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Abstract: Levine [7] introduced the notion of g-closed sets and further proper ties of g-closed sets are
investigated. In 1982, the notions of w-open and w-closed sets were introduced and studied by Hdeib
[5]. Khalid Y. Al-Zoubi [6] introduced the notion of gw-closed sets and further properties of gw-closed
sets are investigated. In this paper, we introduce the notion of mgw-closed sets and obtain the unified
characterizations for certain families of subsets between closed sets and gw-closed sets.
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I. Introduction
In 1970, Levine [7] introduced the notion of generalized closed (g-closed) sets in topological
spaces. In 1982, Hdeib [5] introduced the notion of w-closed sets in topo-logical spaces. Recently, many
variations of g-closed sets are introduced and inves-tigated. One among them is g w-closed sets which

were introduced by Khalid Y. Al-Zoubi [6]. In 2006, Noiri and Popa [11] introduced the notion of mg~-
closed sets and studied the basic properties, characterizations and preservation properties. Also, they de
fined several subsets which lie between closed sets and g-closed sets.In this paper, we introduce the
notion of mgw-closed sets and obtain the basic properties, characterizations and preservation properties.
In the last section, we define several new subsets which lie between closed sets and gw-closed sets.

1. Preliminaries

Let (X, ) be a topological space and A a subset of X. The closure of A and the interior of A are
denoted by cl(A) and int(A), respectively. A subset A is said to be regular open if int(cl(A))=A. The
finite union of regular open sets is said to bem-open.
Definition 2.1:A subset A of a topological space (X,t) is said to bea-openifA cint(cl(int(A))). The
complement of an a-open set is said to be a-closed.
Note: The family of all a-open (resp. regular open, m--open) sets in X is denoted byze(resp. RO(X),
7O(X)).
Definition 2.2:A subset A of a topological space (X, ) is said to be g-closed [7](resp. g*-closed [20] or
strongly g-closed [18], mg-closed [4], rg-closed [14])if cl(A)cU whenever A cU and U is open (resp. g-
open, m-open, regular open) in (X, 7). The complements of the above closed sets are called their
respective open sets.
The family of all g-open sets in (X, 7 ) is denoted by gO(X). The g-closure (resp.a-closure) of a subset A
of X, denoted by gcl(A) (resp.acl(A)), is defined to be theintersection of all g-closed sets (resp. a-closed
sets) containing A.
Definition 2.3:A subset A of a topological space (X,7) is said to beag-closed [8](resp. g*a-closed [13],
nga-closed [2], rag-closed [10]) if acl(A) € U whenever A cU and U is open (resp. g-open, c-open,
regular open) in (X,7).
The complements of the above closed sets are called their respective open sets.
Definition 2.4[21]:LetHbe a subset of a space (X,t), a point p inXis called acondensation point of H if
for each open set U containing p, Un H is uncountable.
Definition 2.5[5]:A subsetHof a space (X,7) is calledw-closed if it contains allits condensation
points.The complement of an w-closed set is called w-open.It is well known that a subset W of a space

(X,7) is w-open if and only if for eachx € W, there exists U etsuch that x € U and U—W is countable.The

familyofall w-open sets, denoted by w, is a topology on X, which is finer than t. The interior and closure
operator in (X, w) are denoted by int,, and cl,, respectively.
Lemma 2.1 [5]: LetHbe a subset of a space (X,7). Then
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(1) H is w-closed in X if and only if H =cl, (H).

(2) cl, (X\H) = X\int,, (H).

(3) cl,(H) is w-closed in X.

(4) x ecl, (H) ifand only if Hn G =@ for each w-open set G containing x.
(5) cl,(H)c cl(H).

(6) int(H)c int, (H).

Definition 2.6:LetAbe a subset of a space (X,t). ThenAis said to be
(1) g*w-closed [17] if cl,, (A)cU whenever A c U and U is g-open in (X,7).
(2) gw-closed [6] if cl, (A)c U whenever A c U and U is open in (X, 7).

(3) mgw-closed [3] if cl,, (A)c U whenever A cU and U is -open in (X,7).
(4) rw-closed [1] if cl,, (A)c U whenever A c U and U is regular open in (X, 7).

Remark 2.1 [17]:For a subset of a topological space, we obtain the following implications:

closed —  g~-closed —  g-closed
l l !
w-closed —  9*w-closed —  gw-closed

None of the above implications is reversible.

Lemma 2.2 [6]:The open image of anw-open set isw-open.

Throughout the present paper, (X, 7) and (Y, o) always denote topological spaces andf : (X, ) — (Y, o)
presents a function.

I11. m-Structures
Definition 3.1:A subfamily myof the power set@(X) of a nonempty set X is calleda Minimal Structure

(briefly m-Structure) [15] on X if @emy and X emy .

By (X, my ), we denote a nonempty set X with a minimal structure my on X and call it an m-space. Each
member of my is said to be my -open (or briefly m-open) and the complement of an my -open set is said
to be my -closed (or briefly m-closed).

Remark 3.1: Let (X, 7) be a topological space. Then the families,z,,, 741, RO(X),7O(X) and gO(X) are
all m-structures on X.

Definition 3.2:Let (X, my) be an m-space. For a subset A of X, the my-closureof A and the my -interior
of A are defined in [9] as follows:

Q) my-clA)= n{F:ACF, X-Femy},

(2) my-intf(A)=u{U:U cA Uemy}

Remark 3.2: Let (X, 7) be a topological space and A a subset of X. If my=z(resp.t,,7% gO(X)), then we
have my -cl(A)=cl(A) (resp. cl, (A), acl(A), gcl(A)).

Lemma 3.1 [15]: Let (X, my) be an m-space and A a subset of X. Then xemy-cl(A)if and only if Un A

#+ @ for every U e my containing x.

Definition 3.3[9]: An m-structure myon a nonempty set X is said to have property(B) if the union of any
family of subsets belonging to my belongs to my .

Remark 3.3: Let (X, 7) be a topological space. Then the familiestw,74,tandmO(X) are all m-structures
with property (B).

Lemma 3.2 [16]:Let X be a nonempty set and myan m-structure on X satisfyingproperty (B). For a
subset A of X, the following properties hold:

(1) A emyifand only if my -int(A)=A,

(2) Ais m-closed if and only if my -cl(A)=A,

(3) my -int(A) e my and my -cl(A) is m-closed.

Definition 3.4 [11]: Let (X, ) be a topological space and myan m-structure on X.A subset A of X is said
to be
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(1) mg+closed if cl(A) € U whenever A cU and U is my -open,

(2) mg+open if its complement is mg*-closed.

Proposition 3.1 [11]: Lett cmy. Then the following implications hold:

closed — mg*-closed — g-closed

Proposition 3.2:Lett cmy. Then the following implications hold:

closed — mg*-closed — g-closed — gw-closed

Proof: It follows from Remark 2.1.

Theorem 3.1 [11]: Lett cmyand myhave property (B). A subset A of X ismg*-closed if and only if
cl(4)—A does not contain any nonempty m-closed set.

Theorem 3.2 [11]:Letmyhave property (B). A subset A of X ismg~-closed ifand only if my -c/({xtN 4

#¢ for each x ecl(A).

IV. mgw-Closed Sets
In this section, let (X, t ) be a topological space and my an m-structure on X. We obtain several basic
properties of mgw-closed sets.
Definition 4.1:Let (X, 7) be a topological space and myan m-structure on X. Asubset A of X is said to be
(1) mgw-closed if clw(A) € U whenever A cU and U is my -open,
(2) mgw-open if its complement is mgw-closed.
Remark 4.1: Let (X, 7) be a topological space and A a subset of X. If my=gO(X)(resp. 7, tO(X), RO(X))
and A is mgw-closed, then A is g*w-closed(resp.gw-closed,rgw-closed, rgw-closed).
Proposition 4.1: Lett cmy. Then the following implications hold:closed— w-closed — mgw-closed —
gw-closed
Proof:It is obvious that every closed set isw-closed [1,5] and everyw-closed set is mgw-closed by
Lemma 2.1(1). Suppose that A is an mgw-closed set. Let AcUand

Uer. Since T cmy, cl, (A) cU and hence A is gw-closed.

Proposition 4.2:

Letmybe anm-structure

onXin the topological space (X, 7). IfA and B are mgw-closed, then AUB is mgw-closed.

Proof:Let AuBcU and Uemy.Then AcU and BcU. Since A and Bare mgw-closed, we have
cl, (AuB)=cl, (A) U cl, (B) cU. Therefore, AUB is mgw-closed.

Proposition 4.3:Letmybe anm-structure onXin the topological space (X, 7). IfA is mgw-closed and m-
open, then A is w-closed.

Proof:This is obvious.

Proposition 4.4:Let (X, my ) be an m-space andAcX. If A ismgw-closed andA cB c cl,, (A), then B is
mgw-closed.

Proof:Let BcU and Uemy. Then AcU and A is mgw-closed. Hence cl, (B) =cl,(A) c U and B is
mgw-closed.

Definition 4.2: [12] Let (X, my) be an m-space and A a subset of X. The my-frontier of A, my -Fr(A), is
defined as follows:

my -Fr(A) = my -cl(A) N my -cl/(X—A).

Proposition 4.5:1f A is amgw-closed subset of X and AcUemy, then my-Fr(U)c int,, (X—A4).

Proof:

Let A be mgw-closed and AcUemy. Then cl, (A)cU.
Suppose that xe my -Fr(U).

Since U emy , my -Fr(U)= my -cl(U)n my -cl(X-U)

=my -cl(U) n (X-U)

= my -cl(U)-U.

Therefore, x¢U and x & cl,, (A).

This shows that x eint,, (X—A) and hence my -Fr(U) c int,, (X—A).

DOI: 10.9790/5728-1302020915 www.iosrjournals.org 11| Page



Between Closed Sets and Gw-Closed Sets

Proposition 4.6:In the m-space (X, my ), a subset A of X ismgw-open if and onlyif F c int, (A)
whenever F c A and F is m-closed.

Proof:

Suppose that A is mgw-open. Let FCA and F be m-closed.

Then X—AcX-F emy and X—A is mgw-closed.

Therefore, we have X—int, (A) = cl,(X—A) c X—Fand hence F c int, (A).

Conversely, let X—-A c Gand G e my.

Then X—G c A and X—G is m-closed.

By the hypothesis, we have X-G c int, (A) and hence cl, (X—A) = X—int, (A)c G. Therefore, X—-A
is mgw-closed and A is mgw-open.

Corollary 4.1:Lett cmy. Then the following properties hold:

(1) Every open set is mgw-open and every mgw-open set is gw-open,
(2) If Aand B are mgw-open, then A N B is mgw-open,

(3) If Alis mgw-open and m-closed, then A is w-open,

(4) If Alis mgw-open and intw(A) cB c A, then B is mgw-open.
Proof:This follows from Propositions 4.1, 4.2, 4.3 and 4.4.
Proposition 4.7:Everymg*-closed set ismgw-closed.

Proof:It follows from Lemma 2.1(5).

Proposition 4.8:Lett cmy. Then everymg*-closed set isgw-closed.
Proof:It follows from Propositions 4.1 and 4.7.

Proposition 4.9: Lett cmy. Then the following implications hold:
closed— mg*-closed — mgw-closed — gw-closed

Proof:It follows from Propositions 3.2, 4.1 and 4.7.

V. Characterizations Of mgw-Closed Sets
In this section, let (X, ) be a topological space and my an m-structure on X. We obtain some
characterizations of mgw-closed sets.
Theorem 5.1: A subset A of X ismgw-closed if and only if cl,, (A)n F =@wheneverANn F =@ and F is m-
closed.
Proof:Suppose that A is mgw-closed. Let AnF =@and F be m-closed. Then

AcX-F emyandcl, (A)c X—F.

Therefore, we have cl, (A) N F = Q.

Conversely, let Ac U and U emy. Then

AN (X-U) =@ and X-U is m-closed.

By the hypothesis, cl, (A) n (X—U) = @ and hence cl,, (A )cU.

Therefore, A is mgw-closed.

Theorem 5.2:Lett,, cmyand myhave property (B). A subset A of X ismgw-closed if and only if
cl, (4)—A does not contain any nonempty m-closed set.

Proof:Suppose that A is mgw-closed. Let Fc cl, (A)—A and F be m-closed. Then
Fccl,(A)and A cX-F emy.

Hencecl, (A) c X—F.

Therefore, we have F cX—cl,, (A).

Hence F c ¢l (A) n (X—cl, (A)) = .

Conversely, suppose that A is not mgw-closed. Then

@ # cl,(A)—U for some U e my containing A.

Since t,, €my and my has property (B), cl,, (A)—U is m-closed.

Moreover, cl,(A)-U c cl,(A)—A.

Thus cl,, (A)—A contains a nonempty m-closed set which is a contradiction.
Hence A is mgw-closed.

Theorem 5.3:Lett,, @myand myhave property (B). A subset A of X ismgw-closed if and only if ¢l (4)—A
is mgw-open.

DOI: 10.9790/5728-1302020915 www.iosrjournals.org 12 | Page



Between Closed Sets and Gw-Closed Sets

Proof: Suppose that A is mgw-closed. Let Fc cl, (A)—A and F be m-closed.
ByTheorem 5.2, we have F = @and F cint w(cl,, (A)—A).

It follows from Proposition 4.6, cl,, (A)—A is mgw-open.

Conversely, let AcU and U emy .

Then cl, (A) N (X-U) c cl,(A)—A and cl, (A)—A is mgw-open.

Since T, €my and myhas property (B), cl, (A) N (X-U) is m-closed and by Proposition 4.6, cl,,(A) N
(X-V) cint,(cl, (A)-A).

Now,int, (cl, (A)—A) = int, (cl, (A)) N intw(X—-A)

c cl,(A) nint,(X-A)

=cl,(A) n (X—cl,(A) = 0.

Thus cl, (A) N (X-U) =@ and hence cl,, (A) cU.

This shows that A is mgw-closed.

Theorem 5.4:Let myhave property (B). A subset A of X ismgw-closed if andonly if
my -cl({x} N A # @ for each x € cl, (A).

Proof:Suppose my-cl({x}) N A =@for some xeclw(A).

By Lemma 3.2, my-cl({x})is m-closed and A cX—(my -cl({x})) € my.

Ifcl,, (A) cX— (my -cl({x})) then

X€ cl, (A) cX—(my -cl({x}))cX—¢{x} is a contradiction.

Thuscl,, (A) € X—(my- cl({x}) and hence A in not mgw-closed.

Conversely, suppose that A is not mgw-closed.

Then there exists U e my such that A c U, but cl,, (A) € U.

So there exists x € cl,, (A) but x ¢U. Then x € U° which is my -closed.

Thus my -cl({x}) cmy -cl(U°) = U".

This implies my -cl({x})n U = @.

Hence my -cl({x})NA c my -cl({x}) N U = @.

Thus there exists x € cl,, (A) such that my -cl({x})n A = @. This proves the converse.
Corollary 5.1: Letr,, @myand myhave property (B). For a subset A of X, thefollowing properties are
equivalent:

(1) Ais mg w-open,

(2) A—int, (A) does not contain any nonempty m-closed set,

(3) A—int,(A) is mg w-open,

(4) my-cl({x}n(X—A4) =pfor each xeX—int,, (A).

Proof:This follows from Proposition 4.6 and Theorems 5.2, 5.3 and 5.4.

VI. Preservation Theorems
Definition 6.1 [11]:A function f : (X, my)—(Y, my) is said to be
(1) M-continuous if for each xe X and each Ve my containing f(x), there existsUe mycontaining x such
that f(U) c V.
(2) M-closed if for each m-closed set F of (X, my ), f(F) is m-closed in (Y, my).
Theorem 6.1[15]: Let mybe an m-structure on X with property (B) and mybea minimal structure on Y.
Let f:(X, my ) — (Y, my) be a function. Then the following are equivalent:
(1) fis M-continuous,
(2) f(V)emyforeveryV emy.
Lemma 6.1[11]: A function f : (X, my)—(Y, my) is M-closed if and only if foreach subset B of Y and
each U emy containing f *(B), there exists V e my such that B ¢ V and f (V) c U.
Theorem 6.2: If f : (X,t)—(Y,0) is closed and f : (X, my)—(Y, my) is M-continuous, where my has
property (B), then f(A) is mgw-closed in (Y, my ) for each mgw-closed set A of (X, my ).
Proof:Let A be any mgw-closed set of (X, my) and f(A)cVem,.

Since myhas property (B), A cf (V) e my by Theorem 6.1.
Since A is mgw-closed, cl, (A)cf*(V) and f(cl,, (A))cV.
Since f is closed, by Lemma 2.2, cl,, (f(A))c f(cl, (A))c V.
Hence f(A) is mgw-closed in (Y, my).
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Definition 6.2 [6]: A function f : (X, 7)—(Y,0) is calledw-irresolute if f*(B) isw-open in (X, 7) for every
w-open set B of (Y,0).

Theorem 6.3:1f f : (X, 7)—(Y,0) isw-irresolute and f : (X, my)—(Y, my) isM-closed, then f *(B) is mgew-
closed in (X, my ) for each mgw-closed set B of (Y, my ).

Proof:Let B be any mgw-closed set of (Y, my) and f'(B)cUemy.

Since f isM-closed, by Lemma 6.1, there exists V e mysuch that
B cVandf (V) cU.

Since B is mgw-closed in Y, cl, (B) c V and

since f is w-irresolute, cl, (F(B)) cf *(cl, (B)) cf (V) c U.
Hence f *(B) is mgw-closed in (X, my).

VIl.  New Forms Of mgw-Closed Sets
In a topological space (X, t), from the definitions, we obtain the following diagram.

Diagram — |
g*-open —> g-open —> ng-open —> rg-open
g# a-open —> oag-open —> mgo-open —> rag-open

In (X, T) we denote the collection of all g-open (resp. g*-open, wg-open, rg-open, g*a-open, ag-open,
mga-open, rga-open) sets by gO(X) (resp. g*O(X), mgO(X), rgO(X), g*aO(X),agO(X),mgaO(X),

rgaQ(X)). These collections of are all m-structure onX. Using these m-structures gO(X) g+O(X),
mgO(X), rg0(X), g*a0(X), agO(X),
mgaO(X), rgaO(X)) for a subset A, we define new types of gw-closed sets as follows.

Dfinition 7.1:A subset A of a topological space (X, t) is said to beg*gw-closed(resp. g*w-closed [18],
nggw-closed, rggw-closed, g*agw-closed, aggw-closed, mgagw-closed, raggw-closed) if clw(A) € U

whenever A < U and U is g*-open (resp. g-open,
mg-open, rg-open, g*a-open, ag-open, mga-open, rag-open) in (X, T ). By Diagram | and Definition 7.1,
we have the following diagram:

Diagram - 11
closed

R

g# ugw-closed «— Siii:; — Tgogw-closed — raggw-closed
W w b hd
g*gw-closed «— g*w-closed — Tggw-closed — rggw-closed
b
gw-closed
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