# Null-Controllability and Uniqueness of Optimal Trajectory for Controllable Systems

S.E. Aniaku<sup>1</sup>, P.C. Jackreece<sup>2</sup>

<sup>1</sup>Department of Mathematics, University of Nigeria, Nsukka, Nigeria.
<sup>2</sup>Department of Mathematics/ Statistics, University of Port-Harcourt, Rivers State, Nigeria.

**Abstract**: In this paper, it is shown that in a linear control system which can be steered to zero target from different initial points, the ultimate trajectory is unique provided the control function is bang-bang.

Keywords: Bang-bang control Null-controllability, optimal trajectory,

# I. Introoduction

Let  $E^n$  denote the n-dimensional Euclidean space. In  $E^n$  we consider the linear control system

$$\dot{x}(t) = A(t) x(t) + B(t)u(t)$$

(1.1)

$$x(0) = x_0$$

where  $\mathcal{E}E^n$ , A and B are  $n \times n$  and  $n \times m$  continuous linear matrix functions respectively on  $E^+ = [0, \infty) = I$ , say, and u is an m-vector valued measurable function with values u(t) lying in a compact, convex set  $\Omega$  of  $E^m$ . Such a u is said to be admissible.

A physical system x is said to be controllable if with the aid of external or in-built mechanism (which we call control or input function denoted by u) the system can be transferred from state  $x_0$ , say, to another state  $x_1$  in a finite time t > 0. If the state  $x_1$  to which the system is eventually transferred to is zero (that is the origin in the case of the Euclidean space  $E^n$ ), we say that the system is null-controllable.

Null-controllability is very very important and indeed needed in human situations. For example, the primary aim of many Government and even non-governmental organizations e.g. NAFDAC, WHO, to mention but a few, try to reduce to zero the number of tuberculous patients, the number of HIV/AIDS patients e.t.c in a finite time t > 0 with the help of subsidized effective drugs for the ailment. With the advances in the means of transportation e.g. cars, aeroplanes, ships motorcycles, the number of the people x dying in mishaps has been increasing in recent years. Various mechanisms are being put to such means of transportation in a view to reducing to zero the number of causalities x in a finite time t > 0.

Generally, if x is any unwanted object or situation in any community, the desirability and urgency to stamp it out (null-controllability) is very very necessary. For instance, x may denote the number of dangerous criminals in a society, frequent power cut in a certain community or the number of building collapsing in a town. Null- controllability of x in each of these situations is not only necessary but very important. This is why the topic of null-controllability has been very important and has an increasing interest to researchers such as Chukwu [1], Schitendorg [2] and Eke [3] For the system (1.1) above, the subset  $C^m$  of  $E^n$  is the m-dimensional unit cube, where  $C^m = \{u: u(t) \in \Omega, |u_j| \le 1, j = 1,2,3...m\}$ .

Note that the absolutely continuous solution of (1.1) will be denoted by x(t, u) and is

$$x(t, u) = X(t)x_0 + X(t) \int_0^t X^{-1}(s)B(s)u(s)ds$$
 (1.2)

where X(t) is a fundamental matrix solution of the system (1.1) for B = 0 and X(0) = I, the identity matrix.

The null-controllability, according to  $\operatorname{Ek}$  e is archived by imposing the condition of (1.1) the boundary condition

$$Tx = 0 ag{1.3}$$

Here, it is expected that T is a bounded linear operator defined on  $C[E^+, E^n]$ , the space of all bounded and continuous operators from  $E^+$  to  $E^n$ .

#### **Definition 1**

In the control systems as (1.1) above , if the control function u assumes its maximum value or power, then it is called optimal, and so can be denoted by  $u^*=\pm 1$ . This control  $u^*$  is called a bang-bang control.

#### **Definition 2**

The systems (1.1) is said to be Euclidean controllable if for each  $x_0 \in E^n$  and  $x_1 \in E^n$  each, there exists an admissible control u and finite time  $t_1 > 0$  such that the solution x(t, u) = x(t) of (1.1) satisfies  $x(0) = x_0$  and  $x(t_1) = x_1$ .

**Definition 3** In the definition 2 above, if  $x_1 = \overline{0}$ , then we say, that the systems (1.1) is Euclidean null-controllable

We say that an object such as control u or any other concept is optimal if it is adjusted to be the best possible in the concept of prevailing circumstances.

# **Definition 4** (Trajectory).

The path or locus along which the control function u(t) can steer a point from one point to another in the space  $E^n$  is called trajectory. This path or locus is usually denoted by G. When this trajectory is a track of optimality achievement, then it is called optimal trajectory.

We now consider the following Theorem which will help us to establish our goal.

## **Theorem 1** (Lee and Marcus [4])

Consider the autonomous linear process (1.1) in  $\mathcal{R}^n$ , with compact restraint set  $\Omega$   $\mathcal{C}$   $\mathcal{R}^m$ , initial state  $x_0$  and the origin as a the fixed target in  $\mathcal{R}^n$ . Assume

- (a) U = 0 lies in the interior of  $\Omega$ ,
- (b) (1.1) is controllable,
- (c) A is stable, that is each eigenvalue  $\lambda$  of A satisfies  $Re \ \lambda < 0$ . Then there exists a minimal time optimal controller  $u^*(t) \ C \ \Omega$  on  $0 \le t \le t^*$  steering  $x_0$  to the origin.

Proof

We know that in (1.1) (i). u=0 lies in the interior of  $\Omega$ , (ii). (1.1) is controllable and (iii). A is stable; then the domain of null-controllability is in  $\mathcal{R}^n$ . Then, there exists a controller u(t) c  $\Omega$  on  $0 \le t \le t_1$  steering  $x_0$  to the origin. Because the co-domain is a compact target set G(t) on  $0 \le t \le t_1^*$  and controller u(t) C  $\Omega$  on  $0 \le t \le t_1^*$  steering  $x_0$  to  $G(t_1)$ , then we have an optimal controller  $u^*(t)$  C  $\Omega$  on  $0 \le t \le t^*$  steering  $x_0$  to  $G(t^*)$ .

In the problem under study, we shall assume that n=2 and m=1 for ease of understanding of the trajectory through which the control function u transfers the systems (1.1) from a given initial point  $x_0$ , say, to the origin of the x-y Cartesian co-ordinate plane. However, not regarding this assumption, the result of this paper can be generalized to arbitrary integral values of n and m. Having these conditions in mind, we are now ready to state and prove our main result of this paper.

#### 1.Main Theorem

In what follows, we shall assume that the control systems is defined in  $E^2$  and extreme values of  $u^*$  is bang-bang control, steering the given systems (1.1) from any suitable initial point  $x_0$  to zero  $\overline{0}$  in finite time  $t_1 > 0$ . The problem we are interested in solving, is there fore, the following:

# Theorem.

Consider the control systems (1.1) in  $E^2$ , that is

$$\dot{x}(t) = A\dot{x}(t) + Bu(t)$$

$$x(0) = x_0$$
(2.1)

where  $x \in E^2$ , A and B are respectively  $2 \times 2$  and  $2 \times 1$  matrices. If  $u^*$  is an admissible optimal control which is bang-bang and steers the systems (2.1) from any initial point along a suitable locus to the origin in a finite time  $t_1 > 0$ , the resulting ultimate optimal trajectory  $r^*$  of null-controllability is unique. Proof:

We know that the systems (2.1) is controllable. Since our  $u^* = \pm 1$  is bang-bang, then it is normal. Then the convex restraint set  $E^2 \ C E^m$  contains u = 0 in its interior, and we have the target G as the origin x = 0. We know that (2.1) satisfies the normality condition since u is bang-bang. Then for each point  $x_0$  in the domain of null- controllability  $E^2$ , there exists a unique extremal controller  $u^*(t)$  steering  $x_0$  to the origin, and  $u^*(t)$  is the optimal controller.

Also, if A is stable, then from  $E^2 = E^n$ , and so each point  $x_0 \in E^n$  can be steered to the origin by just one extremal controller  $u^*(t)$ , namely the optimal controller.

### Example.

Consider the autonomous control process in  $E^2$ .

$$\dot{x} = Ax + Bu 
x(0) = x_0$$
(2.2)

In which  $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ ,  $A = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}$ ,  $B = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ ,

Then (2.1) takes the standard form
$$\begin{pmatrix} \dot{x_1} \\ \dot{x_2} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} u$$

$$\chi(0) = 0$$
Note that the standard form
$$(2.3)$$

Note that at extremal point, we have

$$x_2 + u = 0 \xrightarrow{yields} x_2 = -u$$
  
 $-x_2 + u = 0 \xrightarrow{yields} x_2 = u$ 

with restraint set  $\{u \in \Omega: |u| \le 1\}$  in  $E^1$ . We wish to synthesize the minimal line  $x_1 = 0$  with additional requirement that the response can thereafter be held on this line. Thus the target set is

$$G = Core\{x_1 = 0\}.$$

If the response lies on  $x_1 = 0$ , then  $\dot{x}_1 = 0$ ,  $x_2(t) = -u(t)$  and so  $|x_2| \le l$ . Conversely, each point  $x_1 = 0$ ,  $|x_2| \le l$  can be entrolled in a set  $|x_2| \le l$  by  $u(t) = -x_{20} e^{-2t}$  for  $t \ge 0$ .

$$u(t) = -x_{20} e^{-2t}$$
 for  $t \ge 0$ .

Thus G is the set  $\{x_1 = 0, |x_2| \le I\}$ . We note that G is a compact convex set in  $E^2$  and also that each point  $[x_{\theta_1}, x_{\theta_2}] \in \square$  can be steered to G by non-extremal controller

$$u(t) = -x_{20} e^{-2t}$$
 for  $t \ge 0$ .

Using the coefficient matrices  $A = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}$ ,  $B = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ , the vector  $\mathbf{w} = 1$  along  $\Omega$ , we see that the normality condition is satisfied. Thus (2.2) is controllable and by theorem 1 we assert that the domain of null-controllability is all  $E^2$  and that each initial point in  $E^2$  can be steered to G by a unique extremal controller u (t). This extremal controller is optimal and the track is known as optimal trajectory.

### References

- E. N. Chukwu, "On the Null-Controllability of Nonlinear Delay Systems with Rstrained control," J. M. Anal, vol. 78, pp. 283-299, [1].
- W. F. Schmitendorf, "Null Controllability with constraned controls," SIAM J. Control Optim, vol. 18, pp. 327-345, 1980.
- A. N. Ekr, "Null Controllability criteria for Nonlinear systems," NIJOTECH, vol. 7, no. 1, pp. 71-75, 1983. E. Lee and L. Markus, Foundations of Contol Theory, New York: John Wiley, 1967. [3].
- [4].
- J. U. Onwuatu, "Null Controllability of nonlinear infinite Neutral systems," Kyber Netica, vol. 29, no. 4, pp. 325-336, 1993.
- [6]. A. N. Eke, "Null Controllability for linear Control systems," Journal Inst Math& Comp Sc(Math Ser), vol. 3, no. 2, pp. 149-154,
- R. F. Brammer, "Controllability In linear Autonomous Systems with Positive Controllers," SIAM J. Control, vol. 10, no. 2, pp. 339-[7]. 353, 1972.

S.E. Aniaku. "Null-Controllability and Uniqueness of Optimal Trajectory for Controllable Systems." IOSR Journal of Mathematics (IOSR-JM) 13.3 (2017): 49-51.