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Abstract: In this paper, we have studied the Bézier variant of Chlodovsky-Durrmeyer operators 𝐷𝑚,𝜗  for 

function f measurable and locally bounded on the interval [0,∞). In this we improved the result given by Ibikl E. 

And Karsli H. [14]. We estimate the rate of pointwise convergence of  𝐷𝑚 ,𝜗𝑓 (𝑥) at those 𝑥 > 0 at which the 

one-sided limits 𝑓 𝑥 + , 𝑓(𝑥−) exist by using the Chanturia modulus of variation. In the special case 𝜗 = 1 the 

recent result of Ibikl E. And Karsli H. [14] concerning the Chlodowsky-Durrmeyer operators 𝐷𝑚  is essentially 

improved and extended to more general classes of functions. 

Keywords: Rate of convergence, Chlodovsky-Durrmeyer operator, Bézier basis, Chanturia modulus of 

variation, p-th power variation. 

 

I. Introduction 

For a function the classical Bernstein-Durrmeyer operators (see [7]) Mn applied to f are define as 

                             𝑀𝑚𝑓  𝑥 =  𝑚 + 1  𝑝𝑚,𝑖 𝑥  𝑓 𝑡 𝑝𝑚,𝑖 𝑡 𝑑𝑡
1

0

𝑚

𝑖=0

,     𝑥 ∈ [0,1]                 (1) 

where 𝑝𝑚 ,𝑖 𝑥 =  𝑚
𝑖
 𝑥𝑖(1 − 𝑥)𝑚−𝑖 . 

Several researchers have studied approximation properties of the operators Mn ([8], [10]) for function of 

bounded variation defined on the interval [0, 1]. After that Zeng and Chen [22] defined the Bézier variant of 

Durrmeyer operators as 

                                      𝑀𝑚,𝜗  𝑓  𝑥 =  𝑚 + 1  𝑄𝑚,𝑖
 𝜗  𝑥 

𝑚

𝑖=0

 𝑓 𝑡 𝑝𝑚,𝑖 𝑡 𝑑𝑡
1

0

,                         (2)  

where 𝑄𝑚 ,𝑖
 𝜗  𝑥 = 𝐽𝑚,𝑖

𝜗  𝑥 − 𝐽𝑚,𝑖+1
𝜗  𝑥    and   𝐽𝑚,𝑖 𝑥 =  𝑝𝑚,𝑗  𝑥 𝑚

𝑗 =𝑖   for   𝑖 = 0,1,2, … , 𝑚,  

𝐽𝑚,𝑚+𝑖 𝑥 = 0 are the Bézier basis function which is introduced by P. Bézier [4] and estimated the rate of 

convergence of 𝑀𝑚,𝜗  𝑓 for functions of bounded variation on the interval [0,1]. 

Let Xloc[0,∞) be the class of all complex valued function measurable and locally bounded on the interval [0,∞). 

For 𝑓 ∈ 𝑋𝑙𝑜𝑐 [0, ∞) the Chlodowsky–Durrmeyer operator Dm are defined as 

                 𝐷𝑚𝑓  𝑥 =
𝑚 + 1

𝑎𝑚

 𝑃𝑚,𝑖  
𝑥

𝑎𝑚

 

𝑚

𝑖=0

 𝑓 𝑡 𝑃𝑚,𝑖  
𝑡

𝑎𝑚

 𝑑𝑡
𝑎𝑚

0

,     0 ≤ 𝑥 ≤ 𝑎𝑚 .             (3) 

where (am) is a positive increasing sequence with the properties 

                                                  lim
𝑚→∞

𝑎𝑚 = ∞      𝑎𝑛𝑑      lim
𝑚→∞

𝑎𝑚

𝑚
= 0                                             (4) 

For 𝑓 ∈ 𝑋𝑙𝑜𝑐 [0, ∞) and 𝜗 ≥ 1, we introduce the Bézier variant of Chlodowsky–Durrmeyer operators 𝐷𝑚,𝜗  as 

follows 

              𝐷𝑚,𝜗𝑓  𝑥 =
𝑚 + 1

𝑎𝑚

 𝑄𝑚 ,𝑖
(𝜗)

 
𝑥

𝑎𝑚

 

𝑚

𝑖=0

 𝑓 𝑡 𝑃𝑚,𝑖  
𝑡

𝑎𝑚

 𝑑𝑡
𝑎𝑚

0

,     0 ≤ 𝑥 ≤ 𝑎𝑚 .            (5) 

Obviously, 𝐷𝑚,𝜗  is a positive linear operator and  𝐷𝑚,𝜗 1  𝑥 = 1. In particular, when 𝜗 = 1 the operators (5) 

reduce to operators (3). 

  

Recently Agratini [1], Aniol and Pych–Taberska [3], Pych–Taberska [20], and Gupta [11, 12] have 

investigated the rate of pointwise convergence for Kantorovich and Durrmeyer Type Baskakov–Bézier and 

Bézier operators using a different approach. They have proved their theorems in terms of the Chanturia modulus 

of variation, which is a generalization of the classical Jordan variation. It is useful to point out that a deeper 

analysis of the Chanturia modulus of variation can be found in [6], but actually the modulus of variation was 

introduced for the first time by Langrange [18]. Although the Chanturia modulus of variation was defined as a 
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generalization of the classical variation nearly four decades years ago, it was not used to a sufficient extent to 

solve the problem mentioned above. 

The paper is concerned with the rate of pointwise convergence of the operators (5) when f belong to 𝑋𝑙𝑜𝑐 [0, ∞). 

Using the Chanturia modulus of variation defined in [6], we examine the rate of pointwise convergence of  

 𝐷𝑚 ,𝜗𝑓  𝑥  at the points of continuity and at the first kind discontinuity points of f. 

For some important papers on different operators related to the present study we refer the readers to Gupta et. 

Al. [9, 21] and Zeng and Piriou [23]. It is necessary to point out that in the present paper we extend and improve 

the result of Ibikli E. and Karsli H.[14] for Chlodowsky-Durrmeyer operators. 

We being by giving 

 

Definition 1.1 Let  f  be a bounded function on a compact interval 𝐼 = [𝑎, 𝑏]. The modulus of variation 

𝜇𝑚 (𝑓;  𝑎, 𝑏 ) of a function f is defined for nonnegative integers m as 

𝜇0 𝑓;  𝑎, 𝑏  = 0 

and for 𝑚 ≥ 1 as 

𝜇𝑚 𝑓;  𝑎, 𝑏  = sup
𝜋𝑚

  𝑓 𝑥2𝑖+1 − 𝑓(𝑥2𝑖) 

𝑚−1

𝑖=0

, 

where  𝜋𝑚  is an arbitrary system of m disjoint intervals  𝑥2𝑖 , 𝑥2𝑖+1 , 𝑖 = 0,1, … , 𝑚 − 1, i.e., 

 𝑎 ≤ 𝑥0 < 𝑥1 ≤ 𝑥2 < 𝑥3 ≤ ⋯ ≤ 𝑥2𝑚−2 < 𝑥2𝑚−1 ≤ 𝑏. 
The modulus of variation of any function is a non-decreasing function of m. Some other properties of this 

modulus can be found in [6]. 

If 𝑓 ∈ 𝐵𝑉𝑝 𝐼 ,   𝑝 ≥ 1, i.e., if f of p-th bounded power variation on I, then for every 𝑖 ∈ ℕ, 

                                                              𝜇𝑖 𝑓; 𝐼 ≤ 𝑖1−1 𝑝 𝑉𝑝 𝑓, 𝐼 ,                                                       (6) 

where 𝑉𝑝 𝑓, 𝐼  denotes the total p-th bounded power variation of f on I, defined as the upper bound of the set of 

numbers    𝑓 𝑖𝑗  − 𝑓(𝑙𝑗 ) 
𝑝

𝑗  
1 𝑝 

 over all finite systems of non-overlapping intervals  𝑖𝑗 , 𝑙𝑗  ⊂ 𝐼. 

We also consider the class 𝐵𝑉𝑙𝑜𝑐
𝑝  0, ∞ , 𝑝 ≥ 1, consisting of all function of bounded p-th power variation on 

every compact interval 𝐼 ⊂ [0, ∞). 

In the sequel it will be always assumed that the sequence  𝑎𝑚   satisfies the fundamental conditions (4). The 

symbol [a] will be denote the greatest integer not greater than a. 

  

Remark. Now, let us consider the special case 𝜗 = 1, 𝑝 = 1, and let us suppose that function  f is of bounded 

variation in the Jorden sense on the whole interval [0, ∞)  

(𝑓 ∈ 𝐵𝑉 0, ∞ ). Then, for all integers m such that 𝑎𝑚 > 2𝑥 and 4𝑎𝑚 ≤ 𝑚, we have the following estimation 

for the rate of convergence of the Chlodowsky-Durrmeyer operators (3): 

  𝐷𝑚,𝜗𝑓  𝑥 −
𝑓 𝑥 + + 𝑓(𝑥−)

2
 ≤ 2𝑉  𝑔𝑥 ; 𝐻𝑥 (𝑥 𝑎𝑚 𝑚   

+
210𝑎𝑚

𝑚𝑥2
 𝑥  1 −

𝑥

𝑎𝑚

 +
𝑎𝑚

𝑚
  𝑉  𝑔𝑥 ; 𝐻𝑥  

𝑥

 𝑖
  

2 𝑚 𝑎𝑚  

𝑖=1

 

+
4𝑀𝑎𝑚

𝑚𝑥2
 𝑥  1 −

𝑥

𝑎𝑚

 +
𝑎𝑚

𝑚
 +

2 𝑓 𝑥 + − 𝑓 𝑥 −  

 
𝑚𝑥
𝑎𝑚

 1 −
𝑥

𝑎𝑚
 

, 

where 𝑀 = Sup0≤𝑥<∞ 𝑓(𝑥) and 𝑉(𝑔𝑥 ; 𝐻) denotes the Jordan variation of 𝑔𝑥  on the interval H. 

The above estimation is essentially better than the estimation presented in [14]. Namely, it is easy to see that the 

right-hand side of the main inequality given in Theorem 1.1 in [14] is not convergent to zero for all function 

𝑓 ∈ 𝐵𝑉[0, ∞) and for all sequences  𝑎𝑚   satisfying (4). 

 

II. Auxilary Result 
In this section we give certain results, which are necessary to prove the main result.  

For this, let us introduce the following notation. Given any 𝑥 ∈ [0, 𝑎𝑚 ] and any non-negative integer q, we write 

𝜓𝑥
𝑞 𝑡 ≔ (𝑡 − 𝑥)𝑞     𝑓𝑜𝑟  𝑡 ∈  0, ∞ , 

                𝑊𝑚,𝑞 𝑥 ≔  𝐷𝑚𝜓𝑥
𝑞
  𝑥 ≡

𝑚 + 1

𝑎𝑚

 𝑃𝑚 ,𝑖  
𝑥

𝑎𝑚

 

𝑚

𝑖=0

  𝑡 − 𝑥 𝑞𝑃𝑚,𝑖  
𝑡

𝑎𝑚

 𝑑𝑡

𝑎𝑚

0

.             (7) 

Lemma 2.1 If 𝑚 ∈ ℕ, 𝑥 ∈ [0, 𝑎𝑚 ], then 

𝑊𝑚,0 𝑥 = 1,     𝑊𝑚,1 𝑥 =
𝑎𝑚 − 2𝑥

𝑚 + 2
, 
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𝑊𝑚,2 𝑥 =
2(𝑚 − 3)(𝑎𝑚 − 𝑥)𝑥

 𝑚 + 2 (𝑚 + 3)
+

2𝑎𝑚
2

(𝑚 + 2)(𝑚 + 3)
 

and, for q > 1, 

                                    𝑊𝑚,2𝑞 𝑥 =  
𝑎𝑚

𝑚
 

𝑞

 𝛽𝑗 ,𝑞  𝑥  1 −
𝑥

𝑎𝑚

  

𝑞−𝑗

 
𝑎𝑚

𝑚
 

𝑗
𝑞

𝑗 =0

,                             (8) 

where 𝛽𝑗 ,𝑞  are real numbers independent of x and bounded uniformly in m. Moreover, for 𝑚 ≥ 2 

                                                𝑊𝑚,2𝑞 𝑥 ≤ 2
𝑎𝑚

𝑚
 𝑥  1 −

𝑥

𝑎𝑚

 +
𝑎𝑚

𝑚
                                             (9) 

and, for q > 1, 

                                               𝑊𝑚,2𝑞 𝑥 ≤ 𝑐𝑞  
𝑎𝑚

𝑚
 

𝑞

 𝑥  1 −
𝑥

𝑎𝑚

 +
𝑎𝑚

𝑚
 

𝑞

,                               (10) 

where 𝑐𝑞  is a positive constant depending only on q. 

 

Proof. Formulas for 𝑊𝑚,0 , 𝑊𝑚,1, 𝑊𝑚,2 and inequality (9) follow by simple calculation. Suppose q >1 and put 

𝑦 ≔ 𝑥 𝑎𝑚 . Then 𝑦 ∈ [0,1] and 

𝑊𝑚,2𝑞 𝑥 =
𝑚 + 1

𝑎𝑚

 𝑃𝑚,𝑖 𝑦 

𝑚

𝑖=0

  𝑡 − 𝑦𝑎𝑚  2𝑞𝑃𝑚 ,𝑖  
𝑡

𝑎𝑚

 𝑑𝑡

𝑎𝑚

0

 

       =  𝑚 + 1 𝑎𝑚
2𝑞

 𝑃𝑚,𝑖 𝑦 

𝑚

𝑖=0

  𝑠 − 𝑦 2𝑞𝑃𝑚,𝑖 𝑠 𝑑𝑠

1

0

= 𝑎𝑚
2𝑞

 𝑀𝑚𝜓𝑦
2𝑞

  𝑦 ,             (11) 

where Mm is the classical Bernstein-Durrmeyer operator (1). 

The representation formula (8) follows at once from the known identity 

 𝑀𝑚𝜓𝑦
2𝑞

  𝑦 =  𝛽𝑗 ,𝑞 ,𝑚  
𝑦(1 − 𝑦)

𝑚
 

𝑞−1

𝑚−2𝑗

𝑞

𝑗 =0

, 

where 𝛽𝑗 ,𝑞 ,𝑚  are real numbers independent of y and bounded uniformly in m (see [13], Lemma 4.8 with 𝑐 =

−1). Now, let us observe that for 𝑦 ∈ [0, 1
𝑚 ] 𝑦 ∈  1 −

1

𝑚
, 1 , 𝑚 ≥ 2, one has 𝑦(1 − 𝑦) ≤

𝑚−1

𝑚2  and 

 𝑀𝑚𝜓𝑦
2𝑞

  𝑦 =   𝛽𝑗 ,𝑞 ,𝑚   
𝑚 − 1

𝑚3
 

𝑞−1

𝑚−2𝑗

𝑞

𝑗 =0

≤  𝜂𝑗 ,𝑞𝑚
−2𝑞

𝑞

𝑗 =0

, 

where 𝜂𝑗 ,𝑞  are non-negative numbers depending only on j and q. If 𝑦 ∈  
1

𝑚
, 1 −

1

𝑚
  then 

1

𝑚𝑦 (1−𝑦)
≤

𝑚

𝑚−1
≤ 2 and 

 𝑀𝑚𝜓𝑦
2𝑞

  𝑦 =  
𝑦(1 − 𝑦)

𝑚
 

𝑞

  𝛽𝑗 ,𝑞 ,𝑚  
1

(𝑚𝑦 1 − 𝑦 )𝑗

𝑞

𝑗 =0

 , 

≤  
𝑦(1 − 𝑦)

𝑚
 

𝑞

 𝜂𝑗 ,𝑞 2𝑗

𝑞

𝑗 =0

. 

Consequently, 

 𝑀𝑚𝜓𝑦
2𝑞

  𝑦 ≤
𝐶𝑞

𝑚𝑞
 𝑦 1 − 𝑦 +

1

𝑚
 

𝑞

   𝑤𝑖𝑡𝑕  𝐶𝑞 =  𝜂𝑗 ,𝑞2𝑗

𝑞

𝑗 =0

. 

Taking in (11) and in the above inequality 𝑦 = 𝑥 𝑎𝑚  we easily obtain estimation (10). 

Lemma 2.2 Let 𝑥 ∈ (0, ∞) and let 

𝐾𝑚,𝜗  
𝑥

𝑎𝑚

,
𝑡

𝑎𝑚

 ≔
𝑚 + 1

𝑎𝑚

 𝑄𝑚,𝑖
(𝜗)

 
𝑥

𝑎𝑚

 𝑃𝑚 ,𝑖  
𝑡

𝑎𝑚

 

𝑚

𝑖=0

. 

Then 

                                       𝐾𝑚,𝜗  
𝑥

𝑎𝑚

,
𝑢

𝑎𝑚

 

𝑎𝑚

𝑡

𝑑𝑢 ≤
𝜗

 𝑡 − 𝑥 2
𝑊𝑚,2 𝑥     𝑖𝑓   𝑥 < 𝑡                        (12) 

and 

                                𝐾𝑚,𝜗  
𝑥

𝑎𝑚

,
𝑢

𝑎𝑚

 

𝑡

0

𝑑𝑢 ≤
𝜗

 𝑥 − 𝑡 2
𝑊𝑚,2 𝑥     𝑖𝑓   0 < 𝑡 < 𝑥,                       (13) 
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where 𝑊𝑚,2 𝑥  is given by (7) (with q = 2). 

Proof. As is known 𝑄𝑚,𝑖
 𝜗  𝑥 ≤ 𝜗𝑃𝑚,𝑖 𝑥   for  𝜗 ≥ 1. Hence, if x < t, then 

 𝐾𝑚,𝜗  
𝑥

𝑎𝑚

,
𝑢

𝑎𝑚

 

𝑎𝑚

𝑡

𝑑𝑢 ≤
1

 𝑡 − 𝑥 2
 (𝑢 − 𝑥)2𝐾𝑚,𝜗  

𝑥

𝑎𝑚

,
𝑢

𝑎𝑚

 

𝑎𝑚

𝑡

𝑑𝑢 

≤
1

 𝑡 − 𝑥 2
 𝐷𝑚 ,𝜗𝜓𝑥

2  𝑥 ≤
𝜗

 𝑡 − 𝑥 2
 𝐷𝑚𝜓𝑥

2  𝑥 =
𝜗

 𝑡 − 𝑥 2
𝑊𝑚,2 𝑥 . 

The proof of (13) is similar. 

In order to formulate the next lemma we introduce the following intervals. If x > 0, we write 

𝐼𝑥 𝑢 ≔  𝑥 + 𝑢, 𝑥 ∩  0, ∞    𝑖𝑓 𝑢 < 0 

𝐼𝑥 𝑢 ≔  𝑥, 𝑥 + 𝑢    𝑖𝑓 𝑢 > 0 

Lemma 2.3 Let 𝑓 ∈ 𝑋𝑙𝑜𝑐 [0, ∞) and let the one-sided limits 𝑓 𝑥 + , 𝑓(𝑥−) exist at a fixed point 𝑥 ∈ (0, ∞). 

Consider the function 𝑔𝑥  defined by (6) and write 𝑑𝑚 ≔  𝑎𝑚 𝑚 .  If  𝑕 = −𝑥  or  𝑕 = 𝑥, then for all integers m 

such that 𝑑𝑚 ≤ 1 2  we have 

  𝑔𝑥(𝑡)𝐾𝑚,𝜗  
𝑥

𝑎𝑚

,
𝑡

𝑎𝑚

 𝑑𝑡
𝐼𝑥 (𝑕)

 ≤ 𝑣1 𝑔𝑥 ; 𝐼𝑥(𝑕𝑑𝑚 )  

+
8𝜗𝑊𝑚,2(𝑥)

𝑕2𝑑𝑚
2

  
𝑣𝑗  𝑔𝑥 ; 𝐼𝑥(𝑗𝑕𝑑𝑚 ) 

𝑗3

𝑛−1

𝑗 =1

+
𝑣𝑛 𝑔𝑥 ; 𝐼𝑥(𝑕) 

𝑛2
 , 

where 𝑛 =  1 𝑑𝑚  and 𝑊𝑚,2(𝑥) is estimated in (9). 

Proof. Restricting the proof to 𝑕 = −𝑥 we define the point 𝑡𝑗 = 𝑥 + 𝑗𝑕𝑑𝑛  for 𝑗 = 1,2,3, … , 𝑛 + 1and we denote 

𝑡𝑛+1 = 0. Put 𝑇𝑗 = [𝑡𝑗 , 𝑥] for 𝑗 = 1,2,3, … , 𝑛 + 1 and we have 

 𝑔𝑥(𝑡)𝐾𝑚,𝜗  
𝑥

𝑎𝑚

,
𝑡

𝑎𝑚

 𝑑𝑡
𝐼𝑥 (𝑕)

≤  𝑔𝑥(𝑡)𝐾𝑚,𝜗  
𝑥

𝑎𝑚

,
𝑡

𝑎𝑚

 𝑑𝑡

𝑥

𝑡1

 

+  𝑔𝑥(𝑡𝑗 )

𝑛

𝑗 =1

 𝐾𝑚,𝜗  
𝑥

𝑎𝑚

,
𝑡

𝑎𝑚

 𝑑𝑡

𝑡𝑗

𝑡𝑗+1

+    𝑔𝑥 𝑡 − 𝑔𝑥(𝑡𝑗 ) 𝐾𝑚,𝜗  
𝑥

𝑎𝑚

,
𝑡

𝑎𝑚

 𝑑𝑡

𝑡𝑗

𝑡𝑗 +1

𝑛

𝑗 =1

 

                                      = 𝐼1 𝑚, 𝑥 + 𝐼2 𝑚, 𝑥 + 𝐼3 𝑚, 𝑥 ,      𝑠𝑎𝑦 
Clearly, 

 𝐼1 𝑚, 𝑥  ≤    𝑔𝑥 𝑡 − 𝑔𝑥(𝑥)  𝐾𝑚,𝜗  
𝑥

𝑎𝑚

,
𝑡

𝑎𝑚

 

𝑥

𝑡1

𝑑𝑡 

                                   ≤ 𝑣1 𝑔𝑥 ; 𝑇1  𝐾𝑚,𝜗  
𝑥

𝑎𝑚

,
𝑡

𝑎𝑚

 𝑑𝑡

𝑎𝑚

0

= 𝑣1 𝑔𝑥 ; 𝑇1 . 

By the Abel lemma on summation by parts and by (13) we have 

 𝐼2 𝑚, 𝑥  ≤  𝑔𝑥 𝑡1   𝐾𝑚,𝜗  
𝑥

𝑎𝑚

,
𝑡

𝑎𝑚

 

𝑡1

0

𝑑𝑡 +   𝑔𝑥 𝑡𝑗 +1 − 𝑔𝑥(𝑡𝑗 ) 

𝑛−1

𝑗 =1

 𝐾𝑚,𝜗  
𝑥

𝑎𝑚

,
𝑡

𝑎𝑚

 

𝑡𝑗+1

0

𝑑𝑡 

≤
𝜗𝑊𝑚,2(𝑥)

𝑕2𝑑𝑚
2

  𝑔𝑥 𝑡1 − 𝑔𝑥 𝑥  +   𝑔𝑥 𝑡𝑗 +1 − 𝑔𝑥(𝑡𝑗 ) 
1

(𝑗 + 1)2

𝑛−1

𝑗 =1

  

                =
𝜗𝑊𝑚,2(𝑥)

𝑕2𝑑𝑚
2

  𝑔𝑥 𝑡1 − 𝑔𝑥 𝑥  +    𝑔𝑥 𝑡𝑖+1 − 𝑔𝑥(𝑡𝑖)  
1

(𝑗 + 1)2
−

1

(𝑗 + 2)2
 

𝑗

𝑖=1

𝑛−2

𝑗 =1

+
1

𝑛2
  𝑔𝑥 𝑡𝑖+1 − 𝑔𝑥(𝑡𝑖) 

𝑛

𝑖=1

  

≤
𝜗𝑊𝑚,2(𝑥)

𝑕2𝑑𝑚
2

 𝑣1 𝑔𝑥 ; 𝑇1 + 2  
𝑣𝑗 +1 𝑔𝑥 ; 𝑇𝑗 +1 

(𝑗 + 1)3

𝑛−2

𝑗 =1

+
𝑣𝑛 𝑔𝑥 ; 𝑇𝑛 

𝑛2
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≤
𝜗𝑊𝑚,2(𝑥)

𝑕2𝑑𝑚
2

 2  
𝑣𝑗  𝑔𝑥 ; 𝑇𝑗  

𝑗3

𝑛−1

𝑗 =1

+
𝑣𝑛 𝑔𝑥 ; 𝑇𝑛+1 

𝑛2
 .                                          

Next, in view of (13) and the Abel transformation,  

 𝐼3 𝑚, 𝑥  ≤  𝑣1 𝑔𝑥 ; [𝑡𝑗 +1, 𝑡𝑗 ] 

𝑛

𝑗 =1

 𝐾𝑚,𝜗  
𝑥

𝑎𝑚

,
𝑡

𝑎𝑚

 

𝑡1

𝑡𝑗+1

𝑑𝑡 

≤
𝜗𝑊𝑚,2(𝑥)

𝑕2𝑑𝑚
2

 
𝑣1 𝑔𝑥 ; [𝑡𝑗 +1, 𝑡𝑗 ] 

𝑗2

𝑛

𝑗 =1

 

 =
𝜗𝑊𝑚,2(𝑥)

𝑕2𝑑𝑚
2

  
𝑣1 𝑔𝑥 ; [𝑡𝑖+1 , 𝑡𝑖] 

𝑛2

𝑛

𝑖=1

+   𝑣1 𝑔𝑥 ;  𝑡𝑖+1, 𝑡𝑖   
1

𝑗2
−

1

 𝑗 + 1 2
 

𝑗

𝑖=1

𝑛−1

𝑗 =1

  

                                      ≤
𝜗𝑊𝑚,2(𝑥)

𝑕2𝑑𝑚
2

 
𝑣𝑛 𝑔𝑥 ; 𝑇𝑛+1 

𝑛2
+ 6  

𝑣𝑗  𝑔𝑥 ; 𝑇𝑗 +1 

(𝑗 + 1)3

𝑛−1

𝑗 =1

  

                                     ≤
𝜗𝑊𝑚,2(𝑥)

𝑕2𝑑𝑚
2

 
𝑣𝑛 𝑔𝑥 ; 𝑇𝑛+1 

𝑛2
+ 6  

𝑣𝑗  𝑔𝑥 ; 𝑇𝑗  

𝑗3

𝑛

𝑗 =2

  

 

Combining the result and observing that 𝑇𝑗 = 𝐼𝑥(𝑗𝑕𝑑𝑚 ) we get the desired estimation for h = -x. In the case of h 

= x the proof runs analogously; we use inequality (12) instead of (13). 

 

III. Main Results 
In this section we prove our main theorems. 

Theorem 3.1 Let 𝑓 ∈ 𝑋𝑙𝑜𝑐 [0, ∞) and let the one-sided limits 𝑓 𝑥 + , 𝑓(𝑥−) exist at a fixed point 𝑥 ∈ (0, ∞). 

Then, for all integers m such that 𝑎𝑚 > 2𝑥 and 4𝑎𝑚 ≤ 𝑚 one has 

  𝐷𝑚 ,𝜗𝑓  𝑥 −
𝑓 𝑥 + + 𝜗𝑓(𝑥−)

𝜗 + 1
 ≤ 2𝜇1  𝑔𝑥 ; 𝐻𝑥(𝑥 𝑎𝑚 𝑚   

+
32𝜗

𝑥2
 𝑥  1 −

𝑥

𝑎𝑚

 +
𝑎𝑚

𝑚
   

𝜇𝑗  𝑔𝑥 ; 𝐻𝑥(𝑗𝑥 𝑎𝑚 𝑚  

𝑗3
+

𝜇𝑛 𝑔𝑥 ; 𝐻𝑥(𝑥) 

𝑛2

𝑛−1

𝑗 =1

  

+
2𝜗𝐶𝑞

𝑥2𝑞
𝜑 𝑎𝑚 ; 𝑓  

𝑎𝑚

𝑚
 

𝑞

 𝑥  1 −
𝑥

𝑎𝑚

 +
𝑎𝑚

𝑚
 

𝑞

+
2𝜗 𝑓 𝑥 + − 𝑓 𝑥 −  

 
𝑚𝑥
𝑎𝑚

 1 −
𝑥

𝑎𝑚
 

, 

where 𝑛 =   𝑚 𝑎𝑚  , 𝐻𝑥 𝑢 =  𝑥 − 𝑢, 𝑥 + 𝑢  for 0 ≤ 𝑢 ≤ 𝑥, 𝜑 𝑎; 𝑓 = sup0≤𝑡≤𝑏  𝑓(𝑡)  

                                       𝑔𝑥 𝑡 =  
𝑓 𝑡 − 𝑓 𝑥 + 

0                        
𝑓 𝑡 − 𝑓 𝑥 − 

    
𝑖𝑓 𝑡 > 𝑥,
𝑖𝑓 𝑡 = 𝑥,

        𝑖𝑓 0 ≤ 𝑡 < 𝑥,
                                         (14) 

q is an arbitrary positive integer and cq is a positive constant depending only on q. 

Proof. We decompose 𝑓(𝑡) into four parts as 

𝑓 𝑡 =
𝑓 𝑥 + + 𝜗𝑓(𝑥−)

𝜗 + 1
+

𝑓 𝑥 + − 𝑓(𝑥−)

2
 𝑠𝘨𝑛𝑥 𝑡 +

𝜗 − 1

𝜗 + 1
 + 𝑔𝑥 𝑡 

+ 𝛿𝑥 𝑡  𝑓 𝑥 +
𝑓 𝑥 + − 𝑓 𝑥 − 

2
                                                                     (15) 

where 𝑔𝑥(𝑡) is defined as (14) and 𝑠𝘨𝑛𝑥 𝑡 ≔ 𝑠𝘨𝑛 𝑡 − 𝑥 , 

                                                              𝛿𝑥 𝑡 =  
1, 𝑥 = 𝑡,
0, 𝑥 ≠ 𝑡,

                                                              (16) 

From (15) we have 

 𝐷𝑚,𝜗𝑓  𝑥 =
𝑓 𝑥 + + 𝜗𝑓(𝑥−)

𝜗 + 1
+  𝐷𝑚,𝜗𝑔𝑥  𝑥 +

𝑓 𝑥 + − 𝑓(𝑥−)

2
 

×   𝐷𝑚 ,𝜗𝑠𝘨𝑛𝑥  𝑥 +
𝜗 − 1

𝜗 + 1
 +  𝑓 𝑥 −

𝑓 𝑥 + − 𝑓(𝑥−)

2
  𝐷𝑚,𝜗𝛿𝑥  𝑥 . 

            For operators 𝐷𝑚 ,𝜗  using (16) we can observe that the last term on the right hand side vanishes. In 

addition it is obvious that  𝐷𝑚 ,𝜗 1  𝑥 = 1. Hence we have 
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  𝐷𝑚 ,𝜗𝑓  𝑥 −
𝑓 𝑥 + + 𝜗𝑓 𝑥 − 

𝜗 + 1
 

≤   𝐷𝑚,𝜗𝑔𝑥  𝑥  +  
𝑓 𝑥 + − 𝑓 𝑥 − 

2
   𝐷𝑚 ,𝜗𝑠𝘨𝑛𝑥  𝑥 +

𝜗 − 1

𝜗 + 1
 ,            (17) 

            In order to prove our theorem we need the estimates for  𝐷𝑚,𝜗𝑔𝑥  𝑥  and  𝐷𝑚,𝜗𝑠𝘨𝑛𝑥  𝑥 +
𝜗−1

𝜗+1
.  

            To estimate  𝐷𝑚 ,𝜗𝑔𝑥  𝑥  with the help of the fixed points x and 2x, we decompose it into three parts as 

follows: 

  𝑔𝑥(𝑡)𝐾𝑚,𝜗  
𝑥

𝑎𝑚

,
𝑡

𝑎𝑚

 𝑑𝑡

𝑎𝑚

0

 ≤   𝑔𝑥(𝑡)𝐾𝑚,𝜗  
𝑥

𝑎𝑚

,
𝑡

𝑎𝑚

 𝑑𝑡

𝑥

0

  

+   𝑔𝑥(𝑡)𝐾𝑚,𝜗  
𝑥

𝑎𝑚

,
𝑡

𝑎𝑚

 𝑑𝑡

2𝑥

𝑥

 +   𝑔𝑥(𝑡)𝐾𝑚,𝜗  
𝑥

𝑎𝑚

,
𝑡

𝑎𝑚

 𝑑𝑡

𝑎𝑚

2𝑥

  

                                            =  𝐸1,𝜗 𝑚, 𝑥  +  𝐸2,𝜗 𝑚, 𝑥  +  𝐸3,𝜗 𝑚, 𝑥  ,                                 (18) 

where 𝐾𝑚,𝜗  
𝑥

𝑎𝑚
,

𝑡

𝑎𝑚
  is defined in Lemma 2.2. 

            The estimations for  𝐸1,𝜗 𝑚, 𝑥   and  𝐸2,𝜗 𝑚, 𝑥  are given in Lemma 2.3 in which we put 𝑕 = −𝑥 and 

𝑕 = 𝑥, respectively. Using the obvious inequality 

µ𝑗  𝑔𝑥 ; 𝐼𝑥(−𝑢) + µ𝑗  𝑔𝑥 ; 𝐼𝑥(𝑢) ≤ 2µ𝑗  𝑔𝑥 ; 𝐻𝑥(𝑢) , 

where 𝐻𝑥 𝑢 =  𝑥 − 𝑢, 𝑥 + 𝑢 ,    0 < 𝑢 ≤ 𝑥, we obtain 

 𝐸1,𝜗 𝑚, 𝑥  +  𝐸2,𝜗 𝑚, 𝑥  ≤ 2µ𝑗  𝑔𝑥 ; 𝐻𝑥  𝑥 𝑎𝑚 𝑚    

                +
16𝜗𝑊𝑚,2(𝑥)𝑚

𝑕2𝑑𝑚

  
µ𝑗  𝑔𝑥 ; 𝐻𝑥 𝑗𝑥 𝑎𝑚 𝑚   

𝑗3

𝑛−1

𝑗 =1

+
µ𝑛 𝑔𝑥 ; 𝐻𝑥 𝑥  

𝑛2
 .                       (19) 

            Now, we estimate  𝐸3,𝜗 𝑚, 𝑥   Clearly, given any  𝑞 ∈ ℕ, we have 

 𝐸3,𝜗 𝑚, 𝑥  ≤ 2𝜑 𝑎𝑚 ; 𝑓 
𝑚 + 1

𝑎𝑚

 𝑄𝑚,𝑖
(𝜗)

 
𝑥

𝑎𝑚

 

𝑚

𝑖=0

 𝑃𝑚,𝑖  
𝑡

𝑎𝑚

 𝑑𝑡

𝑎𝑚

2𝑥

 

                                         ≤ 2𝜑 𝑎𝑚 ; 𝑓 
𝑚 + 1

𝑥2𝑞𝑎𝑚

 𝑄𝑚,𝑖
(𝜗)

 
𝑥

𝑎𝑚

 

𝑚

𝑖=0

 (𝑡 − 𝑥)2𝑞𝑃𝑚,𝑖  
𝑡

𝑎𝑚

 𝑑𝑡

𝑎𝑚

2𝑥

 

                                          ≤
2𝜗𝜑 𝑎𝑚 ; 𝑓 

𝑥2𝑞

𝑚 + 1

𝑎𝑚

 𝑃𝑚,𝑖  
𝑥

𝑎𝑚

 

𝑚

𝑖=0

 (𝑡 − 𝑥)2𝑞𝑃𝑚 ,𝑖  
𝑡

𝑎𝑚

 𝑑𝑡

𝑎𝑚

0

 

                                                  =
2𝜗𝜑 𝑎𝑚 ; 𝑓 

𝑥2𝑞
𝑊𝑚,2𝑞 𝑥 .                                                                 (20) 

            Finally, replacing x by 𝑥 𝑎𝑚  in the result of X. M. Zeng and W. Chen [22] (sect. 3, pp. 9-11) we 

immediately get 

  𝐷𝑚 ,𝜗𝑠𝘨𝑛𝑥  𝑥 +
𝜗 − 1

𝜗 + 1
 ≤

4𝜗

 𝑚
𝑥

𝑎𝑚
 1 −

𝑥
𝑎𝑚

 

 

            Putting (18), (19), (20) and (21) into (17), we get the required result. Thus the proof of Theorem 1 is 

complete. 

From Theorem 3.1 and inequality (6) we get 

 

Theorem 3.2 Let 𝑓 ∈ 𝐵𝑉𝑙𝑜𝑐
𝑝

[0, ∞), 𝑝 ≥ 1 and let 𝑥 ∈  0, ∞ . Then, for all integers m such that  𝑎𝑚 > 2𝑥 and 

4𝑎𝑚 ≤ 𝑚 we have 

  𝐷𝑚,𝜗𝑓  𝑥 −
𝑓 𝑥 + + 𝜗𝑓(𝑥−)

𝜗 + 1
 ≤ 2𝑉𝑝  𝑔𝑥 ; 𝐻𝑥(𝑥 𝑎𝑚 𝑚   

+
27+1 𝑝 𝜗

𝑥2𝑛1+1 𝑝 
 𝑥  1 −

𝑥

𝑎𝑚

 +
𝑎𝑚

𝑚
  

𝑉𝑝  𝑔𝑥 ; 𝐻𝑥  
𝑥

 𝑖
  

  𝑖 
2−1 𝑝 

 𝑛+1 2−1

𝑖=1
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+
2𝜗𝐶𝑞

𝑥2𝑞
𝜑 𝑎𝑚 ; 𝑓  

𝑎𝑚

𝑚
 

𝑞

 𝑥  1 −
𝑥

𝑎𝑚

 +
𝑎𝑚

𝑚
 

𝑞

+
2𝜗 𝑓 𝑥 + − 𝑓 𝑥 −  

 
𝑚𝑥
𝑎𝑚

 1 −
𝑥

𝑎𝑚
 

. 

In order to show this it is necessary to prove that the right-hand sides of the inequalities mentioned in the 

hypotheses of the theorems tend to zero as 𝑚 → ∞. In view of (4) we have 𝑛 =   𝑚 𝑎𝑚  → ∞ as 𝑚 → ∞. So, 

in Theorem 1 it is enough to consider only the term 

∧𝑛  𝑥 =  
µ𝑗  𝑔𝑥 ; 𝐻𝑥(𝑗𝑥𝑑𝑚 ) 

𝑗3

𝑛−1

𝑗 =1

,      𝑤𝑕𝑒𝑟𝑒  𝑑𝑚 =  𝑎𝑚 𝑚 . 

Clearly, 

∧𝑛  𝑥 =  
µ1 𝑔𝑥 ; 𝐻𝑥(𝑗𝑥𝑑𝑚 ) 

𝑗2

𝑛−1

𝑗 =1

≤ 4𝑑𝑚  
µ1 𝑔𝑥 ; 𝐻𝑥(𝑥𝑡) 

𝑡2

𝑛𝑑𝑚

𝑑𝑚

𝑑𝑡 

≤ 4𝑑𝑚  µ1  𝑔𝑥 ; 𝐻𝑥  
𝑥

𝑠
  

𝑛+1

1

𝑑𝑠 ≤
4

𝑛
 µ1  𝑔𝑥 ; 𝐻𝑥  

𝑥

𝑖
  

𝑛

𝑖=1

. 

Since the function 𝑔𝑥  is continuous at x and µ1  𝑔𝑥 ; 𝐻𝑥  
𝑥

𝑖
   denotes the oscillation of 𝑔𝑥  on the interval 𝐻𝑥  

𝑥

𝑖
 , 

we have 

lim
𝑖→∞

µ1  𝑔𝑥 ; 𝐻𝑥  
𝑥

𝑖
  = 0 

and consequently, 

lim
𝑛→∞

 ∧𝑛  𝑥 = 0 

As regards Theorem 3.2, it is easy to verify that in view of the continuity of 𝑔𝑥   at x, 

lim
𝑛→∞

1

𝑛1+1 𝑝 
 

1

  𝑖 
1−1 𝑝 

𝑉𝑝  𝑔𝑥 ; 𝐻𝑥  
𝑥

 𝑖
  

𝑛2−1

𝑖=1

= 0. 

Thus we get the following approximation theorem. 

Proof. Let 𝑓 ∈ 𝐵𝑉𝑙𝑜𝑐
𝑝  0, ∞ , 𝑝 ≥ 1. In view of (6) and the notation 𝑑𝑚 =  𝑎𝑚 𝑚 , 𝑛 =   𝑚 𝑎𝑚  , we have 

 
µ𝑗  𝑔𝑥 ; 𝐻𝑥 𝑗𝑥𝑑𝑚   

𝑗3

𝑛−1

𝑗 =1

≤  
𝑉𝑝 𝑔𝑥 ; 𝐻𝑥 𝑗𝑥𝑑𝑚   

𝑗2+1 𝑝 

𝑛−1

𝑗 =1

≤  2𝑑𝑚  2+1 𝑝  
𝑉𝑝 𝑔𝑥 ; 𝐻𝑥 𝑥𝑡  

𝑡2+1 𝑝 
𝑑𝑡

𝑛𝑑𝑚

𝑑𝑚

 

≤  
2

𝑛
 

2+1 𝑝 

 
𝑉𝑝  𝑔𝑥 ; 𝐻𝑥 𝑥  𝑠   

  𝑠 
2+1 𝑝 

𝑑𝑠

(𝑛+1)2

1

≤  
2

𝑛
 

2+1 𝑝 

 
𝑉𝑝  𝑔𝑥 ; 𝐻𝑥 𝑥  𝑖   

  𝑖 
2+1 𝑝 

(𝑛+1)2−1

𝑖=1

 

and 

µ𝑛 𝑔𝑥 ; 𝐻𝑥 𝑥  

𝑛2
≤

𝑉𝑝 𝑔𝑥 ; 𝐻𝑥 𝑥  

𝑛2+1 𝑝 
 

moreover, 

µ  𝑔𝑥 ; 𝐻𝑥  𝑥 𝑎𝑚 𝑚   ≤ 𝑉𝑝  𝑔𝑥 ; 𝐻𝑥  𝑥 𝑎𝑚 𝑚    

The estimation given in Theorem 3.2 now immediately follows from Theorem 3.1. 

Corollary. Suppose that 𝑓 ∈ 𝑋𝑙𝑜𝑐  0, ∞  (in particular, 𝑓 ∈ 𝐵𝑉𝑙𝑜𝑐
𝑝  0, ∞ , 𝑝 ≥ 1) and that there exists a positive 

integer q such that 

lim
𝑚→∞

 
𝑎𝑚

𝑚
 

𝑞

𝜑 𝑎𝑚 ; 𝑓 = 0. 

Then at every point 𝑥 ∈ [0, ∞) at which the limits 𝑓 𝑥 + , 𝑓(𝑥−) exist we have  

lim
𝑚→∞

 𝐷𝑚 ,𝜗𝑓  𝑥 =
𝑓 𝑥 + + 𝜗𝑓(𝑥−)

𝜗 + 1
 

Obviously, the above relations hold true for every measurable function  f  bounded on [0, ∞), in particular for 

every function f of bounded p-th power variation (𝑝 ≥ 1) on the whole interval [0, ∞). 
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