
IOSR Journal of Mathematics (IOSR-JM)  

e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 13, Issue 3 Ver. 1 (May. - June. 2017), PP 07-19 

www.iosrjournals.org 

DOI: 10.9790/5728-1303010719                                          www.iosrjournals.org                                      7 | Page 

 

Bivariate Beta Exponential Distributions 
 

Mervat K. Abd Elaal
1,2 

1 Statistics Department, Faculty of Sciences King Abdulaziz University Jeddah, Kingdom of Saudi Arabia 

2 Statistics Department, Faculty of Commerce Al-Azhar University, Girls Branch Cairo, Egypt 

 

Abstract: The exponential distribution is perhaps the most widely applied statistical distribution in reliability. 

Anew continuous bivariate distribution called the bivariate beta-exponential distribution (BBE) that extends the 

bivariate exponential distribution are proposed. We introduce a new bivariate beta-exponential distributions 

(BBE) based on some types of copulas. Parametric and semiparametric methods are used to estimate the 

parameters of the models. Finally, Simulation is studied to illustrate methods of inference discussed and 

examine the satisfactory performance of the proposed distributions. 
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I. Introduction 
The exponential distribution is a popular distribution the most widely used and applied for analyzing 

lifetime data and for problems in reliability. 

The exponential distribution is a popular distribution widely used for analyzing lifetime data. The 

exponential distribution is perhaps the most widely applied statistical distribution for problems in reliability. In 

this aim, we consider a generalization referred to as the beta exponential distribution generated from the logit of 

a beta random variable. We work with the beta exponential (BE) distribution because of the wide applicability 

of the exponential distribution and the fact that it extends some recent developed distributions. An application is 

illustrated to a real data set with the hope that it will attract more applications in reliability, biology and other 

areas of research. 

Eugene et al. (2002) introduced the beta distribution as a generator to suggest the so-called family of 

beta G distributions. The cumulative distribution function (c.d.f.) of a beta-G random variable X is defined as 

F               
 

      
               

    

 
                                                                                                     (1) 

 

for G(x) is the cdf of any random variable, a > 0 and b > 0, where         =        /      denotes the 

incomplete beta function ratio, and                         
 

 
 denotes the incomplete beta function. 

The p.d.f. corresponding to the beta-G distribution in (1) is given by 

                                 
 

      
               

   
                                                                                      (2) 

where g(x) = dG(x)/dx is the pdf of the parent distribution. The pdf f(x) will be most tractable when the 

functions G(x) and g(x) have simple analytic expressions.  

This family of distributions is a generalization of the distributions of order statistics for the random 

variable X with cdf  F(x) as pointed out by Eugene, et al. (2002) and Jones (2004). Since the paper by Eugene et 

al. (2002), many beta-G distributions have been studied in the literature including the beta-Gumbel distribution 

by Nadarajah and Kotz (2004), beta exponential distribution by Nadarajah and Kotz (2006), beta-Weibull 

distribution by Famoye et al.(2005) and Cordeiro et al., (2011). 

For more details, see, also, the beta-Pareto distribution by Akinsete, et al. (2008), beta modified 

Weibull distribution by Silva et al.(2010), beta generalized half-normal distribution by Pescim et al., (2010), 

And ,also, the  beta Burr XII distribution by Paranaiba, et al., (2011), beta extended Weibull distribution by 

Cordeiro, et al.(2012),beta exponentiated Weibull by Cordeiro et al.(2013),beta-lindley distribution by Merovci 

and Sharma (2014), beta Burr type X distribution by Merovci et al.,(2016). 

Eugene et al. (2002) introduced the beta normal distribution by taking G(x) in (1) to be the cdf of the 

normal distribution. Nadarajah and Kotz (2004) introduced the beta Gumbel (BG) distribution by taking G(x) to 

be the cdf of the Gumbel distribution. Also, Nadarajah and Kotz (2006) studied the BE distribution and obtained 

the moment generating function, the asymptotic distribution of the extreme order statistics and discussed the 

maximum likelihood estimation. For more details, see Azzalini(1985), Alexander, et al., (2012),Nadarajah and 

Rocha (2016a), Nadarajah and Rocha (2016b), Alzaatreh et al., (2013), Aljarrah et al., (2014),  Nadarajah, et al., 

(2015).  

Beta exponential distribution used effectively in different lifetime applications. Nadarajah and Kotz 

(2006) first introduced it. 
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We now study the BE distribution by taking G(x) in (1) to be the cdf of the exponential (E) distribution. Then, 

the beta exponential (BE) distribution with three parameters α > 0, a > 0 and b >0 with the following Cdf and 

the pdf, respectively, 

     
 

      
               

          

 

 

The simple formula for the cdf of BE distribution if a, bare real integer given by 

     
             

    
 

      

  

   
                                                                                                              (3) 

And, the pdf given by 

                      
 

      
                                                                                      (4) 

And the hazard rate  function given by 

                        
                         

                    
                                                                                                                 (5) 

The moment generating function (mgf) of the BE distribution if b>2 is integer is given by 

                              
 

      
  

   
 

                    

   

   

 

The simple formula for the mgf  of BE distribution is given by 

     
          

      
                                                                                                                                              (6) 

The r th moment of the BE distribution if b is integer can be obtain from 
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The first four moments of the BE distribution if b>0 is integer are obtain, respectively, 
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The BE distribution contains as special cases three well-known distributions. For example, it simplifies 

to the BW distribution when. If α = 1, the BE distribution becomes the beta standard exponential (BSE) 

distribution, If b = 1, the BE distribution becomes the EE distribution, The Exponential distribution is clearly a 

special case for a = b = 1. 

Copulas are a general tool to construct multivariate distributions and to find dependence structure 

between random variables. However, the concept of copula is popular in multivariate analyses. In this aim, we 

show that copulas can be important used to solve many statistical problems. Stated that any multivariate 

distribution can be disintegrated to a copula and its continues marginal. 

The Gaussian copula gives the following form 

                                 
             ,                                                                                                    (8) 

where    denotes the distribution function of a bivariate standard normal random variable and    represents its 

inverse.  

The Farlie-Gumbel-Morgensten copula (FGM) takes the following form 

                                                                                                                                                       (9) 

where   and      , and          is a dependence parameter.  
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Although the FGM copula family is tractable mathematically, it does not model high dependences. The range of 

the dependence measures Kendall’s tau   and Spearman’s rho ρ are                  
and ρ                 respectively. 

 

The Plackett copula takes the following form 

                   , 
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Where          The correlation measure Spearman's rho is ρ  
   

   
 

        

      
. There is no closed 

expression in   for the correlation measure Kendall's tau. 

 

 Several multivariate and bivariate lifetime distributions are derived using copula functions  such as 

Johnson, et al.(1992), Nelsen(1999),Adham and  Walker, (2001),Trivedi and Zimmer, (2005),Adham, et al. 

(2009), Kundu, et al.(2009), Kunduet al. (2010), Kundu and Gupta, (2011), Ateya and Al-Alazwari, (2013), 

Sarabia et al. (2014),  Abd Elaal et al.(2016), Adham et al. (2016), and Abd Elaal et al.(2017). 

 The main article of this article is to introduce bivariate beta exponential (BBE) models based on most 

used copula functions in the literature as the Gaussian, Frank, Clayton, and Farlie-Gumbel-Morgensten (FGM) 

and suggest which of them is more suitable. In addition, the performance of the proposed BBE will be examined 

using a real data example.  

The contents of this aim are as follows. Section 2 introduce three new bivariate beta exponential (BBE) 

models based on different copula functions. Parametric and semiparametric methods are used to estimate the 

parameters of BBE models in Section 3.  In Section 4, goodness of fit test for the three models of bivariate beta 

exponential (BBE) models computed to check the flexibility of different models based on different copula 

functions. Finally, Simulation is studied to illustrate the performance of the suggested bivariate models and 

compare each one to other bivariate models in Section 5.  

 

II. Bivariate BE Distributions Based On Copulas 
For the bivariate case, copulas are used to link two marginal distributions with joint distribution such 

that for every bivariate distribution function         with continuous marginal            , there exist a 

unique copula function C as follows 

                                                                                                                                (11) 

The density function of bivariate distribution gives as 

                                                                                                                                                  (12) 

Where                 is the density function of copula. 

see (Nelsen, 1999).  Several copula functions can be used to construct BBE distributions with BE marginals 

given by (4). In this article, we will applied the Gaussian, Farlie-Gumbel-Morgensten and Plackett copulas to 

construct BBE distributions. 

The joint PDF of    and   based on Gaussian copula becomes 

                      
 

     
     

  

       
     

    
                                                   

where          is a dependence parameter.  

 

 
 

Figure (1): Plots the PDF   and Cdf of the BBE based on Gaussian copula 
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Figure (2): Contour plots of BBEbased on Gaussian copula for different values of  . 

 

The joint PDF of      and   based on Farlie-Gumbel-Morgensten copula becomes  

                                                                                                                                           (14) 

where   and      , and          is a dependence parameter.  

 

 
Figure (3): Plots the PDF   and Cdf of the BBE based on FGM copula 

 
Figure (4): Contour plots of BBEbased on FGM copula for different values of  . 



Bivariate Beta Exponential Distributions 

DOI: 10.9790/5728-1303010719                                          www.iosrjournals.org                                    11 | Page 

The joint PDF of      and    based on Plackett copula becomes 

 

                     
                   

                           
 

 

  

                                                                                                                                                                            (15) 

where   and      , and         is a dependence parameter.  

 

 
Figure (5): Plots the PDF   and Cdf of the BBE based on Plackett copula 

 

 
Figure (6): Contour plots of BBEbased on Plackett copula for different values of  . 

 

III. Parameters Estimation 
In this section, we provide the estimation of the unknown parameters of BBE distributions by two 

approaches to fitting copula models. Parametric and semiparametric are methods used to estimate proposed 

distribution parameters.   

 

3.1 Parametric methods of estimation: 

There are two approaches to fitting copula models. The first one approach is two steps procedure 

estimating the marginal and the copula parameter separately. The second approach is two steps procedure 

estimating the marginal and the copula parameter, which is computed from the pseudo-observations separately. 
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Maximum likelihood estimation (ML) 

We provide the estimation of the unknown parameters of BBE distributions by the approach maximum 

likelihood.  By using the two-step estimation (ML). The approach is two steps procedure estimating the 

marginal and the copula parameter separately. 

The log-likelihood function expressed as 

                                                                                                           
 
   (16) 

The log-likelihood function in (16) can be re-expressed as 

                                 
 
                           

 
   

 
                                                   (17) 

The first step is estimating the parameters of marginal distribution    and    by MLE separately as given, 

                                                                                                                                                            
   (18) 

Then, estimating copula parameters by maximizing the copula density as given 

                            
 
                                                                                                                                   (19) 

By considering the first step with (BE) distribution, the parameters of each marginal distribution will be 

estimated by MLE. If          is a random sample from     ,  ,   ,  then the log-likelihood function 

    ,  ,    is 

       ,  ,  ,    

                             

    

1log1−                                                                                                          −                                                                        
(20) 

                  

   
 

 

  
 

  

  
       

                       

                 
                                                                                  (21) 

 
                    

   
                                                                                                               (22) 

and 
                    

   
                                                                                                                                 (23) 

The solution of the system of nonlinear equations (21),(22)and (23) gives the MLEs of   ,  and     

The maximum likelihood estimates (MLEs)can be calculated by making equations (21),(22)and (23) equal to 

zero. These equations can be solved numerically for    ,   and   .Wecanuseiterativetechniquessuch asaNewton-

Raphsontypealgorithmtoobtaintheestimatesoftheseparameters. 

Then copula density will estimated as given, 

                          
                                                                                                                                  

 

   

     

Where   
      and          denote the ML estimates of the parameters from first step.  

The solution of the nonlinear equation (24) gives the MLE of    
 

Modified maximum likelihood estimation (MML) 

This a new method is suggested in this article the first step is estimating the parameters of marginal distribution 

   and   by MLE separately as given, 

                                                    

 

   

 

The maximum likelihood estimates (MLEs) can be calculated by making equations (21),(22) and (23) equal to 

zero. These equations can be solved numerically for   ,   and   . We can use iterative techniques such as a 

Newton-Raphson type algorithm to obtain the estimates of these parameters. 

Second step is estimating copula parameters by maximizing the copula density as given 

                                           
 
   (25) 

Where        are pseudo-observations computed from    
   

   
 

 

   
              

   

    
 

 

   
          

  ,     1  ,  2   are respectively the ranks of   1 ,  2 . 
It is important to respect that the margins Cdf.s are estimated parametrically from the first step. 

 

3.2 Semiparametric methods of estimation 

Two semiparametric methods to estimate the copula parameter  in copula models are compared  the two 

Methods-of-moments approaches of namely inversion Kendall's and inversion of Spearman's rho. 
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Methods-of-moments  

Method-of-moments approaches of inversion Kendall's and inversion of Spearman's rho 

As it is mentioned in Kojadinovic and Yan (2010) , let c be a bivariate random sample from 

Cdf                     where F1 and F2 are continuous Cdf.s and    is an absolutely continuous copula such 

that      , where   is an open subset of   . Furthermore, let          are the vectors of ranks associated with 

          unless otherwise stated. In what follows, all vectors are row vectors. Method-of-moments approaches 

are based on the inversion of a consistent estimator of a moment of the copula   . The two best-known 

moments, Spearman’s rho and Kendall’s tau, are respectively given by 

 ρ                    
      

, (26) 

and  

                         
      

.                                                                                              

(27)       

Consistent estimators of these two moments can be expressed as 

   
  

           
           

   

   

 
         (28) 

And 

                         
 

      
                             

     (29) 

When the functions ρ and   are one-to-one, consistent estimators of   are given by  

              , 

                
It can be called inversion of Kendall's (itau) and inversion of Spearman's rho (irho) respectively. For more 

information, see Kojadinovic and Yan (2010).  

As explained above the methods-of-moments (itau) and (irho) estimation method for copula is considered as a 

semiparametric method of estimation. 

 

IV. Goodness Of Fit Tests For Copula 

The idea of this test is to compare the empirical copula with the parametric estimator derived under the null 

hypothesis see Dobrić and Schmid(2007) and Fermanian(2005). That is, test if C is well-represented by a 

specific copula    

                              

Two approaches are commonly used in the literature to test the goodness of fit of a copula; the parametric 

bootstrap see Genest and  Rémillard (2008)or the fast multiplier approach see Genest, et al. ( 2009), and  

Kojadinovicet al. ( 2011). The goodness of fit tests based on the empirical process 

                      
      , 

where          is the empirical copula of the data of    and    

        
 

 
                 

 

   

               

         are pseudo observations from C calculated from data as follows 

     
   

   
      

   

   
               are respectively the ranks of          

Here          is a consistent estimator and    is an estimator of   obtained using the pseudo observations. 

According to Genest et al.(2009), the test statistics is the Cramer-von Miss and is defined as 

                      
            

 
 

   

 

See for details Genest et al., (2009),  Genest and Rémillard, (2008) and Kojadinovic et al., (2011). 

 

V. Simulation Data 
In this section, a comparison between the three proposed models via different types of copulas is 

presented. The correlation measures Kendall's tau and Spearman's rho of two variables with BBE distribution 

are obtained and used to provide the values of copula parameters.  

Considering the following values of marginal and copula parameters of BBE distribution based on Gaussian, 

FGM and Plackett copulas with different sizes of sample (n = 20, 30, 50, 100,150 and 200): 

            α               α   Gaussiancopula parameter      , FGM copula 

parameter      and Plackett copula parameter      . 
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The estimates for these parameters of three models by different three types of copulas and the corresponding 

bias, mean squared errors and relative mean squared errors based on 1000 replications are reported in Table 1, 2, 

3,4,5, and 6.  

 

 

Table 1. The estimates, the   bias, the mean squared errors and the relative mean squared errors of parameters by 

simulation study for BBE distribution based Gaussian  copula 

Sample Size 

Estimates, bias, mean square errors and relative mean square errors of Parameters 

 

     
           

 

     
                 

n=20 

ML 

2.300 

0.301 
0.688 

0.334 

11.902 

0.098 
0.835 

0.070 

0.049 

0.009 
0.003 

0.065 

1.258 

0.158 
0.383 

0.383 

5.858 

0.142 
0.269 

0.045 

0.013 

0.001 
0.001 

0.119 

0.779 

0.021 
0.000 

0.001 

MML 

2.300 

0.301 
0.688 

0.334 

11.902 

0.098 
0.835 

0.070 

0.049 

0.009 
0.003 

0.065 

1.258 

0.158 
0.383 

0.383 

5.858 

0.142 
0.269 

0.045 

0.013 

0.001 
0.001 

0.119 

0.861 

0.061 
0.004 

0.005 

n=30 

ML 

2.214 
0.214 

0.423 

0.778 

11.833 
0.167 

1.494 

0.458 

0.051 
0.011 

0.005 

0.486 

1.099 
0.099 

0.173 

0.636 

5.912 
0.088 

0.083 

0.187 

0.011 
0.000 

0.000 

0.441 

0.709 
0.091 

0.008 

0.140 

MML 

2.214 
0.214 

0.423 

0.778 

11.833 
0.167 

1.494 

0.458 

0.051 
0.011 

0.0053 

0.486 

1.099 
0.099 

0.173 

0.636 

5.912 
0.088 

0.083 

0.187 

0.011 
0.000 

0.000 

0.441 

0.792 
0.007 

0.000 

0.052 

n=50 

ML 

2.123 

0.451 

0.970 
0.132 

11.689 

1.142 

2.543 
0.212 

0.048 

0.400 

0.213 
0.107 

1.048 

0.655 

0.565 
0.042 

5.762 

0.877 

0.487 
0.022 

0.010 

0.056 

0.056 
0.009 

0.692 

0.398 

0.159 
0.015 

MML 

2.123 

0.451 

0.970 
0.132 

11.689 

1.142 

2.543 
0.212 

0.048 

0.400 

0.213 
0.107 

1.048 

0.655 

0.565 
0.042 

5.762 

0.877 

0.487 
0.022 

0.010 

0.056 

0.056 
0.009 

0.713 

1.174 

0.375 
0.009 

n=100 

ML 

2.061 

0.832 

1.139 

0.042 

11.759 

0.885 

1.492 

0.124 

0.044 

0.195 

0.070 

0.035 

1.026 

0.348 

0.240 

0.018 

5.903 

1.319 

0.645 

0.008 

0.009 

0.005 

0.005 

0.000 

0.763 

0.505 

0.069 

0.002 

MML 

2.061 
0.832 

1.139 

0.042 

11.759 
0.885 

1.492 

0.124 

0.044 
0.195 

0.070 

0.035 

1.026 
0.348 

0.240 

0.018 

5.903 
1.319 

0.645 

0.008 

0.009 
0.005 

0.005 

0.000 

0.776 
0.320 

0.102 

0.000 

n=150 

ML 

2.035 
0.477 

0.720 

0.360 

11.748 
0.927 

2.083 

0.638 

0.044 
0.203 

0.077 

0.523 

1.014 
0.187 

0.150 

0.150 

5.721 
1.027 

0.649 

0.398 

0.010 
0.003 

0.003 

0.025 

0.790 
0.141 

0.020 

0.025 

MML 

2.035 

0.477 

0.720 
0.360 

11.748 

0.927 

2.083 
0.638 

0.044 

0.203 

0.077 
0.523 

1.014 

0.187 

0.150 
0.150 

5.721 

1.027 

0.649 
0.398 

0.010 

0.003 

0.003 
0.025 

0.792 

0.412 

0.046 
0.058 

n=200 

ML 

2.028 

0.383 

0.563 
0.021 

11.765 

0.865 

1.440 
0.120 

0.043 

0.131 

0.058 
0.029 

1.014 

0.187 

0.412 
0.008 

5.636 

1.338 

0.888 
0.040 

0.010 

0.003 

0.003 
0.000 

0.780 

0.272 

0.074 
0.001 

MML 

2.028 

0.383 
0.563 

0.021 

11.765 

0.865 
1.440 

0.120 

0.043 

0.131 
0.058 

0.029 

1.014 

0.187 
0.412 

0.008 

5.636 

1.338 
0.888 

0.040 

0.010 

0.003 
0.003 

0.000 

0.789 

0.136 
0.019 

0.000 

 

Table 2. The estimates, the   bias, the mean squared errors and the relative mean squared errors of parameters  

of correlation parameter by simulation study for BBE distribution based  Gaussian copula 

Sample Size 
       

Estimates bias     RMSE Method Estimation 

n=20 

0.779 

0.861 
0.855 

0.856 

0.021 

0.061 
0.055 

0.056 

0.000 

0.004 
0.003 

0.003 

0.001 

0.005 
0.004 

0.004 

ML 

MML 
Itau 

IRho 

n=30 

0.709 

0.792 
0.778 

0.780 

0.091 

0.007 
0.022 

0.019 

0.008 

0.000 
0.000 

0.000 

0.140 

0.052 
0.108 

0.088 

ML 

MML 
Itau 

IRho 
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n=50 

0.692 
0.713 

0.680 

0.668 

0.398 
1.174 

0.442 

0.487 

0.159 
0.375 

0.195 

0.327 

0.015 
0.009 

0.018 

0.022 

ML 
MML 

Itau 

IRho 

n=100 

0.763 

0.776 

0.749 
0.742 

0.505 

0.320 

0.695 
0.788 

0.069 

0.102 

0.131 
0.169 

0.002 

0.000 

0.003 
0.004 

ML 

MML 

Itau 
IRho 

n=150 

0.790 

0.792 

0.782 
0.780 

0.141 

0.412 

0.249 
0.273 

0.020 

0.046 

0.062 
0.074 

0.025 

0.058 

0.062 
0.093 

ML 

MML 

Itau 
IRho 

n=200 

0.780 

0.789 
0.786 

0.783 

0.272 

0.136 
0.183 

0.224 

0.074 

0.019 
0.034 

0.050 

0.001 

0.000 
0.000 

0.000 

ML 

MML 
Itau 

IRho 

 

Table 3. The estimates, the   bias, the mean squared errors and the relative mean squared errors of parameters by 

simulation study for BBE distribution based FGM copula 

Sample Size 
Estimates ,bias, mean square errors and relative mean square errors of Parameters 

                                      

n=20 

ML 

2.364 
0.364 

1.245 

0.623 

11.924 
0.076 

0.798 

0.066 

0.050 
0.010 

0.005 

0.113 

1.161 
0.161 

0.258 

0.258 

5.868 
0.132 

0.188 

0.0312 

0.012 
0.000 

0.000 

0.067 

0.503 
0.203 

0.041 

0.137 

MML 

2.364 

0.364 

1.245 
0.623 

11.924 

0.076 

0.798 
0.066 

0.050 

0.010 

0.005 
0.113 

1.161 

0.161 

0.258 
0.258 

5.868 

0.132 

0.188 
0.0312 

0.012 

0.000 

0.000 
0.067 

0.523 

0.223 

0.050 
0.166 

n=30 

ML 

2.207 

0.207 

0.526 
0.263 

11.804 

0.195 

1.823 
0.152 

0.050 

0.010 

0.005 
0.120 

1.115 

0.115 

0.240 
0.240 

5.917 

0.083 

0.149 
0.025 

0.011 

0.001 

0.001 
0.056 

0.034 

0.004 

0.000 
0.001 

MML 

2.207 

0.207 
0.526 

0.263 

11.804 

0.195 
1.823 

0.152 

0.050 

0.010 
0.005 

0.120 

1.115 

0.115 
0.240 

0.240 

5.917 

0.083 
0.149 

0.025 

0.011 

0.001 
0.001 

0.056 

0.188 

0.158 
0.025 

0.834 

n=50 

ML 

2.113 
0.113 

0.203 

0.101 

11.734 
0.266 

2.145 

0.179 

0.048 
0.008 

0.005 

0.120 

1.066 
0.066 

0.049 

0.049 

5.771 
0.229 

0.123 

0.021 

0.010 
0.000 

0.000 

0.013 

0.328 
0.028 

0.001 

0.003 

MML 

2.113 
0.113 

0.203 

0.101 

11.734 
0.266 

2.145 

0.179 

0.048 
0.008 

0.005 

0.120 

1.066 
0.066 

0.049 

0.049 

5.771 
0.229 

0.123 

0.021 

0.010 
0.000 

0.000 

0.013 

0.366 
0.066 

0.004 

0.014 

n=100 

ML 

2.050 

0.679 

1.086 
0.040 

11.804 

0.720 

1.049 
0.087 

0.043 

0.140 

0.060 
0.030 

1.031 

0.416 

0.253 
0.019 

5.890 

0.405 

0.796 
0.010 

0.010 

0.005 

0.005 
0.000 

0.265 

0.480 

0.063 
0.004 

MML 

2.050 

0.679 

1.086 
0.040 

11.804 

0.720 

1.049 
0.087 

0.043 

0.140 

0.060 
0.030 

1.031 

0.416 

0.253 
0.019 

5.890 

0.405 

0.796 
0.010 

0.010 

0.005 

0.005 
0.000 

0.331 

0.423 

0.179 
0.003 

n=150 

ML 

2.036 

0.486 

0.702 

0.026 

11.852 

0.543 

1.163 

0.097 

0.042 

0.121 

0.058 

0.029 

1.022 

0.309 

0.167 

0.012 

5.750 

0.921 

0.549 

0.025 

0.010 

0.003 

0.003 

0.000 

0.083 

0.799 

0.639 

0.157 

MML 

2.036 

0.486 
0.702 

0.026 

11.852 

0.543 
1.163 

0.097 

0.042 

0.121 
0.058 

0.029 

1.022 

0.309 
0.167 

0.012 

5.750 

0.921 
0.549 

0.025 

0.010 

0.003 
0.003 

0.000 

0.130 

0.625 
0.391 

0.096 

n=200 

ML 

2.026 
0.351 

0.520 

0.019 

11.827 
0.638 

2.891 

0.065 

0.042 
0.081 

0.050 

0.025 

1.020 
0.269 

0.434 

0.009 

5.672 
1.207 

0.726 

0.033 

0.010 
0.003 

0.003 

0.000 

0.193 
0.395 

0.156 

0.038 

MML 

2.026 

0.351 

0.520 
0.019 

11.827 

0.638 

2.891 
0.065 

0.042 

0.081 

0.050 
0.025 

1.020 

0.269 

0.434 
0.009 

5.672 

1.207 

0.726 
0.033 

0.010 

0.003 

0.003 
0.000 

0.234 

0.89 

0.219 
0.015 
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Table 4. The estimates, the   bias, the mean squared errors and the relative mean squared errors of parameters  

of correlation parameter by simulation study for BBE distribution based  FGM copula 

Sample Size 
       

Estimates bias     RMSE Method Estimation 

n=20 

     0.503 

0.523 

0.331 
0.402 

  0.203 

0.223 

0.032 
0.101 

0.041 

0.050 

0.001 
0.010 

0.137 

0.166 

0.003 
0.034 

ML 

MML 

Itau 
IRho 

n=30 

0.034 

0.188 
0.155 

0.139 

0.004 

0.158 
0.125 

0.109 

0.000 

0.025 
0.016 

0.012 

0.001 

0.834 
0.522 

0.400 

ML 

MML 
Itau 

IRho 

n=50 

     0.328 

0.366 
0.246 

0.310 

   0.028 

0.066 
0.054 

0.010 

0.001 

0.004 
0.003 

0.000 

0.003 

0.014 
0.010 

0.000 

ML 

MML 
Itau 

IRho 

n=100 

0.265 
0.331 

0.290 

0.319 

0.480 
0.423 

0.453 

0.258 

0.063 
0.179 

0.056 

0.067 

0.004 
0.003 

0.000 

0.001 

ML 
MML 

Itau 

IRho 

n=150 

 0.083 
0.130 

0.105 

0.124 

0.799 
0.625 

0.717 

0.648 

0.639 
0.391 

0.514 

0.420 

0.157 
0.096 

0.127 

0.103 

ML 
MML 

Itau 

IRho 

n=200 

0.193 

0.234 

0.213 
0.225 

0.395 

0.89 

1.177 
1.013 

0.156 

0.219 

0.377 
0.279 

0.038 

0.015 

0.025 
0.019 

ML 

MML 

Itau 
IRho 

 

Table 5.The estimates, the   bias, the mean squared errors and the relative mean squared errors of parameters by 

simulation study for BBE distribution based Plackett copula 

Sample Size 
Estimates ,bias, mean square errors and relative mean square errors of Parameter 

                                     

n=20 

ML 

2.373 

0.373 

1.203 
0.602 

11.897 

0.103 

1.025 
0.085 

0.053 

0.013 

0.006 
0.162 

1.173 

0.173 

0.413 
0.413 

5.859 

0.141 

0.214 
0.036 

0.012 

0.000 

0.001 
0.070 

0.129 

0.171 

0.029 
0.098 

MML 

2.373 

0.373 

1.203 
0.602 

11.897 

0.103 

1.025 
0.085 

0.053 

0.013 

0.006 
0.162 

1.173 

0.173 

0.413 
0.413 

5.859 

0.141 

0.214 
0.036 

0.012 

0.000 

0.001 
0.070 

0.175 

0.125 

0.016 
0.052 

n=30 

ML 

2.219 

0.807 
1.521 

0.207 

11.793 

0.759 
1.576 

0.131 

0.050 

0.495 
0.198 

0.100 

1.095 

1.291 
1.145 

0.085 

5.916 

1.136 
0.801 

0.010 

0.010 

0.023 
1.258 

0.001 

0.449 

0.549 
0.301 

0.074 

MML 

2.219 

0.807 
1.521 

0.207 

11.793 

0.759 
1.576 

0.131 

0.050 

0.495 
0.198 

0.100 

1.095 

1.291 
1.145 

0.085 

5.916 

1.136 
0.801 

0.010 

0.010 

0.023 
1.258 

0.001 

0.439 

0.511 
0.261 

0.064 

n=50 

ML 

2.129 
0.474 

0.830 

0.113 

11.736 
0.973 

0.250 

0.178 

0.049 
0.428 

2.130 

0.125 

1.060 
0.817 

0.250 

0.039 

5.782 
0.802 

1.187 

0.015 

0.010 
0.013 

0.013 

0.001 

0.468 
0.617 

0.380 

0.094 

MML 

2.129 
0.474 

0.830 
0.113 

11.736 
0.973 

0.250 
0.178 

0.049 
0.428 

2.130 
0.125 

1.060 
0.817 

0.250 
0.039 

5.782 
0.802 

1.187 
0.015 

0.010 
0.013 

0.013 
0.001 

0.357 
0.775 

0.164 
0.011 

n=100 

ML 

2.063 

0.859 

1.094 
0.547 

11.802 

0.729 

1.188 
1.340 

0.043 

0.174 

0.066 
0.453 

1.024 

0.331 

0.248 
0.248 

5.900 

1.350 

0.695 
0.426 

0.009 

5.373 

5.373 
0.044 

0.303 

0.129 

0.017 
0.015 

MML 

2.063 

0.859 
1.094 

0.547 

11.802 

0.729 
1.188 

1.340 

0.043 

0.174 
0.066 

0.453 

1.024 

0.331 
0.248 

0.248 

5.900 

1.350 
0.695 

0.426 

0.009 

5.373 
5.373 

0.044 

0.326 

0.351 
0.123 

0.111 

n=150 

 
ML 

2.044 

0.596 
0.741 

11.774 

0.830 
1.906 

0.045 

0.232 
0.099 

1.019 

0.260 
0.153 

5.735 

0.975 
0.586 

0.010 

2.100 
2.100 

0.455 

0.571 
0.326 
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0.027 0.159 0.050 0.011 0.027 0.000 0.080 

MML 

2.044 

0.596 
0.741 

0.027 

11.774 

0.830 
1.906 

0.159 

0.045 

0.232 
0.099 

0.050 

1.019 

0.260 
0.153 

0.011 

5.735 

0.975 
0.586 

0.027 

0.010 

2.100 
2.100 

0.000 

0.406 

0.389 
0.151 

0.037 

n=200 

ML 

2.030 

0.400 
0.551 

0.020 

11.704 

1.090 
1.970 

0.164 

0.044 

0.198 
0.074 

0.037 

1.019 

0.262 
0.406 

0.008 

5.647 

1.297 
0.877 

0.040 

0.010 

3.225 
3.295 

0.000 

0.461 

0.593 
0.601 

0.087 

MML 

2.030 
0.400 

0.551 

0.020 

11.704 
1.090 

1.970 

0.164 

0.044 
0.198 

0.074 

0.037 

1.019 
0.262 

0.406 

0.008 

5.647 
1.297 

0.877 

0.040 

0.010 
3.225 

3.295 

0.000 

0.456 
0.573 

0.329 

0.081 

 

Table 6. The estimates, the   bias, the mean squared errors and the relative mean squared errors of correlation 

parameter by simulation study for BBE distribution based Plackett copula 

Sample Size 
       

Estimates bias     RMSE Method Estimation 

n=20 

0.129 

0.175 

0.129 
0.154 

0.171 

0.125 

0.171 
0.146 

0.029 

0.016 

0.029 
0.021 

0.098 

0.052 

0.098 
0.071 

ML 

MML 

Itau 
IRho 

n=30 

0.449 

0.439 
0.403 

0.419 

0.549 

0.511 
0.380 

0.438 

0.301 

0.261 
0.145 

0.199 

0.074 

0.064 
0.036 

0.047 

ML 

MML 
Itau 

IRho 

n=50 

0.468 

0.357 
0.340 

0.353 

0.617 

0.775 
0.546 

0.717 

0.380 

0.164 
0.081 

0.140 

0.094 

0.011 
0. 005 

0.009 

ML 

MML 
Itau 

IRho 

n=100 

0.303 
0.326 

0.331 

0.339 

0.129 
0.351 

0.429 

0.529 

0.017 
0.123 

0.178 

0.076 

0.015 
0.111 

0.161 

0.253 

ML 
MML 

Itau 

IRho 

n=150 

0.455 

0.406 

0.425 
0.434 

0.571 

0.389 

0.462 
0.495 

0.326 

0.151 

0.213 
0.245 

0.037 

0.080 

0.052 
0.060 

ML 

MML 

Itau 
IRho 

n=200 

0.461 

0.456 

0.460 
0.465 

0.593 

0.573 

0.590 
0.608 

0.601 

0.329 

0.347 
0.369 

0.087 

0.081 

0.086 
0.091 

ML 

MML 

Itau 
IRho 

 

From the results in Table 1,2, 3, 4, 5, and 6 we observed that 

1. As expected, most results improve with increases in sample size. 

2. For most selected values of       ,                 and    the bias,  MSE and RMSE of the estimates 

       ,                   and     become smaller as the sample size increases. 

3. For      greater than    , the most results    for  are generally better than    for  Furthermore, the values of 

    get better more rapidly than the values of     as the sample size increases.  

4. For      greater than   , the most results    for  are generally better than   for Furthermore, the values of     

get better more rapidly than the values of     as the sample size increases.  

5. the efficient estimators of marginal parameters of three models differ according to the parameters. It seems 

that ML estimates       ,                and of three models are the same corresponding MML estimates. 

6.  For copula parameter, the MML provided efficient most estimates for Gaussian, FGM, and Plackett copula 

parameters compared to ML, Itau, and Irho. It is also noted that the ML and MML estimates for all copula 

parameters are close. 

7. For copula parameter, it is observed that most estimates of Gaussian copula parameter    were more 

efficient than the corresponding the estimates of copula parameter          and Plackett 

copula             . 

 

To check if the selected parmetric copula functions are suitable for the marginals, goodness of fit test 

statisticsusing selected copula functions for the marginals is preformed.The results in Table (7) show a non 

signficant p-value obtained using parmetric bootstrap for all copula functions which indicate that selected 
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parmetric copula functions provide approporiate fit to the marginals. In addition, estimate of the copula parmeter 

based on ML, MML, Itau, and Irho methods for the gussian, FGM, and Plackett copulas . This estimatesare used 

as intial value when fitting these copula models using BE marginals. 

Table 7. Goodness of fit test statistics with their p-values and estimate of the copula parameter for selected 

copula functions. 
Copula 
Function 

statistic p-value Estimate of copula parameter   Method estimation 

Gaussian 

 

0.0139 0.6179 0.7986   Ml 

0.0139 0.6578 0.7986 MML 

0.0154 0.5679 0.7816 Itau 

0.0157 0.5809 0.7799 Irho 

    

FGM 

 

0.0113 0.9915 0.1318   Ml 

0.0113 0.9905 0.1318 MML 

0.0119 0.9885 0.1051 Itau 

0.0115 0.9915 0.1239 Irho 

    

Plackett 

 

0.0279 0.2003 0.4016   Ml 

0.0279 0.1923 0.4016 MML 

0.0241 0.2882 0.4255 Itau 

0.0229 0.3601 0.4344 Irho 
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