s - 1) x n Checkerboard 

Lemma 7 

If n > 20(t - 1), where s ≧ 2, then in every 2-colored 6 x n checkerboard, there is a (3, t)-Monochromatic-

rectangle. 

Proof. To prove that we need to exhibit a 2-colored (2s - 1) x 2  
2𝑠 − 1

𝑠
  checkerboard that has no (2, 2)-

monochromatic-rectangles. In a column, there are at most  
2𝑠 − 1

𝑠
  distinct black (s, 1)-monochromatic-

rectangles. So we can distribute the  
2𝑠 − 1

𝑠
  distinct black (s, 1)-monochromatic-rectangles and the  

2𝑠 − 1
𝑠

  

distinct white (s, 1)-monochromatic-rectangles to the 2  
2𝑠 − 1

𝑠
  columns, then the 2-colored (2s - 1) x 

2  
2𝑠 − 1

𝑠
  checkerboards have no (s, 2)-monochromatic-rectangles. By pigeonhole principle, there are at least 

  
2 

2𝑠−1
𝑠

 +1

2
  =  

2𝑠 − 1
𝑠

 + 1 columns with at least s grids are of the same color. Without loss of generality, let 

the color be black. Then di ≧ s, i = 1, 2, …,  
2𝑠 − 1

𝑠
 + 1 , where di is the number of black grids of the i

th
 

column of the checkerboard. Assume 2-colored (2𝑠 − 1) x (2  
2𝑠 − 1

𝑠
 + 1) checkerboard has a coloring such 

that there is no (s, 2)-monochromatic-rectangles, then any two columns don't contain the same black (s, 1)-
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monochromatic-rectangles, each column contains  
𝑑𝑖

𝑠
  distinct black (s, 1)-monochromatic-rectangles, and the 

total number of distinct black (s, 1)-monochromatic-rectangles is not more than  
2𝑠 − 1

𝑠
 . So we have 

  
𝑑𝑘

𝑠
 

 
2𝑠−1

𝑠
 +1

k=1

≤  
2𝑠 − 1

𝑠
  

. 

Because di ≧ s, 

  
𝑠
𝑠
 

 
2𝑠−1

𝑠
 +1

k=1

≤  
2𝑠 − 1

𝑠
 ⇒  

2𝑠 − 1
𝑠

 + 1 ≤  
2𝑠 − 1

𝑠
  

which leads to a contradiction. 

So, if n > 2  
2𝑠 − 1

𝑠
 + 1, then in every 2-colored (2𝑠 − 1) x (2  

2𝑠 − 1
𝑠

 + 1) checkerboard. There is a (s, 2)-

monochromatic-rectangle. 

 

 

 

5.3 The Case of 2s x n Checkerboard 

Lemma 8 

In every 2-colored(2𝑠) x (2  
2𝑠 − 1

𝑠
 + 1) checkerboard, there is a (s, 2)-monochromatic-rectangle. 

Proof. By Lemma, in every 2-colored (2𝑠 − 1)  x ( 2  
2𝑠 − 1

𝑠
 + 1)  checkerboard, there is a (s, 2)-

monochromatic-rectangle. Therefore, in every 2-colored (2𝑠) x (2  
2𝑠 − 1

𝑠
 + 1) checkerboard, there is a (s, 2)-

monochromatic-rectangle. 

5.4 Summary 

We can convert the above theorems to graphic problems to get following propositions. 

 If n > 2  
2𝑠 − 1

𝑠
 + 1), every 2-coloring of K(2s-1),n contains a monochromatic Ks, 2. 

 If n > 2  
2𝑠 − 1

𝑠
 + 1), every 2-coloring of K2s,n contains a monochromatic Ks, 2. 

 

VI. (s, t)-Monochromatic-rectangles in a Checkerboard 

6.1 The Case of (2s - 1) x n Checkerboard 

Theorem 7 

In every 2-colored (2𝑠 − 1) x (2(t − 1)  
2𝑠 − 1

𝑠
 + 1) checkerboard, there is a (s, t)-monochromatic-rectangle. 

Proof. By pigeonhole principle, there are at least   
2(t−1) 

2𝑠−1
𝑠

 +1

2
  = (t − 1)  

2𝑠 − 1
𝑠

 + 1 columns with at least s 

grids are of the same color. Without loss of generality, let the color be black. Then di ≧ t, i = 1, 2, …, (t −

1)  
2𝑠 − 1

𝑠
 + 1, where di is the number of black grids of the i

th
 column of the checkerboard. Assume 2-colored 

(2𝑠 − 1) x (2(t − 1)  
2𝑠 − 1

𝑠
 + 1) checkerboard has a coloring such that there is no (s, t)-monochromatic-

rectangle, then any s columns don't contain the same black (s, 1)-monochromatic-rectangles, each column 

contains  
𝑑𝑖

𝑠
  distinct black (s, 1)-monochromatic-rectangles, and the total number of distinct black (s, 1)-

monochromatic-rectangles is not more than (t − 1)  
2𝑠 − 1

𝑠
 . So, we have 

  
𝑑𝑘

𝑠
 

(𝑡−1) 
2𝑠−1

𝑠
 +1

k=1

≤ (t − 1)  
2𝑠 − 1

𝑠
  

Because di ≧ s, 

  
𝑠
𝑠
 

(𝑡−1) 
2𝑠−1

𝑠
 +1

k=1

≤ (𝑡 − 1)  
2𝑠 − 1

𝑠
 ⇒ (𝑡 − 1)  

2𝑠 − 1
𝑠

 + 1 ≤ (𝑡 − 1)  
2𝑠 − 1

𝑠
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which leads to a contradiction. 

So, if n > 2(𝑡 − 1)  
2𝑠 − 1

𝑠
 + 1, then in every 2-colored (2s - 1) x (2(𝑡 − 1)  

2𝑠 − 1
𝑠

 + 1) checkerboard. 

There is a (s, t)-monochromatic-rectangle.  

6.2  The Case of (2s) x n Checkerboard 

Theorem 8 

In every 2-colored (2s) x (2(𝑡 − 1)  
2𝑠 − 1

𝑠
 + 1) checkerboard, there is a (s, t)-monochromatic-rectangle. 

Proof. By Theorem, in every 2-colored (2s - 1) x (2(𝑡 − 1)  
2𝑠 − 1

𝑠
 + 1) checkerboard, there is a (s, t)-

monochromatic-rectangle. Therefore, in every 2-colored (2s) x (2(𝑡 − 1)  
2𝑠 − 1

𝑠
 + 1) checkerboard, there is a 

(s, t)-monochromatic-rectangle. 

6.3  Summary 

We can convert the above theorems to graphic problems. We have the following proposition. 

 If n > (2(𝑡 − 1)  
2𝑠 − 1

𝑠
 + 1), every 2-coloring of K(2s-1),n contains a monochromatic Ks, t. 

 If n > (2(𝑡 − 1)  
2𝑠 − 1

𝑠
 + 1), every 2-coloring of K2s,n contains a monochromatic Ks, t. 
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