Between Closed Sets and $g\omega$ -Closed Sets

¹C. Loganathan ²R. Vijaya Chandra And ³O. Ravi

¹Department of Mathematics, Maharaja Arts and Science College, Arasur, Coimbatore District, Tamil Nadu. India.

Abstract: Levine [7] introduced the notion of g-closed sets and further proper ties of g-closed sets are investigated. In 1982, the notions of ω -open and ω -closed sets were introduced and studied by Hdeib [5]. Khalid Y. Al-Zoubi [6] introduced the notion of $g\omega$ -closed sets and further properties of $g\omega$ -closed sets are investigated. In this paper, we introduce the notion of $mg\omega$ -closed sets and obtain the unified characterizations for certain families of subsets between closed sets and $g\omega$ -closed sets.

Key words and phrases: gω-closed set, m-structure, m-space, mgω -closed set.

I. Introduction

In 1970, Levine [7] introduced the notion of generalized closed (g-closed) sets in topological spaces. In 1982, Hdeib [5] introduced the notion of ω -closed sets in topological spaces. Recently, many variations of g-closed sets are introduced and inves-tigated. One among them is $g \omega$ -closed sets which were introduced by Khalid Y. Al-Zoubi [6]. In 2006, Noiri and Popa [11] introduced the notion of mg^* -closed sets and studied the basic properties, characterizations and preservation properties. Also, they de fined several subsets which lie between closed sets and g-closed sets. In this paper, we introduce the notion of $mg\omega$ -closed sets and obtain the basic properties, characterizations and preservation properties. In the last section, we define several new subsets which lie between closed sets and $g\omega$ -closed sets.

II. Preliminaries

Let (X, τ) be a topological space and A a subset of X. The closure of A and the interior of A are denoted by cl(A) and int(A), respectively. A subset A is said to be regular open if int(cl(A))=A. The finite union of regular open sets is said to $be\pi$ -open.

Definition 2.1:A subset A of a topological space (X,τ) is said to $be\alpha$ -openifA $\subset int(cl(int(A)))$. The complement of an α -open set is said to be α -closed.

Note: The family of all α -open (resp. regular open, π --open) sets in X is denoted by τ^{α} (resp. RO(X), $\pi O(X)$).

Definition 2.2: A subset A of a topological space (X, τ) is said to be g-closed [7](resp. g^* -closed [20] or strongly g-closed [18], πg -closed [4], rg-closed [14])if $cl(A) \subset U$ whenever $A \subset U$ and U is open (resp. g-open, π -open, regular open) in (X, τ) . The complements of the above closed sets are called their respective open sets.

The family of all g-open sets in (X, τ) is denoted by gO(X). The g-closure (resp. α -closure) of a subset A of X, denoted by gcl(A) (resp. α cl(A)), is defined to be the intersection of all g-closed sets (resp. α -closed sets) containing A.

Definition 2.3: A subset A of a topological space (X,τ) is said to beag-closed [8](resp. $g^{\#}\alpha$ -closed [13], $\pi g \alpha$ -closed [2], $r \alpha g$ -closed [10]) if $\alpha cl(A) \subset U$ whenever $A \subset U$ and U is open (resp. g-open, π -open, regular open) in (X,τ) .

The complements of the above closed sets are called their respective open sets.

Definition 2.4[21]:LetHbe a subset of a space (X,τ) , a point p inXis called acondensation point of H if for each open set U containing p, $U \cap H$ is uncountable.

Definition 2.5[5]: A subsetHof a space (X, τ) is called ω -closed if it contains allits condensation points. The complement of an ω -closed set is called ω -open. It is well known that a subset W of a space (X,τ) is ω -open if and only if for each $x \in W$, there exists $U \in \tau$ such that $x \in U$ and U-W is countable. The family of all ω -open sets, denoted by ω , is a topology on X, which is finer than τ . The interior and closure operator in (X, ω) are denoted by int_{ω} and cl_{ω} respectively.

Lemma 2.1 [5]: LetHbe a subset of a space (X,τ) . Then

²Department of Mathematics, Navarasam Arts and ScienceCollegefor Women, Arachalur, Erode District, Tamil Nadu, India.

³Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India.

- (1) H is ω -closed in X if and only if $H = cl_{\omega}(H)$.
- (2) $cl_{\omega}(X\backslash H) = X\backslash int_{\omega}(H)$.
- (3) $cl_{\omega}(H)$ is ω -closed in X.
- (4) $x \in cl_{\omega}(H)$ if and only if $H \cap G = \emptyset$ for each ω -open set G containing x.
- (5) $cl_{\omega}(H) \subset cl(H)$.
- (6) $int(H) \subset int_{\omega}(H)$.

Definition 2.6:LetAbe a subset of a space (X,τ) . ThenAis said to be

- (1) $g^*\omega$ -closed [17] if $cl_{\omega}(A) \subset U$ whenever $A \subset U$ and U is g-open in (X, τ) .
- (2) $g\omega$ -closed [6] if $cl_{\omega}(A) \subset U$ whenever $A \subset U$ and U is open in (X, τ) .
- (3) $\pi g \omega$ -closed [3] if $cl_{\omega}(A) \subset U$ whenever $A \subset U$ and U is π -open in (X, τ) .
- (4) $r\omega$ -closed [1] if $cl_{\omega}(A) \subset U$ whenever $A \subset U$ and U is regular open in (X, τ) .

Remark 2.1 [17]: For a subset of a topological space, we obtain the following implications:

None of the above implications is reversible.

Lemma 2.2 [6]: The open image of an ω -open set is ω -open.

Throughout the present paper, (X, τ) and (Y, σ) always denote topological spaces and $f: (X, \tau) \to (Y, \sigma)$ presents a function.

III. m-Structures

Definition 3.1:A subfamily m_X of the power $set_{\mathscr{C}}(X)$ of a nonempty set X is called a Minimal Structure (briefly m-Structure) [15] on X if $\emptyset \in m_X$ and $X \in m_X$.

By (X, m_X) , we denote a nonempty set X with a minimal structure m_X on X and call it an m-space. Each member of m_X is said to be m_X -open (or briefly m-open) and the complement of an m_X -open set is said to be m_X -closed (or briefly m-closed).

Remark 3.1: Let (X, τ) be a topological space. Then the families, τ_{ω} , τ^{α} , τ , RO(X), $\pi O(X)$ and gO(X) are all m-structures on X.

Definition 3.2:Let (X, m_X) be an m-space. For a subset A of X, the m_X -closure of A and the m_X -interior of A are defined in [9] as follows:

- (1) $m_X cl(A) = \bigcap \{F : A \subset F, X F \in m_X \},$
- (2) $m_X int(A) = \bigcup \{U : U \subset A, U \in m_X \}.$

Remark 3.2: Let (X, τ) be a topological space and A a subset of X. If $m_X = \tau(resp.\tau_\omega, \tau^\alpha, gO(X))$, then we have $m_X - cl(A) = cl(A)$ (resp. $cl_\omega(A)$, $\alpha cl(A)$, gcl(A)).

Lemma 3.1 [15]: Let (X, m_X) be an m-space and A a subset of X. Then $x \in m_X$ -cl(A) if and only if $U \cap A \neq \emptyset$ for every $U \in m_X$ containing x.

Definition 3.3[9]: An *m-structure* m_X on a nonempty set X is said to have property(B) if the union of any family of subsets belonging to m_X belongs to m_X .

Remark 3.3: Let (X, τ) be a topological space. Then the families $\tau \omega, \tau^{\alpha}, \tau$ and $\pi O(X)$ are all m-structures with property (B).

Lemma 3.2 [16]:Let X be a nonempty set and m_X an m-structure on X satisfying property (B). For a subset A of X, the following properties hold:

- (1) $A \in m_X$ if and only if m_X -int(A)=A,
- (2) A is m-closed if and only if m_X -cl(A)=A,
- (3) $m_X int(A) \in m_X$ and $m_X cl(A)$ is m-closed.

Definition 3.4 [11]: Let (X, τ) be a topological space and m_X an m-structure on X.A subset A of X is said to be

- (1) mg^* -closed if $cl(A) \subset U$ whenever $A \subset U$ and U is m_X -open,
- (2) mg*-open if its complement is mg*-closed.

Proposition 3.1 [11]: Let $\tau \subset m_X$. Then the following implications hold:

 $closed \rightarrow mg^*$ - $closed \rightarrow g$ -closed

Proposition 3.2:*Let* $\tau \subset m_X$. *Then the following implications hold:*

 $closed \rightarrow mg^*$ - $closed \rightarrow g$ - $closed \rightarrow g\omega$ -closed

Proof: It follows from Remark 2.1.

Theorem 3.1 [11]: Let $\tau \subset m_X$ and m_X have property (B). A subset A of X ismg*-closed if and only if cl(A)-A does not contain any nonempty m-closed set.

Theorem 3.2 [11]:Letm_Xhave property (B). A subset A of X ismg*-closed if and only if m_X -cl($\{x\} \cap A \neq \phi$ for each $x \in cl(A)$.

IV. mgω-Closed Sets

In this section, let (X, τ) be a topological space and m_X an m-structure on X. We obtain several basic properties of $mg\omega$ -closed sets.

Definition 4.1:Let (X, τ) be a topological space and m_X an m-structure on X. Asubset A of X is said to be (1) $mg\omega$ -closed if $cl\omega(A) \subset U$ whenever $A \subset U$ and U is m_X -open,

(2) $mg\omega$ -open if its complement is $mg\omega$ -closed.

Remark 4.1: Let (X, τ) be a topological space and A a subset of X. If $m_X = gO(X)(resp. \tau, \pi O(X), RO(X))$ and A is $mg\omega$ -closed, then A is $g^*\omega$ -closed(resp. $g\omega$ -closed, $\pi g\omega$ -closed).

Proposition 4.1: Let $\tau \subset m_X$. Then the following implications hold:closed $\to \omega$ -closed $\to mg\omega$ -closed $\to g\omega$ -closed

Proof: It is obvious that every closed set is ω -closed [1,5] and every ω -closed set is $mg\omega$ -closed by Lemma 2.1(1). Suppose that A is an $mg\omega$ -closed set. Let A \subset Uand

 $U \in \tau$. Since $\tau \subset m_X$, $cl_{\omega}(A) \subset U$ and hence A is $g\omega$ -closed.

Proposition 4.2:

Letm_xbe anm-structure

onXin the topological space (X, τ) . IfA and B are $mg\omega$ -closed, then $A \cup B$ is $mg\omega$ -closed.

Proof: Let $A \cup B \subset U$ and $U \in m_X$. Then $A \subset U$ and $B \subset U$. Since A and Bare $mg \omega$ -closed, we have $cl_{\omega}(A \cup B) = cl_{\omega}(A) \cup cl_{\omega}(B) \subset U$. Therefore, $A \cup B$ is $mg\omega$ -closed.

Proposition 4.3:Let m_X be an m-structure on X in the topological space (X, τ) . If A is $mg\omega$ -closed and m-open, then A is ω -closed.

Proof: This is obvious.

Proposition 4.4:Let (X, m_X) be an m-space and $A \subseteq X$. If A is $mg\omega$ -closed and $A \subseteq B \subseteq cl_{\omega}(A)$, then B is $mg\omega$ -closed.

Proof: Let $B \subset U$ and $U \in m_X$. Then $A \subset U$ and A is $mg\omega$ -closed. Hence $cl_{\omega}(B) = cl_{\omega}(A) \subset U$ and B is $mg\omega$ -closed.

Definition 4.2: [12] Let (X, m_X) be an m-space and A a subset of X. The m_X -frontier of A, m_X -Fr(A), is defined as follows:

 $m_X - Fr(A) = m_X - cl(A) \cap m_X - cl(X-A).$

Proposition 4.5: If A is amgw-closed subset of X and $A \subset U \in m_X$, then $m_X - Fr(U) \subset int_{\omega}(X - A)$.

Proof:

Let A be $mg\omega$ -closed and $A \subset U \in m_X$. Then $cl_{\omega}(A) \subset U$.

Suppose that $x \in m_X$ -Fr(U).

Since $U \in m_X$, $m_X - Fr(U) = m_X - cl(U) \cap m_X - cl(X - U)$

- $= m_X cl(U) \cap (X U)$
- $= m_X cl(U) U.$

Therefore, $x \notin U$ and $x \notin cl_{\omega}(A)$.

This shows that $x \in int_{\omega}(X-A)$ and hence $m_X - Fr(U) \subset int_{\omega}(X-A)$.

Proposition 4.6: In the m-space (X, m_X) , a subset A of X ismg ω -open if and only if $F \subset \operatorname{int}_{\omega}(A)$ whenever $F \subset A$ and F is m-closed.

Proof:

Suppose that A is $mg\omega$ -open. Let $F \subset A$ and F be m-closed.

Then $X-A \subset X-F \in m_X$ and X-A is $mg\omega$ -closed.

Therefore, we have $X-int_{\omega}(A)=cl_{\omega}(X-A)\subset X$ -Fand hence $F\subset int_{\omega}(A)$.

Conversely, let $X-A \subset G$ and $G \in m_X$.

Then $X-G \subset A$ and X-G is m-closed.

By the hypothesis, we have $X-G \subset int_{\omega}(A)$ and hence $cl_{\omega}(X-A) = X-int_{\omega}(A) \subset G$. Therefore, X-A is $mg\omega$ -closed and A is $mg\omega$ -open.

Corollary 4.1:*Let* $\tau \subset m_X$. Then the following properties hold:

- (1) Every open set is $mg\omega$ -open and every $mg\omega$ -open set is $g\omega$ -open,
- (2) If A and B are $mg\omega$ -open, then $A \cap B$ is $mg\omega$ -open,
- (3) If A is $mg\omega$ -open and m-closed, then A is ω -open,
- (4) If A is $mg\omega$ -open and $int\omega(A) \subset B \subset A$, then B is $mg\omega$ -open.

Proof: This follows from Propositions 4.1, 4.2, 4.3 and 4.4.

Proposition 4.7: Everymg*-closed set ismg ω -closed.

Proof: It follows from Lemma 2.1(5).

Proposition 4.8:Let $\tau \subset m_X$. Then everymg*-closed set isg ω -closed.

Proof: It follows from Propositions 4.1 and 4.7.

Proposition 4.9: Let $\tau \subset m_X$. Then the following implications hold:

 $closed \rightarrow mg^*$ - $closed \rightarrow mg\omega$ - $closed \rightarrow g\omega$ -closed

Proof: It follows from Propositions 3.2, 4.1 and 4.7.

V. Characterizations Of mgω-Closed Sets

In this section, let (X, τ) be a topological space and m_X an m-structure on X. We obtain some characterizations of $mg\omega$ -closed sets.

Theorem 5.1: A subset A of X ismg ω -closed if and only if $cl_{\omega}(A) \cap F = \emptyset$ whenever $A \cap F = \emptyset$ and F is m-closed.

Proof: Suppose that A is $mg\omega$ -closed. Let A \cap F = \emptyset and F be m-closed. Then

 $A \subset X - F \in m_X \text{and} cl_{\omega}(A) \subset X - F.$

Therefore, we have $cl_{\omega}(A) \cap F = \emptyset$.

Conversely, let $A \subset U$ and $U \in m_X$. Then

 $A \cap (X-U) = \emptyset$ and X-U is m-closed.

By the hypothesis, $cl_{\omega}(A) \cap (X-U) = \emptyset$ and hence $cl_{\omega}(A) \subset U$.

Therefore, A is $mg\omega$ -closed.

Theorem 5.2:Let $\tau_{\omega} \subset m_X$ and m_X have property (B). A subset A of X ismg ω -closed if and only if $cl_{\omega}(A)-A$ does not contain any nonempty m-closed set.

Proof:Suppose that A is mgω-closed. Let F⊂ $cl_ω(A)$ -A and F be m-closed. Then

 $F \subset cl_{\omega}(A)$ and $A \subset X - F \in m_X$.

Hence $cl_{\omega}(A) \subset X-F$.

Therefore, we have $F \subset X - cl_{\omega}(A)$.

Hence $F \subset cl_{\omega}(A) \cap (X - cl_{\omega}(A)) = \emptyset$.

Conversely, suppose that A is not $mg\omega$ -closed. Then

 $\emptyset \neq cl_{\omega}(A)$ -U for some U \in m_X containing A.

Since $\tau_{\omega} \subset m_X$ and m_X has property (B), $cl_{\omega}(A)$ –U is m-closed.

Moreover, $cl_{\omega}(A)-U \subset cl_{\omega}(A)-A$.

Thus $cl_{\omega}(A)-A$ contains a nonempty m-closed set which is a contradiction.

Hence A is $mg\omega$ -closed.

Theorem 5.3:Let $\tau_{\omega} \subset m_X$ and m_X have property (B). A subset A of X ismg ω -closed if and only if $cl_{\omega}(A) - A$ is $mg\omega$ -open.

Proof: Suppose that A is $mg\omega$ -closed. Let $F \subset cl_{\omega}(A)$ -A and F be m-closed.

By Theorem 5.2, we have $F = \emptyset$ and $F \subset int \omega(cl_{\omega}(A) - A)$.

It follows from Proposition 4.6, $cl_{\omega}(A)$ – A is $mg\omega$ -open.

Conversely, let $A \subset U$ and $U \in m_X$.

Then $cl_{\omega}(A) \cap (X-U) \subset cl_{\omega}(A)-A$ and $cl_{\omega}(A)-A$ is $mg\omega$ -open.

Since $\tau_{\omega} \subset m_X$ and m_X has property (B), $cl_{\omega}(A) \cap (X-U)$ is m-closed and by Proposition 4.6, $cl_{\omega}(A) \cap (X-U)$

(X-U) $\subseteq int_{\omega}(cl_{\omega}(A)-A).$

Now, $int_{\omega}(cl_{\omega}(A)-A) = int_{\omega}(cl_{\omega}(A)) \cap int\omega(X-A)$

 $\subset cl_{\omega}(A) \cap int_{\omega}(X-A)$

 $= cl_{\omega}(A) \cap (X - cl_{\omega}(A)) = \emptyset.$

Thus $cl_{\omega}(A) \cap (X-U) = \emptyset$ and hence $cl_{\omega}(A) \subset U$.

This shows that A is $mg\omega$ -closed.

Theorem 5.4:Let m_X have property (B). A subset A of X ismg ω -closed if and only if m_X -cl($\{x\} \cap A \neq \emptyset$ for each $x \in cl_{\omega}(A)$.

Proof: Suppose m_X -cl($\{x\}$) \cap A = \emptyset for some $x \in cl\omega(A)$.

By Lemma 3.2, m_X -cl($\{x\}$) is m-closed and $A \subset X-(m_X$ -cl($\{x\}$)) $\in m_X$.

If $cl_{\omega}(A) \subset X - (m_X - cl(\{x\}))$ then

 $x \in cl_{\omega}(A) \subset X - (m_X - cl(\{x\})) \subset X - \{x\} \text{ is a contradiction.}$

Thus $cl_{\omega}(A) \nsubseteq X - (m_{X} - cl(\{x\}))$ and hence A in not $mg\omega$ -closed.

Conversely, suppose that A is not $mg\omega$ -closed.

Then there exists $U \in m_X$ such that $A \subset U$, but $cl_{\omega}(A) \nsubseteq U$.

So there exists $x \in cl_{\omega}(A)$ but $x \notin U$. Then $x \in U^c$ which is m_X -closed.

Thus $m_X - cl(\{x\}) \subset m_X - cl(U^c) = U^c$.

This implies $m_X - cl(\{x\}) \cap U = \emptyset$.

Hence $m_X - cl(\{x\}) \cap A \subset m_X - cl(\{x\}) \cap U = \emptyset$.

Thus there exists $x \in cl_{\omega}(A)$ such that $m_X - cl(\{x\}) \cap A = \emptyset$. This proves the converse.

Corollary 5.1: Let $\tau_{\omega} \subset m_X$ and m_X have property (B). For a subset A of X, the following properties are equivalent:

- (1) A is mg ω -open,
- (2) $A-int_{\omega}(A)$ does not contain any nonempty m-closed set,
- (3) $A-int_{\omega}(A)$ is $mg \ \omega$ -open,
- (4) m_X - $cl(\{x\} \cap (X-A) = \emptyset for each x \in X-int_{\omega}(A)$.

Proof: This follows from Proposition 4.6 and Theorems 5.2, 5.3 and 5.4.

VI. Preservation Theorems

Definition 6.1 [11]: A function $f:(X, m_X) \rightarrow (Y, m_Y)$ is said to be

- (1) *M-continuous if for each* $x \in X$ *and each* $V \in m_Y$ *containing* f(x), *there exists* $U \in m_X$ *containing* x *such that* $f(U) \subset V$.
- (2) M-closed if for each m-closed set F of (X, m_X) , f(F) is m-closed in (Y, m_Y) .

Theorem 6.1[15]: Let m_X be an m-structure on X with property (B) and m_Y be a minimal structure on Y. Let $f:(X, m_X) \to (Y, m_Y)$ be a function. Then the following are equivalent:

- (1) f is M-continuous,
- (2) $f^{-1}(V) \in m_X$ for every $V \in m_Y$.

Lemma 6.1[11]: A function $f:(X, m_X) \rightarrow (Y, m_Y)$ is M-closed if and only if foreach subset B of Y and each $U \in m_X$ containing $f^{-1}(B)$, there exists $V \in m_Y$ such that $B \subset V$ and $f^{-1}(V) \subset U$.

Theorem 6.2: If $f:(X,\tau)\to (Y,\sigma)$ is closed and $f:(X,m_X)\to (Y,m_Y)$ is M-continuous, where m_X has property (B), then f(A) is $mg\omega$ -closed in (Y,m_Y) for each $mg\omega$ -closed set A of (X,m_X) .

Proof: Let A be any $mg\omega$ -closed set of (X, m_X) and $f(A) \subset V \in m_Y$.

Since m_X has property (B), $A \subseteq f^{-1}(V) \in m_X$ by Theorem 6.1.

Since A is $mg\omega$ -closed, $cl_{\omega}(A) \subset f^{I}(V)$ and $f(cl_{\omega}(A)) \subset V$.

Since f is closed, by Lemma 2.2, $cl_{\omega}(f(A)) \subset f(cl_{\omega}(A)) \subset V$.

Hence f(A) is $mg\omega$ -closed in (Y, m_Y) .

Definition 6.2 [6]: A function $f:(X, \tau) \rightarrow (Y, \sigma)$ is called ω -irresolute if $f^1(B)$ is ω -open in (X, τ) for every ω -open set B of (Y, σ) .

Theorem 6.3: If $f:(X, \tau) \to (Y, \sigma)$ is ω -irresolute and $f:(X, m_X) \to (Y, m_Y)$ is M-closed, then $f^{-1}(B)$ is $mg\omega$ -closed in (X, m_X) for each $mg\omega$ -closed set B of (Y, m_Y) .

Proof: Let B be any $mg\omega$ -closed set of (Y, m_y) and $f^1(B) \subset U \in m_x$.

Since f isM-closed, by Lemma 6.1, there exists $V \in m_y$ such that

 $B \subset V$ and $f^{-1}(V) \subset U$.

Since B is $mg\omega$ -closed in Y, $cl_{\omega}(B) \subset V$ and

since f is ω -irresolute, $cl_{\omega}(f^{1}(B)) \subset f^{-1}(cl_{\omega}(B)) \subset f^{-1}(V) \subset U$.

Hence $f^{-1}(B)$ is $mg\omega$ -closed in (X, m_X) .

VII. New Forms Of mgω-Closed Sets

In a topological space (X, τ) , from the definitions, we obtain the following diagram.

Diagram - I

In (X, τ) we denote the collection of all g-open (resp. g^* -open, πg -open, rg-open, $g^\#\alpha$ -open, αg -open, $rg\alpha$ -open, sets by gO(X) (resp. $g^*O(X)$, $\pi gO(X)$, $\pi gO(X)$, $g^\#\alpha O(X)$, $\pi g\alpha O(X)$, $\pi g\alpha O(X)$. These collections of are all m-structure on X. Using these m-structures gO(X) $g^*\alpha O(X)$, $\pi gO(X)$,

 $\pi g \alpha O(X)$, $rg \alpha O(X)$) for a subset A, we define new types of $g \omega$ -closed sets as follows.

Dfinition 7.1:A subset A of a topological space (X, τ) is said to beg*g ω -closed(resp. $g^*\omega$ -closed [18], $\pi gg\omega$ -closed, $rgg\omega$ -closed, $g^\#\alpha g\omega$ -closed, $\alpha gg\omega$ -closed, $\pi g\alpha g\omega$ -closed, $r\alpha gg\omega$ -closed) if $cl\omega(A) \subseteq U$ whenever $A \subseteq U$ and U is g^* -open (resp. g-open,

 πg -open, rg-open, g[#] α -open, αg -open, $\pi g\alpha$ -open, $r\alpha g$ -open) in (X, τ) . By Diagram I and Definition 7.1, we have the following diagram:

Diagram - II

References

- Al-Omari. A and Noorani. M. S. M., Regular Generalized ω-Closed sets, International Journal of Mathematics and Mathematical Scoences, Volume 2007, 1-11
- [2] Arockiarani. I, Balachandran. K and Janaki. C, On Contra-πgα -Continuous Functions, Kochi J. Math., 3(2008), 201-209.
- [3] Dhanasekaran. V, Nagalakshmi. K. T and Ravi. O, Locally Closed Sets in ω-Topological Spaces, Submitted.
- [4] Dontchev. J and Noiri. T, Quasi-Normal Spaces and π g-Closed Sets, Acta Math. Hungar., 89(3), (2000), 211-219.
- [5] Hdeib. H. Z, ω-Closed Mappings, Revista Colomb. De Matem., 16(1-2), (1982), 65-78.
- [6] Khalid Y. Al-Zoubi, On Generalized ω-Closed Sets, Int. J. Math. Math. Sci., 13, (2005), 2011-2021.
- [7] Levine. N, Generalized Closed Sets in Topology, Rend. Circ. Mat. Palermo (2), 19, (1970), 89-96.
- [8] Maki. H., Devi. R and Balachandran. K, Associated Topologies of Generalized α-Closed Sets andα-GeneralizedClosed Sets, Mem. Sci. Kochi Univ. Ser. A. Math., 15, (1994), 51-63.

- [9] Maki. H, Rao. K. C and Nagoor Gani. A, On Generalizing Semi-open and Preopen Sets, Pure and Appl. Math. Sci., 49(1999), 17-29.
- [10] Noiri. T, Almost g-Closed Functions and Separation Axioms, Acta Math. Hungar., 82(3)(1999), 193-205.
- [11]
- Noiri. T and Popa. V, Between Closed Sets and g-Closed Sets, Rend. Circ. Mat. Palermo (2), 55(2006), 175-184. Noiri. T and Popa. V, A Unified Theory of Contra-Continuity for Functions, Ann. Univ. Sci. Budapest, 44(2002), 115-[12]
- Nono, K, Devi, R, Devipriya, M, Muthukumarasamy, K. and Maki, H, On $g^{\#}\alpha$ -Closed Sets and the Digital Plane, Bull. Fukuoka Univ. Ed. part III, 53(2004), 15-24. [13]
- Palaniappan. N and Rao. K. C, Regular Generalized Closed Sets, Kyungpook Math. J., 33(1993), 211-219.
- [15] Popa. V and Noiri. T, On M-Continuous Functions, Anal. Univ. "Dun area de Jos" Galati. Ser. Mat. Fiz. Mec. Teor. (2), 18(23)(2000), 31-41.
- [16] Popa. V and Noiri. T, A Unified Theory of Weak Continuity for Functions, Rend. Circ. Mat. Palermo (2), 51(2002), 439-
- [17] Ravi.O, Paranjothi.M, Rajasekaran. I and Murugesan. S, On ω-Open and g*ω-Closed Sets, Submitted.
- Sundaram. P and Pushpalatha. A, Strongly generalized closed sets in Topological Spaces, Far East J. Math. Sci., [18] 3(4)(2001), 563-575.
- [19] Veerakumar. M. K. R. S, Between g* -Closed Sets and g-Closed Sets, Antarctica J. Math., 3(1)(2006), 43-65.
- [20] Veerakumar. M. K. R. S, Between Closed Sets and g-Closed Sets, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 21(2000),
- [21] Willard. S, General Topology, Addison-Wesley, Reading, Mass, USA, 1970.

DOI: 10.9790/5728-1302020915 15 | Page www.iosrjournals.org