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Abstract- In this study the decay of temperature fluctuations in homogeneous turbulence before the final period 

is analyzed by using the correlation equations for fluctuating quantities at four point in the flow field. 

Throughout this work three- and four point- correlation equations are obtained. The correlation equations are 

converted into spectral form by their Fourier-transform. The set of equations are made to determinate by 

neglecting the quintuple correlations in comparison to the fourth- order correlation terms. Finally by 

integration of the energy spectrum over all wave numbers, we have obtained the decay of energy of temperature 

fluctuations for four point correlations. The obtained results have been shown by graphically at different 

Prandtl No. and at the different state of temperature. We also determined the values of the constant appear at 

the energy equation (38) by using the values of the parameters existing in it for different fluids and the effects of 

the parameters have been tried to shown by graphically. 

Keywords- Deissler’s method, Four-point correlation, Decay before the temperature fluctuations, final period. 

 

I. Introduction 

The homogeneous turbulence problem is generated by first specifying the multipoint velocity 

correlations or their spectral equivalents at an initial time. Those quantities, together with the correlation or 

spectral equations, are then used to calculate initial time derivatives of correlations or spectra. The derivatives in 

turn are used in time series to calculate the evolution of turbulence quantities with time. When the problem is 

treated in this way, the correlation equations are closed by the initial specification of the turbulence and no 

closure assumption is necessary. An exponential series which is an iterative solution of the Navier stokes 

equations gave much better results than a Taylor power series when used with the limited available initial data. 

In the past a remarkable works have been done by some researchers. Taylor introduced correlation coefficients 

between the fluctuating quantities. Taylor [1] also defined correlation coefficients based on the Eulerian view, 

which involves the value of the fluctuating-quantity at two points in space. Chandrasekhar [2] studied the 

invariant theory of isotropic turbulence in magneto-hydrodynamics. Corrsin [3] considered on spectrum of 

isotropic temperature fluctuations in isotropic turbulence.  Deissler [4, 5] developed a theory on decay of 

homogeneous turbulence for times before the final period for three and four point correlation. In the next, 

Loeffler and Deissler   [6] extended their theory for the case of decaying of temperature fluctuations in 

homogeneous turbulence. Recently, following Deissler [4, 5], Sarker and Azad [7] studied the decay of 

temperature fluctuations in homogeneous turbulence before the final period for the case of multi-point and 

multi-time in a rotating system. Azad and Sarker [8, 9, 10],  Azad et al [11] have been done their work on decay 

of temperature fluctuations in homogeneous and MHD turbulence before the final period for the case of multi-

point and multi-time considering dust particles and Coriolis force. In recent times, H. U. Molla et al [12], Azad 

and Mumtahinah [14, 16] have done their research on decaying of energy of temperature fluctuations for the 

case of dusty fluid homogeneous turbulence due to the effect of Coriolis force for three point correlations. Bkar 

PK et al [13] calculated the decay of energy of MHD turbulence for four-point correlation. Bkar PK et al [15] 

studied the homogeneous turbulence in a first-order reactant for the case of multi-point and multi-time prior to 

the final period of decay in a rotating system. The above researchers have considered two and three point 

correlation equations and solved these equations after neglecting the fourth and higher order correlation terms. 

The main purpose of the present study is to find a possible solution for the dynamics of decaying the 

temperature fluctuation in homogeneous turbulence for four point correlation. Actually homogeneous turbulence 

can be produced, for instance, by passing a fluid through a grid, various stages in the decay process then occur 

various distances downstream from the grid. Through this study, using Deissler’s (1958, 1960) method we have 

obtained the decay of temperature fluctuations in homogeneous turbulence at times before the final period for 

four- point correlation system. The decay law comes out in the following form 
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2T    denotes the total energy and t is the 

time, W, X, Y and Z are arbitrary constants determined by initial conditions. 
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II. Correlation and Spectral equations 
In order to find the four point correlations and spectral equations for single time and four point correlation we 

take the momentum equation of turbulence at the point P and the energy equation of Temperature fluctuation for 

four point correlations at PP ,  
and P   with position vectors r̂ , r ˆ  and r ˆ  

                         
      Fig-1:        Fig-2: 

Fig-1 and: Fig-2:Represent vector configuration for three and four point correlation 
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Where, TTTT  ,,,  Temperature at point PandPPP ,,  , iu  Instantaneous velocity, 

 


 
Fluid   density, pc

 
Heat capacity at constant pressure, k Thermal conductivity, 

ix Space co-ordinate, t Time,  and  repeated subscripts are summed from 1 to 3 . 

 

Multiplying equation (1) by mji TTT  (2) by mji TTu   (3) by mii TTu   (4) by jii TTu   and adding the four 

equations, we than taking the time averages.  Time averages are denoted by  .......  We get 
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Using the transformation  
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In order to convert the equation (6) into spectral form, by using the nine dimensional Fourier transforms we get 
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The tensor equation (7) can be converted to the scalar equation by contraction of the indices i and j ;      
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If we take the derivative with respect to ix  of the momentum equation (1) at p, we have  
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Multiplying equation (9) by mji TTT  ; taking time averages  
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Writting the equation (10)  in terms of the independent variables , , we have, 
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from equation (8) and (10) if we take contraction of 

the indices i and j in equation (12). 

Equations (11) and (12) are the spectral equation corresponding to the four –point correlation equation. The 

spectral equations corresponding to the three-point correlation equations by contraction of the indices i and m  

are  
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using six dimensional  Fourier transforms we get from (13)The spectral equations corresponding to the two-

point correlation equations by contraction of the indices i and j  are  
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III. Solution Neglecting Quintuple Correlations- 
As it stands the set of linear equations (8),(13),(15) are  indeterminate as it contains more unknowns than 

equations in equation (15).For this to find the solution we can neglecting all the terms on the right side of 

equation (15), the equation can be integrated between and t  to give 
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where 
1mjil    is the value of  mjil    at t= that is stationary value for small values of  k, k   and 

k   when the quintuple correlations are negligible. 

Substituting of equation (12), (14), (16) in equation (13) (R. G. Deissler, [3]  
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Integration of equation (18) with respect to  time, and in order to simplify calculations, we will assume that  
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by considering only the terms involving [b]1 and [c]1  The substituting of equation (15) in equation (13) and  

setting iikT   22   , result in  

ET
p

k

t

T

r




 22
                                          (19) 

where, 

E= 0

2 ])ˆ,ˆ()ˆ,ˆ([.2 kkkkkkik iilkiilk






 .

 ]}2))(1){((exp[ 22
1 kdkkpkkPtt

P
rr

r

  



 1

2

5

2 )ˆ.ˆ()ˆ.ˆ(
.2

kkbkkbi
p

k r




.{-

1t



Temperature Fluctuations in Homogeneous Turbulence at Four Point Correlations with Variable Prandtl No.…  

DOI: 10.9790/5728-13020493104                                         www.iosrjournals.org                                 97 | Page 

 
  












































2

2

2

21
)1(

2

)1(

21

exp
k

p

kkp

p

kp

r

r

r

r

 + kexp[ )( 2  kkpkkp rr
 2))(1( 22

]× dkdxx
k

})exp( 2
2/

0


+  



 1

2

5

2 )ˆ.ˆ()ˆ.ˆ(
.2

kkckkci
p

k r




.

  












































)1(

2

)1(

21

)(exp 2

2
2

21
r

r

r

r

p

kkp

p

kp
k

 k  (expk)×exp[ )( 2  kkpkkp rr  2))(1( 22
]

kddxx
k




})exp( 2
2/

0



                                       (20) 

 

Where T is the temperature fluctuations spectrum function, which represent contributions from various wave 

numbers (or eddy sizes) to the energy and E is the energy transfer function, which is responsible for the transfer 

of energy between wave numbers. In order to make further calculations, an assumption must be made for the 

forms of the bracketed quantities with the subscripts 0 and 1 in equation (20) which depends on the initial 

conditions. 
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The integral expression in equation (24), the quantity E  represents the transfer function arising owing to 

consideration of Temperature fluctuation field at three point correlation equation; E arises from consideration 

of the four –point correlation equation. Integration of equation (24) over all wave numbers shows that  
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 Where,  is a constant of integration and can be obtained as by Corrisin S. [3] 

Where,  EEE                                   (29)   

After integration, equation (27) becomes
 




TT

p

ttk
kJT

r




 ]
)(2

exp[)( 0

2

=  TTT                                  (30)

             

 Where, 

)](}

)1(3

323(8
{}

))(1(3

323
{}

))(1(3

65
{

))(2

3
[}

)1(

)21)((
exp{

)1(8

9

2

1
2

5

22

1

8

2

1

0

2

2

6

2

3

0

2

2

5

0

2

42

0

2

7

2

3

2

5

0
2

1















Fk

pp

pp
k

ttp

pp
k

ttp

pp

tt

kp

pp

kptt

p

p
T

rr

rr

r

rr

r

rr

r

rr

r

r

r





























            (31) 

  

Where, F(

and, 




















8

3

1

33

1

24

1

32

2

5

1

4

6
2

2

1

52

5

1
2

1

}
)(

1

)()1(

4

)()1(4

21615
{

)1()(

18
[}

)1(

)21)((
exp{

)1(8

k
ttttp

p

ttp

pp

ptt

kp
k

pp

pptt

p

p
T

r

r

r

rr

r

r

rr

rr

r

r












 

dtEik
ttp

pp

ttp

ppp

r

rr

r

rrr










)()exp(.}

)()1(

1840414

)()1(12

636615
{ 11

10

1

2

2

3

1

23

42




+ 



























8

3

1

33

1

24

1

32

2

5

1

4

6
2

2

1

2

9

2

45

1
2

1

}
)(

1

)()21(3

)1(40

)()1(4

23617
{

)21()(

)1(18
[}

)1(

)21)((
exp{

)21(8

)1(

k
ttttp

pp

ttp

pp

ptt

kpp
k

pp

pptt

p

pp

r

rr

r

rr

r

rr

rr

rr

r

rr











 

dtEik
ttp

pp

ttp

ppp

r

rr

r

rrr )()exp(.}
)()1(

1810414

)()1(12

6643617
{ 22

10

1

2

2

3

1

23

42












+ 























8

3
1

33
1

24
1

32

2

64
1

4

6
21

2

11

2

2

9

1
2

1

}
)(

1

)()21(3

)1(140

)()1(4

182010361710
{

)21()(

)21(180
[}

)21)((
exp{

)1(128

(

k
ttttp

pp

ttp

pp

ptt

kpp
k

p

ptt

p

p

r

rr

r

rr

r

rr

r

r

r

r











dtEik
ttp

pp

ttp

ppp

r

rr

r

rrr








)()exp(.}

)()1(

18104142

)()1(12

146623432261267
{ 33

10

1
2

2

2
1

23

42




                                (32) 



2

0)(
kN

kJ 

k
pp

tt
dxx

MM

2

1

0

022

)1(

)(
,)exp()exp()  














 




Temperature Fluctuations in Homogeneous Turbulence at Four Point Correlations with Variable Prandtl No.…  

DOI: 10.9790/5728-13020493104                                         www.iosrjournals.org                                 100 | Page 

{Where,

r

rr

r

rr

rr

rr

rr

rr

rrr

r

p

tkp
and

tt

p

tkp

Ei
pp

tkpptt

and
tt

pp

tkpptt

Ei
pp

tkp
and

tt

pp

tkp

Ei

2

3
1

2

3

22
1

2

1

22
1

2

22

1
1

22

1

)21(
}

)21(
exp{

)(,
)21(

)221)((

}
)21(

)221)((
exp{

)(,
)1(

)21(
,

}
)1(

)21(
exp{

)(
















































       

 
Fig-2: universal function for calculating energy spectrum function [see equ. 30] 

 

From equation (29), we get, 21 TTT                                                       (33) 
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In equation (33) T1 and T2 are temperature fluctuation field spectrum arising from consideration of the three and 

four –point correlation equations respectively. Equation (30) can be integrated over all of all wave numbers to 

give the total   Temperature fluctuation turbulent energy. That is  
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Where, C0=C2+C4+C6 and D0=C1+C3+C5 
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Also, we can write the equation (34) of the following form,   
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This is the decay of energy of Temperature fluctuation in homogeneous turbulence for four point correlations.  

Where, 2T  ,.TT 
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If R=0 and S=0   that is Y=0 and Z=0 in equation (38), it will be in the form 

  5

0

2/3

0

2 )(
  ttBttAT , taking W=A, Y=B                            (40) 

which is completely same with the result of A. L. Loeffler and R. G,  Deissler [ 6 ] for the case of three -point 

correlation. In equation (38), the third and fourth term on the right hand side comes due to four point 

correlations. 

 

IV. Result and discussions- 
The evaluation of analytical results reported in this paper is performed and representative set of results 

is reported graphically. These results are obtained to illustrate the influence of various parameters on the 

temperature fluctuations. For numerical validation of the analytical results, we have taken the results obtained in 

equations (38) and (40). The constants W, X, Y, Z, is calculated in terms of Prandtl no.pr, constants N0, 0 , 1 ,
 

kinematic viscosity  , thermal conductivity k. In the present study we adopted the following default parametric 

values for some fluid in the table has discussed step by step. When the Prandtl No. is small such as of mercury 

pr=.015 then from (39) 

 

 

 

 

Table-1:The value of the constants and parameter used in equation (38)and (40). 
Fluid Pr   N0 

0  
1  

W X Y Z 

Mercury 0.015 0.10 .1 .01 .02 .00058 4.18×10-7 3.69×10-13 5.87 

0.015 0.08 .1 .01 .02 .00081 1.6×10-6 -1.01×10-12 20.03 

Mix Gas 0.2 80 .1 .01 .02 1.15×10-6 5.75×10-18 3.78×10-16 9.95×10-13 

0.2 200 .1 .01 .02 3.15×10-7 2.36×10-20 6.12×10-18 6.44×10-15 

Hyd Gas .04 100 .1 .01 .02 2.5×10-6 6.8×10-17 2.7×10-14 9.79×10-13 

0.4 300 .1 .01 .02 4.86×10-7 9.4×10-20 1.9×10-16 2.3×10-15 

Hel Gas 0.7 
0.7 

120 
400 

.1 

.1 
.01 
.01 

.02 

.02 
4.6×10-6 

7.6×10-7 
4.8×10-16 

3.4×10-19 
7.4×10-13 

3.3×10-15 
9.4×10-23 

1.2×10-15 
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Figure-1(a)       Figure-1(b) 

 

Figure-1(a), Figure-1(b)   represents the energy decay of temperature fluctuation for four -point correlations of 

equation (38). When the Prandtl No. is small as of mercury Pr=.015and  =0.1at 20
0 

C, Temp =0.08 at 80
0 

C 

Temp. It is observed that the energy decays more rapidly as viscosity decreases from 0.1 to 0.08 at temp.20
0 

to 

80
0 
C. 

 

 
          Figure-2(a): Energy decay for mix.      Figure-2(b): Energy decay for mix. of gas 

           of gas pr=.2 and  =80 at 20
0 
 C Temp    pr=.2 and  =80 at 20

0 
 C Temp 

 

Figure-2(a) and Figure-2(b) represent the energy decay of temperature fluctuation for four -point correlations of 

equation (38).When the Prandtl No. is as of mix. of gas Pr=.2 and  =80 at 20
0 
 C Temp, =200 at 80

0 
 C Temp 

In this case, energy decays too much rapidly as viscosity decreases from 200 to 80 at the same pr. no. 

  

 
Figure-3(a)               Figure-3(b) 

Figure-3(a),  Figure-3(b)   represents the energy decay of temperature fluctuation for four -point correlations of 

equation (38).When the  Prandtl No. is l as of Hyd gas Pr=.4 and  =100 at 0
0 

 C Temp =300 at 100
0 

 C Temp 

Result: Energy decay rapidly as viscosity decries 300 to 100 

 

Comparing fig 1, 2 and 3: we see that Energy decay rapidly more and more about 10
5 

 times as Prandtl No. 

decreases  in Fig1 and Fig2 if it is used mix. gas than mercury. That means energy decays 10 million times for 

mix. gas from mercury at the same time range. On the other hand, in fig-3 we use hyd. Gas instead of mercury. 

Prandtl no. for mercury is 0.015 and for hydrogen 0.4 that we have used in fig-1 and fig-3 restively .We 
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observes that energy decays 2×10
5 

times as Prandtl no. decreases for mercury than from hyd. gas. For this 

reason, Hydrogen gas is to be used in different jet engines.     

 
Figure-4   represents the energy decay of temperature fluctuation for four -point correlations of equation 

(38).When the  Prandtl No. is l as of Hel gas Pr=.7 and  =120 at 0
0 
 C Temp Figure-4’   represents the energy 

decay of temperature fluctuation for four-point correlations of equation (38).When the  Prandtl No. is l as of 

Hyd gas Pr=.4 and  =400 at 100
0 
 C Temp Energy decay rapidly as viscosity decries from 400 to 120 

Comparing fig -1 and 2, fig- 3, and 4 we see that Energy decay about 10
5 
, 5×10

4
, times as Prandt No. decreases 

     

Comparison between four -point and three point correlations of equation (38) and (40):                                                                                                                             

                    
Fig 5(a):   Energy decay curves of equation. (38)      Fig 5(b): Energy decay curves of equation. (40) 

 

Fig-5(a) and Fig 5(b)represents the energy decay of temperature fluctuation for four -point and three point  

correlations of equation (38) and (40).When the  Prandtl No. is small as of mercury Pr=.015and  =0.08 at 80
0 
 

C Temp. It is clear that, in four point correlations energy decays more rapidly than three point correlations.  

 

 
Fig 6(a) Four point equ.  (38)     Fig 6(b) three point equ. (40) 

Fig-6(a) and Fig 6(b)   represents the energy decay of temperature fluctuation for four -point and three point  

correlations of equation (38) and (40).When the  Prandtl No. is small as of mix. gas Pr=.2and  =80  at 0
0 

 C 

Temp. 

In this case, there is no change in energy decay at same viscosity and Prandtl No. 
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Fig 7(a) Four point equ. (38)   Fig 7(b) three point equ. (40) 

 

Fig-7(a) and Fig-7(b)   represents the energy decay of temperature fluctuation for four -point and three point  

correlations of equation (38) and (40).When the  Prandtl No. is small as of hyd. gas Pr=.4and  =100  at 0
0 

 C 

Temp . We observed that there is no change in energy decays for four point and three point correlations as for  

same viscosity . 

 

V.  Conclusions 

Through this study the result is obtain by neglecting quintuple correlation the four point correlation 

equations appear to represent the homogeneous turbulence for times between the initial and final period in 

temperature fluctuations. If the quintuple correlations were considered in this study, it appears more terms in 

higher power of (t-t0) would be added to the equation (38). The terms for higher order correlation in Decay law 

die out faster than those for lower order ones, in agreement with the fundamental assumption made in the 

analysis.  

In equation (38), it is observed that the temperature fluctuation turbulent energy for four- point 

correlations systems decays rapidly more and more by exponential manner than the decays of three point 

correlation system. .  
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