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I. Introduction and Definitions 

In this paper we use the standard definitions and notations of the value distribution theory [2]. Let 𝑓 

and 𝑔 be two nonconstant  meromorphic functions and 𝑎 ∈ ℂ ∪ {∞}. We say that 𝑓 and 𝑔 share the value 𝑎 CM 

(counting multiplicities) if the zeros of 𝑓 − 𝑎 and 𝑔 − 𝑎 coincide in locations and multiplicities. If we do not 

consider the multiplicities, we say that 𝑓 and 𝑔 share the value 𝑎IM(ignoring multiplicities). We say that 𝑓 and 

𝑔 share a function𝑕 CM or IM if and only if 𝑓 − 𝑕 and 𝑔 − 𝑕 share 0 CM or IM. For 𝑎 ∈ ℂ ∪  ∞ , we denote by 

𝑁(𝑟, 𝑎;  𝑓) the counting function of all the 𝑎-points of 𝑓 and by 𝑁 (𝑟, 𝑎;  𝑓) the corresponding one for which the 

multiplicity is not counted. For a positive integer 𝑘, we denote by 𝑁𝑘(𝑟, 𝑎;  𝑓) the counting function of 𝑎-points 

of 𝑓, where an 𝑎-point of multiplicity 𝑚 is counted 𝑚 times if and only if 𝑚 ≤ 𝑘 and 𝑘 times if and only if 

𝑚 > 𝑘.We denote by 𝑆(𝑟, 𝑓) any quantity satisfying 𝑆(𝑟, 𝑓)  =  𝑜{𝑇 𝑟, 𝑓 } as 𝑟 → ∞ possibly outside a set of 

finite linear measure. If 𝑇(𝑟, 𝛼)  =  𝑆 𝑟, 𝑓  for a meromorphic function𝛼 = 𝛼 𝑧 , then 𝛼is called small function 

of 𝑓. 

Definition 1.1. [3]Let 𝑘 be a nonnegative integer or infinity. For 𝑎 ∈ ℂ ∪ {∞}, we denote by 𝐸𝑘(𝑎;  𝑓) the set of 

all 𝑎-points of 𝑓 where an 𝑎-point of multiplicity 𝑚 is counted 𝑚 times if 𝑚 ≤ 𝑘 and 𝑘 + 1 times if 𝑚 > 𝑘. If 
𝐸𝑘(𝑎;  𝑓)  =  𝐸𝑘(𝑎;  𝑔), we say that 𝑓 and 𝑔 share the value 𝑎 with weight 𝑘. 

The definition implies that if𝑓 and 𝑔 share a value 𝑎 with weight 𝑘 then 𝑧0 is a zero of 𝑓 − 𝑎 with multiplicity 

𝑚(≤ 𝑘) if and only if it is a zero of 𝑔 − 𝑎 with multiplicity𝑚(≤ 𝑘) and 𝑧0 is a zero of 𝑓 − 𝑎 with multiplicity 

m(> k) if and only if it is a zero of 𝑔 − 𝑎 with multiplicity 𝑛(> 𝑘), where 𝑚 is not necessarily equal to n. 

We write 𝑓 and 𝑔 share (𝑎, 𝑘) to mean that 𝑓 and 𝑔 share the value 𝑎 with weight 𝑘. Clearly if 𝑓 and 𝑔 share 

(𝑎, 𝑘) then 𝑓 and 𝑔 share (𝑎, 𝑝) for all integers𝑝, 0 ≤ 𝑝 < 𝑘. Also we note that 𝑓 and 𝑔 share a value 𝑎 IM or 

CM if and only if 𝑓 and 𝑔 share (𝑎, 0) or (𝑎, ∞) respectively. 

If 𝛼 is a small function of 𝑓 and 𝑔, then 𝑓 and 𝑔 share 𝛼 with weight 𝑘 means that 𝑓 − 𝛼 and 𝑔 − 𝛼 share the 

value 0 with weight 𝑘. 

In 1996 Fang and Hua [4] proved the following theorem: 

Theorem A. [4]Let 𝑓 and 𝑔 be two nonconstant entire functions. Also let 𝑛 ≥ 6 be a positive integer. If 𝑓𝑛𝑓′ 
and 𝑔𝑛𝑔′ share the value 1 CM, then one of the following holds 

(i) 𝑓(𝑧)  =  𝑐1𝑒
𝑐𝑧 ; 𝑔(𝑧)  = 𝑐2𝑒

−𝑐𝑧 ; where 𝑐1, 𝑐2 and 𝑐 are three constants satisfying (𝑐1𝑐2)𝑛+1𝑐2 = −1. 
(ii) 𝑓 =  𝑘𝑔for a constant 𝑘 such that 𝑘𝑛+1 =  1. 

In 2001, M. L. Fang and W. Hong [5] obtained the following result. 

Theorem B. [5]Let 𝑓 and 𝑔 be two transcendental entire functions, 𝑛 ≥ 11 an integer. If 𝑓𝑛(𝑓 − 1)𝑓′ and 

𝑔𝑛(𝑔 − 1)𝑔′ share the value 1 CM,then𝑓 ≡ 𝑔. 
In 2013, S. S. Bhoosnurmath and V. L. Pujari [6] obtained the following result. 

Theorem C. [6]Let𝑓 and 𝑔 be two nonconstant entire functions, 𝑛 ≥ 7 an integer. If 𝑓𝑛(𝑓 − 1)𝑓′  and 𝑔𝑛(𝑔 −
1)𝑔′ share 𝑧 CM, then 𝑓 ≡ 𝑔. 
Recently H. P. Waghamore and S. Anand [1] proved the following theorem: 

Theorem D. [1]Let 𝑓 and 𝑔 be two nonconstant entire functions and 𝑛, 𝑚 be positive integers such that 

𝑛 ≥ 𝑚 +  6. If 𝑓𝑛(𝑓 − 1)𝑚𝑓′ and 𝑔𝑛(𝑔 − 1)𝑚𝑔′ share 𝑧 CM, then 𝑓 ≡ 𝑔. 
Since 

𝑓𝑛 𝑓 − 1 𝑚𝑓 ′ =  
1

𝑛 + 1
 𝑓𝑛+1 ′ 𝑓 − 1 𝑚             

=  𝑓𝑛+1  
𝐶𝑚

𝑛

𝑛 + 𝑚 + 1
𝑓𝑚 −

𝐶𝑚−1
𝑛

𝑛 + 𝑚
𝑓𝑚−1  + ⋯ +  

𝐶0
𝑛

𝑛 + 1
 −1 𝑚  

′

. 
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Therefore it is natural to consider the uniqueness of meromorphic functions concerning more general kind 

differential polynomial, such as [𝑓𝑛𝐿(𝑓)](𝑘), where 

𝐿 𝑧 = 𝛼𝑚𝑧𝑚 +  𝛼𝑚−1𝑧
𝑚−1 + ⋯ + 𝛼0 ………  1.1  

and𝛼𝑚 ≠  0, 𝛼𝑚−1, 𝛼𝑚−2 , … , 𝛼0 ≠ 0  are complex constants. 

In this paper we prove the following result 

Theorem 1.1.Let 𝑓 and 𝑔 be two transcendental entire functions, 𝑛 ≥ 1, 𝑚 ≥ 1, k≥ 0, be three integers such 

that 𝑛 >  2𝑘 +  𝑚 +  4. If [𝑓𝑛𝐿(𝑓)](𝑘) and [𝑔𝑛𝐿(𝑔)](𝑘)share (𝑧, 2), where 𝐿(𝑧) is defined as in (1.1), then one 

of the following cases holds: 

(i) 𝑓 =  𝑒𝛽1and𝑔 =  𝑒𝛽2  ; where 𝛽1 and 𝛽2 are nonconstant entire functions. 

(ii) 𝑓 =  𝑡𝑔 for a constant 𝑡 such that 𝑡𝑝  =  1, where 𝑝 =  𝑛 + 𝑚 − 𝑖, 𝛼𝑚−𝑖 ≠ 0    for some 𝑖 =  0, 1, . . . .,
𝑚. 

(iii) 𝑓 and 𝑔 satisfy algebraic euation𝑄(𝑥1 , 𝑥2)  =  0, where 

𝑄 𝑥1, 𝑥2 =  𝑥1
𝑛 𝛼𝑚𝑥1

𝑚 + 𝛼𝑚−1𝑥1
𝑚−1 + ⋯ + 𝛼0 − 𝑥2

𝑛 𝛼𝑚𝑥2
𝑚 +  𝛼𝑚−1𝑥2

𝑚−1 + ⋯ +  𝛼0  
 

II. Lemmas 

In this section we present some lemmas which are required in the sequel. 

Lemma 2.1. [7] Let 𝑓 be a nonconstant meromorphic function and let  𝛼𝑙 ≠  0, 𝛼𝑙−1, 𝛼𝑙−2 , … , 𝛼0   be small 

functions with respect to 𝑓. Then 

𝑇 𝑟, 𝛼𝑙𝑓
𝑙  +  𝛼𝑙−1𝑓

𝑙−1  + ⋯ + 𝛼0 =  𝑙𝑇 𝑟, 𝑓 +  𝑆 𝑟;  𝑓 . 
Lemma 2.2. [3] Let 𝑓 and 𝑔 be two nonconstant meromorphic functions sharing (1, 2).Then one of the 

following cases holds: 

(i) 𝑓 ≡ 𝑔. 
(ii) 𝑇(𝑟) ≤ 𝑁2(𝑟, 0;  𝑓)  +  𝑁2(𝑟, 0;  𝑔)  + 𝑁2(𝑟, ∞;  𝑓)  +  𝑁2(𝑟, ∞;  𝑔)  +  𝑆(𝑟) 

(iii) 𝑓𝑔 ≡ 1, 
where𝑇 𝑟 = max{ 𝑇 𝑟, 𝑓 , 𝑇(𝑟, 𝑔)} and 𝑆 𝑟 =  𝑜 𝑇 𝑟  . 
Lemma 2.3. [8] Let 𝑓 be a nonconstant meromorphic function and 𝑘 be a positive integer. Also let 𝑐 be a 

nonzero finite complex number. Then 

𝑇 𝑟, 𝑓 ≤ 𝑁𝑘+1 𝑟, 0;  𝑓 + 𝑁  𝑟, 0; 𝑓 𝑘 − 𝑐 +  𝑁  𝑟, ∞;  𝑓 − 𝑁0 𝑟, 0; 𝑓𝑘+1 +  𝑆 𝑟, 𝑓 ,  

where𝑁0 𝑟, 0; 𝑓𝑘+1  denotes the counting function of the zeros of 𝑓(𝑘+1) which are not zeros of 𝑓(𝑓 𝑘 − 𝑐). 
Lemma 2.4. [9] Let 𝑓 be a nonconstant meromorphic function and 𝑝, 𝑘 be two positive integers. Then 

𝑁𝑝 𝑟, 0; 𝑓 𝑘  ≤ 𝑇 𝑟, 𝑓 𝑘  − 𝑇(𝑟, 𝑓) + 𝑁𝑝+𝑘 𝑟, 0; 𝑓 +  𝑆 𝑟; 𝑓 , 

and 

𝑁𝑝 𝑟, 0; 𝑓 𝑘  ≤ 𝑁𝑝+𝑘 𝑟, 0; 𝑓 + 𝑘𝑁  𝑟, ∞; 𝑓 +  𝑆 𝑟; 𝑓 . 

Lemma 2.5. Let 𝑓 and 𝑔 be two nonconstant entire functions. Also let 𝐹 = [𝑓𝑛𝐿(𝑓)](𝑘) and 𝐺 =  [𝑔𝑛𝐿(𝑔)](𝑘),   
where 𝐿(𝑧) is defined as in (1.1). If there exists three nonzero constants 𝜆1 , 𝜆2, 𝜆3 , such that 𝜆1𝐹 +  𝜆2𝐺 =  𝜆3 

then 𝑛 ≤ 2𝑘 +  𝑚 +  2. 
Proof. Since 𝑓 and 𝑔 are entire functions therefore by Lemma 2.1, Lemma 2.3 and Lemma 2.4 we have 

 𝑛 +  𝑚 𝑇 𝑟, 𝑓 ≤ 𝑁𝑘+1 𝑟, 0; 𝑓𝑛𝐿 𝑓  +  𝑁 (𝑟, 0;  𝐹 −
𝜆3

𝜆1

) +  𝑆(𝑟, 𝑓) 

≤ 𝑁𝑘+1 𝑟, 0; 𝑓𝑛𝐿 𝑓  + 𝑁  𝑟, 0; 𝐺 +  𝑆 𝑟, 𝑓  

≤ 𝑁𝑘+1 𝑟, 0; 𝑓𝑛𝐿 𝑓  +  𝑁𝑘+1 𝑟, 0; 𝑔𝑛𝐿 𝑔  + 𝑘𝑁  𝑟, 0; 𝑔𝑛𝐿 𝑔   +  𝑆(𝑟, 𝑓)  +  𝑆(𝑟, 𝑔) 

≤ 𝑁𝑘+1 𝑟, 0; 𝑓𝑛𝐿 𝑓  +  𝑁𝑘+1 𝑟, 0; 𝑔𝑛𝐿 𝑔  +  𝑆(𝑟, 𝑓)  +  𝑆(𝑟, 𝑔) 

≤  𝑘 +  𝑚 +  1 𝑇 𝑟, 𝑓 +   𝑘 +  𝑚 +  1 𝑇 𝑟, 𝑔 +  𝑆 𝑟, 𝑓 +  𝑆 𝑟, 𝑔 ………             (2.1) 
Similarly we have 

 𝑛 +  𝑚 𝑇 𝑟, 𝑓 ≤  𝑘 +  𝑚 +  1 𝑇 𝑟, 𝑔 +  𝑘 +  𝑚 +  1 𝑇 𝑟, 𝑓 +  𝑆 𝑟, 𝑓 +  𝑆 𝑟, 𝑔 ………       (2.2) 

From (2.1) and (2.2) we have 

 𝑛 − 2𝑘 − 2 − 𝑚  𝑇 𝑟, 𝑓 +  𝑇 𝑟, 𝑔  ≤ 𝑆 𝑟, 𝑓 +  𝑆 𝑟, 𝑔 ………                      (2.3) 

From (2.3) we get 𝑛 ≤ 2𝑘 +  𝑚 +  2. 
 

III. Proof of the Main Result 

Proof of Theorem 1.1: 

Let 𝐹 =  𝑓𝑛𝐿(𝑓), 𝐺 =  𝑔𝑛𝐿(𝑔), 𝐹1  =  [𝑓𝑛𝐿(𝑓)](𝑘), 𝐺1  =  [𝑔𝑛𝐿(𝑔)](𝑘), 𝐹∗  =  
𝐹

𝑧
and 𝐺∗  =  

𝐺

𝑧
.  Clearly 𝐹∗ and 

𝐺∗ share (1, 2)  and ∞ IM. Hence by Lemma 2.2one of the following holds: 

(i) 𝐹∗ ≡ 𝐺∗. 
(ii) 𝑇(𝑟) ≤ 𝑁2(𝑟, 0; 𝐹∗)  + 𝑁2(𝑟, 0; 𝐺∗)  + 𝑁2(𝑟, ∞;  𝐹∗)  +  𝑁2(𝑟, ∞;  𝐺∗)  +  𝑆(𝑟) 

(iii) 𝐹∗𝐺∗ ≡ 1, 
where𝑇 𝑟 = max{ 𝑇 𝑟, 𝐹∗ , 𝑇(𝑟, 𝐺∗)} and 𝑆 𝑟 =  𝑜 𝑇 𝑟  . 
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So we have to consider the following cases. 

Case I:𝐹∗ ≡ 𝐺∗. 
Integrating we have 

[𝑓𝑛𝐿(𝑓)](𝑘−1) ≡  𝑔𝑛𝐿 𝑔   𝑘−1 + 𝑐𝑘−1, 
where𝑐𝑘−1 is a constant. If 𝑐𝑘−1 ≠ 0, using Lemma 2.5 it follows that 𝑛 ≤  2𝑘 + 𝑚, a contradiction. Hence 

𝑐𝑘−1 = 0. Repeating the same process for 𝑘 − 1 times, we get 

𝑓𝑛𝐿 𝑓 ≡ 𝑔𝑛𝐿 𝑔 ………                        (3.1) 

From (3.1) we have 

𝑓𝑛 𝛼𝑚𝑓𝑚  +  𝛼𝑚−1𝑓
𝑚−1  + ⋯ +  𝛼0 ≡ 𝑔𝑛 𝛼𝑚𝑔𝑚  +  𝛼𝑚−1𝑔

𝑚−1  + ⋯ +  𝛼0 ………     (3.2) 

Let 𝑡 =
𝑓

𝑔
. 

If 𝑡 is a constant then substituting 𝑓 = 𝑡𝑔 in (3.2) we get 

𝛼𝑚𝑔𝑛+𝑚  𝑡𝑛+𝑚 − 1 +  𝛼𝑚−1𝑔
𝑛+𝑚−1 𝑡𝑛+𝑚−1 − 1 + ⋯ + 𝛼0𝑔

𝑛 𝑡𝑛 − 1 = 0,                  ………   (3.3) 

which implies that 𝑡𝑝 = 1, where 𝑝 = 𝑛+m-i, 𝛼𝑚−𝑖 ≠ 0 for some 𝑖 = 0,1,2, … . , 𝑚. 
Hence  𝑓 ≡ 𝑡𝑔, for a constant 𝑡, such that 𝑡𝑝 = 1, where 𝑝 = 𝑛+m-i, 𝛼𝑚−𝑖 ≠ 0 for some 𝑖 = 0,1,2, … . , 𝑚. 
If  𝑡 is not a constant, then by (3.3) 𝑓 and 𝑔 satisfy the algebraic equation 𝑄(𝑥1 , 𝑥2)  =  0, where 

𝑄 𝑥1, 𝑥2 =  𝑥1
𝑛 𝛼𝑚𝑥1

𝑚 + 𝛼𝑚−1𝑥1
𝑚−1 + ⋯ +  𝛼0 − 𝑥2

𝑛 𝛼𝑚𝑥2
𝑚 +  𝛼𝑚−1𝑥2

𝑚−1 + ⋯ +  𝛼0  
Case II: In this case we have 

𝑇 𝑟 ≤ 𝑁2 𝑟, 0; 𝐹∗ + 𝑁2 𝑟, 0; 𝐺∗ + 𝑁2 𝑟, ∞; 𝐹∗ + 𝑁2 𝑟, ∞; 𝐺∗ + 𝑆 𝑟 ,                    ………     (3.4) 

where𝑇 𝑟 = max⁡{𝑇 𝑟, 𝐹∗ , 𝑇 𝑟, 𝐺∗ } and 𝑆 𝑟 = 𝑜{𝑇(𝑟)}. Without loss of generality, we suppose that 

𝑇 𝑟, 𝑓 ≤ 𝑇 𝑟, 𝑔 , 𝑟 ∈ 𝐼, where 𝐼 is a set of finite measure. By Lemma 2.1 and Lemma 2.4 we get 

𝑁2 𝑟, 0; 𝐹1 ≤ 𝑇 𝑟, 𝐹1 −  𝑛 + 𝑚 𝑇 𝑟, 𝑓 + 𝑁2+𝑘 𝑟, 0; 𝐹 + 𝑆(𝑟, 𝐹) 
That is 

𝑁2 𝑟, 0; 𝐹1 ≤ 𝑇 𝑟, 𝐹1 − 𝑇 𝑟, 𝐹 + 𝑁2+𝑘 𝑟, 0; 𝑓𝑛𝐿 𝑓  + 𝑆 𝑟, 𝑓 ………               (3.5) 

Since 𝑓 and 𝑔 are transcendental using Lemma 2.1 we have from (3.4) 

𝑇(𝑟, 𝐹1) ≤ 𝑁2 𝑟, 0; 𝐹1 + 𝑁2 𝑟, 0; 𝐺1 + 𝑁2 𝑟, ∞; 𝐹1 + 𝑁2 𝑟, 0; 𝐺1 + 𝑆(𝑟, 𝐹1) + 𝑆(𝑟, 𝐺1) 

≤ 𝑁2 𝑟, 0; 𝐹1 + 𝑁2 𝑟, 0; 𝐺1 + 𝑆 𝑟, 𝑓 ………                                 (3.6) 

Using Lemma 2.4 from (3.5) and (3.6) we have 

 𝑛 + 𝑚 𝑇 𝑟, 𝑓 ≤ 𝑁2 𝑟, 0; 𝐺1 + 𝑁2+𝑘 𝑟, 0; 𝑓𝑛𝐿 𝑓  + 𝑆 𝑟, 𝑓  

≤ 𝑁2+𝑘 𝑟, 0; 𝑔𝑛𝐿 𝑔  + 𝑁2+𝑘 𝑟, 0; 𝑓𝑛𝐿 𝑓  + 𝑆 𝑟, 𝑓  

≤  2𝑚 + 2𝑘 + 4 𝑇 𝑟, 𝑓 + 𝑆 𝑟, 𝑓 ,                                  
which contradicts with 𝑛 > 𝑚 + 2𝑘 + 4. 

Case III:  𝐹∗𝐺∗ ≡ 1. Thatis [𝑓𝑛𝐿(𝑓)] 𝑘 [𝑔𝑛𝐿(𝑔)] 𝑘 ≡ 𝑧2. Suppose, if possible, that 𝑧0 is a zero of 𝑓 of order 𝑝, 

then 𝑧0 must be a zero of  [𝑓𝑛𝐿(𝑓)] 𝑘  of order 𝑛𝑝 − 𝑘. Since 𝑛 > 𝑘 + 2 therefore  𝑧0 must be a zero of 𝑧2 with 

the order at least 3. This is impossible. Therefore 𝑓 has no zero. Hence 𝑓 = 𝑒𝛽1 , where 𝛽1 is a nonconstant 

entire function. Similarly we can prove that 𝑔 = 𝑒𝛽2 ,where 𝛽2 is a nonconstant entire function.  

This proves the theorem. 
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