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Abstract: In this paper we present an important result that a nil subnear-ring of a semiprime strictly left Goldie 

near-ring is nilpotent. It is to be noted that the essentiality of left near-ring subgroup here, arises as crucial 

from it’s feeble nature. In contrast to such a result in ring theory, the crucial role played by substructures 

already mentioned appears here with very fascinating distinctiveness. 
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I. Introduction 
Chowdhury et al [1] introduced the notions of a Goldie near-ring as well as that of a Goldie module 

[2,3] as two way generalizations of so-called Goldie ring - an exposition of A.W. Goldie through his classics,- a 

part of his thorough study of  the structure of prime rings under ascending chain conditions [10] and semiprime 

rings with maximum conditions [11]. We discussed various aspects of a Goldie near-ring and of a Goldie 

module including the near-ring of quotients and its possible descending chain condition and decomposition of 

the zero of a Goldie module [2,3], an analogous of Artin-Rees theorem [2]. Also we delve into Some Aspects of 

Artinian (Noetherian) Part of a Goldie Ring and its Topological Relevance (8) as well as Wreath Sum of Near-

rings and Near-ring Groups with Goldie structures (9)). It is easy to see that a nilpotent subring of a ring is 

necessarily nil. But converse is not true, however, we see that [12] Goldie character in a ring draw attention in 

its favor!.We here prove this interesting standard problem in a near-ring with Goldie characteristics taking into 

consideration various aspects of large or essential characters of its subalgebraic structures with proper 

justification. Moreover, in this connection, it would not be irrelevant to mention author’s another new notion, 

what may be called the notion of a nilpotent module-element or a nilpotent N-group element [7] together with a 

nil or a nilpotent submodule, or an N subgroup etc.  

 

II. Preliminaries 
For the sake of completeness we would like to begin our discussion with the definition of a right near-ring 

(N,+,.) - an algebraic structure consisting of a non-empty set N equipped with two binary operations viz., 

addition (+) and multiplication (.),where the first one makes N- a group (not necessarily abelian) and the second 

one  a semigroup with the one-way distributive law, viz. (a+b)c=ac+bc , for a,b,c εN 

For other relevant information regarding near-ring preliminaries we would like to refer Pilz [13].  

Throughout this paper N will mean a right near-ring with unity (zero symmetric) unless otherwise specified.  

 

2.1 Definitions:                                                                                                                                                             

2.1.1  An element a ε N is nilpotent if there is a positive integer t such that a
t
=0 , a

t-1≠ 
0.                                                                                     

2.1.2. A subnear-ring is nil if each element of the corresponding set is nilpotent.                                                                                                                                                      

2.1.3.  A subnear-ring  I is nilpotent  if there is a positive integer t such that I
t
=0 , I

t-1≠ 
0, (in the sense 

0..... 21 tiii , for ijεI  and 0..... 121 tiii , for some ijεI)                                                                                                                                          

Clearly, a nilpotent subnear-ring is nil but the converse is not true. For the converse, that is a nilpotent subring is 

nilpotent, we’ll deal with so called sequentially nilpotent (or s-nilpotent) notion.    

We note the following: the above situation is dealt with the following definition that would lead us to our 

expected goal.                                                                                                                                               2.1.4. 

An element a(εI) is sequentially nilpotent (s-nilpotent) if for some positive integer k, we have( Iai  ) 

0.... 21 kaaa , ( a1=a) . So if an element a (a1=a) is s-nilpotent, then for some 

Iaaaa k  ,..,,)( 21 , 0.... 21 kaaa ⇒ 0...).( 21 kaaxa and so 1xa  is s-nilpotent , i.e. any left multiple of 

a is also s-nilpotent.  

And hence we 
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Note:  a(εI)  would be not s-nilpotent if for any sequence of the type  Iaa ii  , , with (a=a1) we have 

)(0....
1

21 



k

i

ik aaaa whatever be the positive integer k]                                                                                                                                                             

2.1. 5. A sub near-ring I of N is sequentially nilpotent(s-nilpotent) if for each sequence  Iaa ii  ,  there is 

a positive integer k such that )(0....
1

2 



k

i

iki aaaa .          

Note:   

 (i) for an s-nilpotent sub near-ring I of N , each element of I is s-nilpotent.  

 (ii) if I is not s-nilpotent, then there is a sequence Iaa ii  , , for each k,  )(0....
1

21 



k

i

ik aaaa ,and                                                                                                                                               

2.1.6.   a1(εI)   has an infinite sequence if there is a sequence Iaa ii  , such that for each k,  

)(0....
1

21 



k

i

ik aaaa .      

Note:   

I is not s-nilpotent, then there is an a1 (εI)  such that a1 has an infinite sequence.    

2.1.7 For x εN the set    0|  nxNnxl   is the left annihilator of x in N.                                                                     

And this a left ideal of N. 

2.1.7(a) A near-ring is left Goldie if it satisfies the a.c.c. (ascending chain condition)on its left annihilators and it 

has no infinite direct sum of left ideals .  

2.1.7(b) N is strictly left Goldie  if it satisfies the a.c.c. on its left annihilators and it has no infinite independent 

family of  left N-subgroups . 

Example 1 : N = { o, a, b, c} is a near-ring under the operations defined by the following tables.  

 
 

Here we note that A = {0, a}, B = {0, a, b} and C = {0, a, c} are subsets of N  and BN ⊆ B, CN ⊆ C whereas 

NA⊆  A and AN ⊆ A. Thus, we define the following 

2.1.8 Definitions : A non-empty subset S of a near-ring N is  

(i) a right N-subset of N if SN ⊆ S 

(ii) a left N-subset of N if NS ⊆ S and 

(iii) an invariant subset of N if NS ⊆ S, SN⊆ S. 

 

It is clear that an invariant subset of a near-ring N is a left as well as right N-subset of N. Moreover, every left 

(right) N-subset contains the zero element of N. 

2.1.9 (i)  An ideal I of N is  strongly prime if for two non zero invariant subsets A and B , AB ⊆I  ⇒A⊆I, or 

B⊆I.   

  (ii) A near-ring is strongly prime if (0) is strongly prime.  

2.1.10. Definition : If  N is a near-ring then the group ( E, + ) is  an N-group (near-ring group) NE when there 

exists a map N × E → E, (n, e) → ne such that 

(i) (n1 + n2)e = n1e + n2e 



A note on nilpotency in a Left Goldie near-ring 

DOI: 10.9790/5728-1302033645                                          www.iosrjournals.org                                    38 | Page 

(ii) (n1n2)e = n1(n2e) 

(iii) 1. e = e, for all n1, n2 ε N, e ε E. 

In what follows, E will stand for the near-ring group NE. 

Clearly near-ring N can always be considered as an N- group. We shall write NN to denote N as an N-group. 

 Example 2 (Ex.1.18(c) [11] ) : Let G be an additive group and M(G) be a (right) near-ring(of all maps from G 

to G)  then G is an M(G) – group when  

M(G) × G → G such that 

 (f, x) → f(x), for xε G, f ε M(G). 

 Example3 : Every left module M over a ring R is an R-group over the near-ring R. 

2.1.11.  Properties : If E is an N-group then  

(i) 0. e = 0 (the first 0 is the zero element of N and the second 0 is the zero element of E). 

(ii) (– n)e = –ne and 

(iii) (n–n1) e = ne – n1e, for all e ε E; n, n1 ε N  

2.1.12. Definitions: An N-group E is said to be an N-group with acc on annihilators if any ascending chain 

Ann(M1)⊂Ann(M2) ⊂Ann(M3)⊂  ... of annihilators of subsets M1, M2, M3, ... of E stops after a finite steps. 

Similarly, we  define an N-group E with dcc on annihilators for any  descending chain of the type 

Ann(M1)⊃Ann(M2) ⊃Ann(M3) ⊃  ...  .   

2.2. Essential ideals and essential N-subgroups. 

2.2.1. Definitions: Let A and B be two N-subgroups of E such that A⊆B then A is an essential N-subgroup of B 

(denoted A⊆eB) if any N-subgroup C(≠0) of B has non-zero intersection with A. when A⊆ e B, we say B is an 

essential extension of A in E. Here an essential left N-subgroup A of N will mean an essential N-subgroup of NN. 

An ideal M of E is an essential ideal of E (denoted M⊆ e E) if for any ideal C (≠0) of E,  

M ∩ C ≠(0). If a left ideal A of N is an essential ideal of NN then A is an essential left ideal of N. 

A left N-subgroup of N is weakly essential if for any non zero left ideal I of N, A ∩I ≠0  

An essential left ideal I is weakly essential as a left N-subgroup. It is to be noted that an essential left N-

subgroup A of N is also weakly essential . That the converse is not true is shown in example below.  

 Example4. (H(37), Page 341-342 [11]) : Consider the near-ring S
3 

= {0, a, b, c, x, y) with operation addition 

[defined in table 1.3 (i)] and multiplication defined by the following table. 

 

N = {0, a, b, c, x, y} is a near–ring under the operations defined by the following tables. 

 
 

Here non-zero left S
3

-subgroups are {0, a}, (0, b}, {0, c}, {0, x, y) and S
3

. {0, x, y) and S
3

 are the only non-

zero left ideals. This shows that the S
3

-subgroup {0, x, y) is weekly essential but not an essential left S
3

-

subgroup.  

However, the following example is sufficient to show the existence of near-ring where every weakly essential 

left N-subgroup is also essential. 

3.2.16. Example (J(91), Page 343[11]) : 

N = {0, 1, 2, 3, 4, 5, 6, 7} is a near-ring under addition modulo 8 and multiplication defined by the following 

table 
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Here {0, 4} and {0, 2, 4, 6} are the left N-subgroup of N whereas the second one is the only non-zero proper left 

ideal of N. Thus each of them is weakly essential and they are essential too. 

 

 Example5. ( J (22), Page- 342 - 343 [11] ) : 

 

 The group N = {0,1,2,3,4,5,6,7} under addition modulo 8 is an N-group w.r.t. the multiplication defined by the 

following table 

 
 

N-group NN has non-trivial N-subgroups {0, 4} and {0,2,4,6}. Hence each of them has non-zero intersection 

with other N-subgroups of NN and so each of them is an essential N-subgroup of NN. Also{0, 4} ⊆ e {0, 2, 4, 

6} which shows the validity of the following lemma 2.2.2. 

2.2.2. Lemma : If A, B, C are N-subgroup of E such that A⊆B⊆C then A ⊆e B⊆ e C if and only if A ⊆ e C. 

 Proof : Let P be a non-zero N-subgroup of E such that P⊆C. Since B ⊆e C, B ∩ P ≠ (0). 

Also,  B∩P⊆B and A ⊆e B. So  (B∩P) ∩ A≠ (0). 

Therefore, P∩A ⊆(B∩P) ∩ A ≠(0). 

Hence A⊆eC 

Conversely, let A⊆eC. Then A∩B ≠(0), (for B ⊆C). 

If M is a non-zero N-subgroup of E such that M⊆ B ⊆ C then, M is a non zero N-subgroup of C. Since A⊆ e C,  

it follows that A ∩ M ≠(0) which gives A ⊆e B. 

Again, if H is any non-zero N-subgroup of E with H ⊆C⊆ E then A ∩ H ≠(0), (for A ⊆e C). 

So, A⊆ B  (0) ≠ A ◠ H ⊆ B ∩ H. 

Thus, B⊆ e C. // 

2.2.3. Lemma  : Let A and B be two N-subgroups of E such that B ⊆e A. If a (≠0)  A then there exists an 

essential N-subgroup L of NN such that La ≠ (0). 
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Proof : Write L = {n  N  naB}. Clearly, La⊆ B ⊆ A and Na ⊆ A as A is an N-subgroup of E, aA. 

Since 1N,  Na ≠(0). Again, B ⊆e A gives B∩  Na ≠(0). 

Let (0≠ ) b B ∩ Na. Then B = na (say) for nN. Thus b = na B which gives n L. Hence b = na La. 

 Therefore, La ≠ (0) (for b ≠ 0). 

 Now, let x,y L then xa, ya B. 

 So, (x – y) a = xa – ya B. 

  x – y L.                                     .... (i) 

Also, since B is an N-group of E, for n N, (nx) a = n(xa)B (for xa B) 

Therefore, nx L.                                  .... (ii)  

Thus L is an N-subgroup of NN. 

Again, for an N-subgroup I ( ≠0) of NN, 

  Ia = (0) 

   Ia ⊆ B 

   I ⊆ L 

   L ∩ I = I ≠ (0) 

and, Ia ≠(0) 

   B ∩ Ia ≠ (0), (for Ia is an N-subgroup of  

  A and B⊆ e A). 

Now, let (≠)  x  B ∩ Ia then x = b = a for 

b   B,   I. 

 Then a B 

   L, (by choice of L) 

     L ∩ I. 

Now,  = 0  x = 0, a contradiction. 

So, L∩ I ≠ (0).  

Therefore, L is an essential N-subgroup of NN such that La ⊆ B and La ≠ (0).// 

 

In an N-group E, the singular N-subset of E viz., the subset Z1(E) = {uE Lu = (0), for some essential N-

subgroup L of NN}  plays an important role in our discussion. 

N-group E is N-non-singular if  Z1(E) =0 and N is left non-singular if  Z1(N) =0. it is to be noted that Z1(E) is 

an N-subset of E  and Z1(N) is an invariant subset of N   

2.2.4. Lemma : For an xE, Ann(x) is an essential N-subgroup of NN if and only if  

x   Z1(E).[easy] 

2.2.5. Lemma  : If I is an N-subgroup of NN and for B⊆ E, Ann(B) ⊆e I and  

Z1 (E) = (0) then Ann(B) = I. 

Proof : Let (0≠ ) x   I then by 2.2.3, there exists an essential N-subgroup L of NN such that Lx ≠ (0), Lx 

⊆Ann (B). 

So, (Lx) rE(Ann(B)) ⊆ Ann(B) rE(Ann(B)) = (0)  

  L(x rE (Ann(B)) = (0)  (x rE (Ann(B)) = (0) [for Z1 (E) = (0)] 

  x   Ann (rE (Ann(B))) = Ann(B) 

  I⊆ Ann (B) 

Now considering the hypothesis, we get Ann(B) =  I. // 

. 

2.2.6. Lemma  : Let E be with acc on annihilators such that E is N-non-singular (i.e.Z1(E) = (0)). If N has no 

infinite direct sum of left ideals and every essential left ideal of N is an essential N-subgroup of NN then N 

satisfies the dcc on annihilators of subsets of E. 

Proof : Let X and Y be subsets of E such that B = Ann(X) and C = Ann(Y). Thus, B,C are N-subgroups of NN . 

Now, if B ⊂ C and B is an essential N-subgroup of C then by 2.2.5, B = C as B = Ann(X). Hence B is not an 

essential N-subgroup of C. So, there exists an N-subgroup D(≠ 0) of NN such that D ⊆ C, B ∩ D = (0). 



A note on nilpotency in a Left Goldie near-ring 

DOI: 10.9790/5728-1302033645                                          www.iosrjournals.org                                    41 | Page 

Let A1⊃A2⊃A3⊃  ... be a strictly descending chain of annihilators of subsets of E. Since A1⊃Ai+1, by the above 

argument, there exists an N-subgroup Pi (≠0) of NN such that Pi ⊆Ai and Ai+1 ∩  Pi = (0)                                                        

.......... (i) 

Consider M = {Xm}, the family of all left ideals of N such that Ai+1 ∩ Xm = (0). The union of each chain of M is 

again a left ideal in M and satisfies the condition Ai+1 ∩ Xm = (0). Thus, by Zorn’s Lemma ,M has a maximal 

element Xi (say) such that Ai+1∩Xi = (0)   

                                                                  .............. (ii) 

 Again, Ai+1 and Xi  being left ideals of N, Ai+1 + Xi  is also a left ideal of N. 

Now, let V be a left ideal of N such that (Ai+1+ Xi) ∩ V = (0). 

Now, ai+1 = xi + v, for some ai+1  Ai+1, xi  Xi, v  V. 

   v = – xi + ai+1  Xi + Ai+1 ⊆ Ai+1 + xi 

   v   (Ai+1 + Xi) ∩ V = (0) 

   ai+1 = xi   Ai+1 ∩ Xi = (0) 

   Ai+1 ∩ (Xi + V) = (0) 

Since Xi is maximal with condition Ai+1 ∩ Xi = (0), it follows that Xi + V = Xi as Xi ⊆ Xi + V. This gives V ⊆ 

Xi and so V = V ∩ Xi  ⊆V∩ (Ai+1 + Xi) = (0). 

Thus, Ai+1 + Xi is an essential left ideal of N such that Ai+1 ∩ Xi = (0) and the assumed hypothesis gives that 

Ai+1 + Xi is an essential N-subgroup of NN. And so for Pi, chosen above, Pi  ∩ (Ai+1 + Xi) ≠ (0). 

Suppose,   ( Pi ) = ai+1 + xi, for i  Pi, ai+1  Ai+1, xi  Xi.  

Then, xi = – ai+1 + Pi ⊆ Ai+1 + Pi ⊆Ai + Pi, for Ai+1⊆Ai. So, xi   Ai (for Pi ⊆Ai) which gives xi   Ai 

∩ Xi. 

Now, if xi = 0 then Pi   Ai+1 which gives Pi   Ai+1 . Pi = (0). So, Pi = 0. 

Therefore, Pi ∩ (Ai+1 + Xi) = (0) and this is a contradiction. Hence xi ≠0 and therefore  

Ai  ∩Xi ≠ (0). 

Let Ci = Ai ∩ Xi, a non-zero left ideal of N. 

Then, Ci ∩ Ai+1 = (Ai ∩ Xi) ∩ Ai+1 

  = (Ai+1 ∩ Ai) ∩ Xi 

  = Ai+1 ∩ Xi,  (as Ai ⊃Ai+1) 

  = (0),     [by (ii)] 

Therefore, when Ai ⊃ Ai+1, we get a non-zero ideal Ci = Ai ∩ Xi such that Ci ∩ Ai+1 = (0)                                   

                                                                                   .......(iii)  

Now, for different values of i, we get an infinite family {C1, C2, C3, ...} of non-zero left ideals of N such that 

(iii) holds. 

Also, Ci = Ai  ∩Xi ⊆ Ai                                     .........(iv)        

Therefore, C1 ∩ C2  ⊆C1  ∩A2 = (0), [by (iii) and (iv)] 

Again, C1 ∩ (C2 + C3) ⊆ C1 ∩ (A2 + A3), [by (iv)]   

 ⊆ C1 ∩ A2, as A2 ⊃ A3 

 = (0),         [by (iii)] 

  C1  ∩ (C2 + C3) = (0)                 ...........(v) 

And if x   C2 ∩ (C1 + C3) then 

 x = c2 = c1 + c3, for ci   Ci, i = 1,2,3. 

  c1 = c2 – c3   C2 + C3 

So, c1  C2 ∩ (C2 + C3) = (0),      [by (v)] 

   c1 = 0 and c2 = c3  C3. 

   C2   C2 ∩ C3  ⊆C2  ∩A3 = (0),  

    [by (iii) and (iv)] 

   c2 = 0 and hence C2 ∩ (C1 + C3) = (0). 

Similarly, C3 ∩ (C1 + C2) = (0). Thus C1 ⊕ C2 ⊕ C3 is a direct sum of non-zero left ideals of N. 
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Proceeding in this way, we find an infinite direct sum   C1 ⊕C2 ⊕C3⊕...... of nonzero left ideals of N. This 

goes against our hypotheses and hence there exists a t   Z
+
 such that At = At+1 = At+2 = ... Therefore, N 

satisfies the dcc on annihilators of subset of E. // 

2.2.7. Lemma : Z
1

(N) (= {x ЄN | Ax = (0), for some essential left N-subgroup A of N}) is an invariant subset of 

N. 

Proof : Let xЄ Z
1

(N). Then Ax = (0), for some essential left N-subgroup A of N. So, by      2.2.3, for any n 

(≠0)ЄN there exists an essential left N-subgroup L of N such that  

Ln ⊆A, Ln ≠(0). 

This gives, L(nx) = (Ln) x ⊆Ax = (0) 

 nxЄ  Z
1

(N). 

And, A (xn) = (Ax)n = (0) 

 xnЄ Z
1

(N) // 

2.2.8. Lemma  : A strongly semiprime near-ring N with acc on left annihilators has no non-zero nil left N-

subset of N. 

Proof : Let A be any non-zero left N-subset of N. Since N satisfies the acc on left annihilators, we can choose a  

(≠0) ЄA with 1(a) as large as possible. 

Now, aNa = (0) 

⇒ (Na)
2 

= (Na)(Na) = N(aNa) = (0) 

And Na being a non-zero left N-subset of N(1ЄN,a≠ 0), we meet a contradiction to 3.2.5.[N being strongly semi 

prime has no non-zero nilpotent left or right  N-subset] 

So, aNa ≠(0). 

Let xЄ N be such that axa≠ 0 

Now, xa ≠0 (otherwise axa = 0) 

 x ≠1(a) 

Again, zЄ1(a)⇒ za = 0 

   ⇒ z(axa) = (za)xa = 0 

   ⇒ zЄ 1(axa) 

    1(a)Є 1 (axa) 

But 1(a) being maximal, 1(axa) = 1(a) 

So, x
2 ∉l(axa) 

  ⇒ x (axa) = 0 

  ⇒ (xa)
2 

=0  

  ⇒ (xax)a= 0 

   ⇒xax1(a) = 1(axa) 

   ⇒(xax)(xax)= 0 

  ⇒ (xa)
3  

≠0 and so on. 

Thus, (xa)
t
 ≠0, for any tЄZ

+
. 

Therefore, A possesses a non-zero non nilpotent element xa. So A is not nill. 

Hence N does not have any non-zero nil left N-subset of N.  / 

2.2.9. Lemma : If N is a strongly semiprime near-ring with acc of left annihilators then N is left non-singular. 

Proof : Being N acc with acc on left annihilators,  Z
1

(N) is a nil invariant subset of N and by above it follows 

that Z
1

(N) = 0. Thus the result follows. 

 Again N being strictly left Goldie, it is left Goldie. So it has no infinite direct sum of left ideals. And therefore 

as a special case of 2.2.6, we get the following ( [5], Nat, Acad,Sci. Letters.) 

2.2.10. Theorem : If in a strongly semiprime strictly left Goldie near-ring N, every weakly essential left N-

subgroup of N is also essential, then N satisfies the dcc on left annihilators.  

And now we get the following effective result for our purpose. 
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2.2.11 Corollary: In A strongly semiprime strictly left Goldie near-ring N, if every weakly essential left N-

subgroup of N is also essential, then N satisfies the a.c.c. on left as well as  right annihilators. 

3. Main Result 

                                                                                                                                                       3.1. Theorem                                                                                                                                               
Suppose N satisfies the acc on left annihilators and I is a nil subring of N and I  is not left s-nilpotent. Then 

there exists a sequence Naa ii  , such that 0iNa and the family }{ iNa is an independent family, or 

the sum ...21  NaNa is direct. 

Proof: It is assumed that I is not  s-nilpotent. Then there is an element Iy such that y has an infinite 

chain Iyy ii  , with  kyyyyy kk  ,0.... 121 . We now consider the following 

We have    y1 ε  I  such that   yy1≠0, 

                   y2 ε I    such that  yy1y2≠0 

 y3 ε I    such that  yy1y2y3≠0 

                              ……. And so on. 

So we clearly have the following possibilities 

There exists x ε I  such that  yx≠0 ( for example y1 is such an element, and  we may have more than one such 

element!)  

There exists x ε I  N such that  yy1x≠0 ( for example y2 is such an element, and  we may have more than one 

such element! )  

…..          etc 

Thus it is possible to define a sequence y1, y2, ..of N such that  

 yxIxK |1  has an infinite chain} 

 xyyIxK 12 | has an infinite chain} 

 xyyyIxK 213 | has an infinite chain} 

In general  

 yxyyyyIxK nnn 1221 ..|  has an infinite chain} 

As N satisfies the acc on left annihilators, now we consider the maximal element l(yn) with ynεKn . 

 We now claim     

For each i , l(yi) =l(yi.yi+1…yi+j)  ( for all j≥1) 

In particular note that , l(y1) =l(y1y2y3) ,(i=1, j=2)   

As xε l(y1)⇒  xy1=0, clearly xy1y2y3=0 which gives  

easily, xε l(y1y2y3) i.e. ⇒l(y1)⊆ l(y1y2y3)                 ----(*) 

Now y1ε K1 with l(y1) maximum 

y2ε K2 [= {xε I  |yy1x has an infinite chain}] with l(y2) maximum 

y3ε K3  [= {xε I  |yy1y2x has an infinite chain}]  with l(y3) maximum 

so, yy1y2y3 has an infinite chain. And  

i.e., x(= y1y2y3)y i.e., xy has an infinite chain ( here, x εN ) 

so, x εK1 i.e., y1y2y3εK1 

And therefore, l(y1y2y3) ⊆l(y1)                                   –(**) 

[ using the maximality of l(y1)] 

Now *  gives and ** give  

l(y1y2y3) = l(y1)                                                     …..(***) 

We now set  

a1=yy1, a2=yy1y2, a3=yy1y2y3,  etc.  

In general, an=yy1…yn-1yn  

Suppose, a1y1≠0, then a1y1y2≠0 , for if a1y1y2=0, then a1ε l(y1y2) ⇒y1a1=0 [ as l(y1)= l(y1y2)], hence, a1 y1=0. 

Similarly, we have, a1y1y2y3≠0 for if a1y1y2y3=0 ⇒ a1ε l(y1y2y3)= l(y1) 
Claim an y1=0 

Suppose an y1 ≠0, for some n. 

we now consider the case for any k.  
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 an y1y2  ..yk-1yk≠0, for l(y1)= l(y1y2  ..yk-1yk) 

 an y1y2  ..yk-1yk =0 ⇒anε l(y1y2  ..yk-1yk)= l(y1)  

⇒  an y1=0, a contradiction 

so, any1y2…yk-1yk≠0, i.e. (yy1y2… yn) (y1y2…yk-1yk) ≠0 

⇒(yy1y2 … yny1) (y2y3…. yk) ≠0 

And this gives y2 y3 ….forms a chain for yy1y2 … yny1= y ( y1y2 …yny1) =yx, xεN 

∴x= y1y2…yn y1εK1(⊆I  ) and since, in K1 ,l(y1) is maximum,  

 l(y1 …yn…y1) ⊆ l(y1) and if αε l(y1), α y1=0⇒ α y1yn…y1=0 

⇒ αε l(y1yn…y1)⇒ l(y1)⊆ l(y1yn…y1) ⇒ l(y1)= l(y1yn…y1) ….(α) 

since, y1, y2,…,yn ε I  , yn..y2.y1ε  I  ,  

∵ yn..y2.y1ε  I (nil), y1..y2.yn is nilpotent (since, y1..y2.ynεI-nil), say (y1..y2.yn)
2
=0  

(note, here nilpotency of I is used!!) 

and therefore, (y1y2…yn)
 
(y1y2…yn) =0⇒ (y1y2…yn)

 
(y1y2…yn)y1 =0                                        

 ⇒(y1y2…yn ) (y1y2…yny1)=0⇒(y1y2…yn )ε l(y1yn…y1)= l(y1) [by (α)]                                       

     ⇒ y1y2…yn y1=0⇒ yy1y2…yn y1=0⇒ (yy1y2…yn )y1=0⇒an y1=0.                                                                      

Similarly, for all i, an yi=0, for all n≥i.                                                                                          

    Now we show that 

(i) all Nai≠0  for 1 Є N 

(ii)  to show that  the sum Na1+Na2+… is direct or 

 the family Na1,Na2,   is an independent family. 

 We first show that Na1∩ Na2=0.  

That is if n1a1= n2a2    for some n1, n2 ε N ,  then n1a1= n2a2  =0 

Now we note that y ε I  is such that y has an infinite sequence and choose l(y) to be  maximum. And y1y is such 

that y1y has an infinite chain with l(y1) is maximum,                               

  similarly , yy1y2 is such that yy1y2 has an infinite chain with l(y2) is maximum,  

And therefore, l(yy1y2)⊆ l(y) … 

But clearly we have, l(y) ⊆ l(yy1y2)…… 

Therefore, l(y) = l(yy1y2). And hence,                                                                                          

   n1a1= n2 a2 ⇒  n1a1y2= n2a2 y2=0 (as a2y2=0)                                                                     

  ⇒n1yy1y2=0(as a1=yy1) ⇒n1εl(yy1y2) =l(y)⇒n1y=0                                                                                      

⇒n1yy1=0⇒n1a1=0                                                                                                                             

       ⇒ i.e. n1a1= n2a2  =0, thus Na1∩ Na2=0, i.e. Na1+ Na2 is direct.                                          

         Similarly, the sum Na1+ Na2+….is direct. 

Now we’ll show that 

3.2. Theorem 

If }|{ ijaS ji  then ,..2,1),( iSr i  form a strictly ascending chain of right annihilators. 

Proof: Here,    ,...,,1| 3211 aaaaaS jj  ,    ,...,,2| 4322 aaaaaS jj   

   ,...,,3| 5433 aaaaaS jj                                                                                                       …,                                                                                                    

   ,...,,| 21  iiijji aaaiaaS  

Now, S1x=0⇒a1x=a2x=a3x=…=0                                                                                                

  and this ⇒a2x=a3x=..=0                                                                                                           

⇒S2x=0⇒    21 SrSr  ,                                                                                     

   similarly,    21 SrSr  ⊆    ......43 SrSr                                                                                              

Again, a2 y2=0 a3 y2=a4 y2=…=0 but, a1 y2≠0 (for yy1y2≠0).                                                     
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     Hence, y2 εr(S2) and y2 ∉r(S1).  And therefore,     21 SrSr   similarly,    32 SrSr  , i.e.   

      ....321  SrSrSr                                                                                                                                                                                                                                                             

is a strictly ascending infinite chain of left annihilators.// 

 

III. Main result 
Now we  prove the main results that we are aiming for. 

3.3 Theorem:  If I is not nilpotent, then I is not s-nilpotent.                                                                    

[Note: so, if I is s-nilpotent the I is nilpotent, and if I is nil then it is s-nilpotent] 

Proof: We consider I, I 
2
, I 

3
, …and clearly, we have  

I ⊇ I 
2⊇ I 

3 ⊇ …and therefore,                                                              

        ....32  IlIlIl and                                                                                                            

   by acc on left annihilators, we have an integer , say k, such that                                     

    sk IlIl )(  for all  

s≥k. 

So if we set K=I
k
 , then    2KlKl  . And K

2≠0( for if K
2=0, then I appears as nilpotent, which is not true.                                                                                                                                           

And thus K 
2≠0, that gives an x1ε K such that x1K≠0.                                                                             

    And this gives x1K
2≠0. For if x1K

2=0,                                                                                                   

    then x1ε l(K
2
)=l(K)⇒ x1K=0, a contradiction.                                                                                                                                  

Now, x1K
2≠0⇒ x2ε K such that x2x1K≠0. And so on.                                                                    

                                                                                                                                       

  Thus we get x3, x4…  are such that  each of  x1, x1x2, x1x2x3, …is non zero .                                      

 Therefore, the sequence  nx  is such that                                                                                              

 each xiεI and   ….xk..x2x1≠0 .                                                                                                                                                                                  

Hence, I is not s-nilpotent.// 

3.4 Theorem: If N is a strongly semiprime strictly left Goldie near-ring where every weakly essential left N-

subgroup of N is also essential, then the each nil-subring of N is nilpotent. 

Proof: Let I be a nil subnear-ring of N. (to prove that I is nilpotent!).                                           

 Suppose,  I is not nilpotent. Then by above I is not s-nilpotent.                                                       

Then we have an infinite sequence a1,a2,a3,…in N such that each Nai is non zero and  their sum is direct, and  the 

chain  

      ....321  SrSrSr is a strictly infinite ascending chain of right annihilators. Now as N is with the 

acc on right annihilators ( 2.2.11 Corollary) such a sequence is not possible. Thus, I must be nilpotent. 
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