Complement Topologies

¹Chika Moore, ²Alexander Ilo

¹Department Of Mathematics, Nnamdi Azikiwe University, P.M.B. Awka. Alexander Ilo ²Department Of Mathematics, Paul University, P.M.B., Awka Anambra State.

Abstract

Let (X,τ) be a topological space. We consider the collection $\tau^c = \{G^c : G \in \tau\}$ of all the τ -closed subsets of X. If τ^c is a topology on X then we call τ a complement topology on X. Necessary and sufficient conditions for a topology τ on X to be a complement topology on X are examined. We proved, among other things, that

- Any finite topology (topology with a finite cardinality) is a complement topology;
- A topology τ on X is a complement topology on X if, and only if, it is closed under arbitrary intersections;
- The family of the complements of the topologies in a chain of complement topologies on any set X is itself also a chain of complement topologies on X.

Keywords: Complement Topology, Arbitrary Intersections, Chain of Topologies.

I. Introduction

It is known that a topology τ on a set X is the collection of all the *open* subsets of X. Hence, a topology τ on a set X is a collection of subsets of X which satisfy the *axiom of openness*; the standard four conditions. Openness of a subset is therefore relative to the topology under consideration. Some sets which are considered closed in one topology are open in another topology and vice-versa. A question of interest is $Can\ all\ those\ sets\ considered\ closed\ with\ respect\ to\ a\ topology\ on\ a\ set\ X\ be\ precisely\ the\ ones\ considered\ open\ with\ respect\ to\ another\ topology\ on\ X\ ?$ Of course, we are excluding the trivial cases of the discrete and indiscrete topologies on X. This seemingly academic but rather interesting question is the main motivation for this paper.

II. Main Results|De_Nitions, Properties And Im- Plications

Definition 2.1 Let (X, τ) be a topological space and let τ^c be the collection

$$\tau^c = \{G^c : G \in \tau\}$$

of complements of τ -open sets. Then we call τ^c the complement of the topology τ on X.

Definition 2.2 If (X, τ) is a topological space and the complement τ^c of τ is itself also a topology on X, we call τ a complement topology, on X.

REMARK

Since $\tau = (\tau^c)^c$, it follows that τ is a complement topology on X if and only if τ^c is also a complement topology on X. It turns out that large classes of topologies are complement topologies.

Theorem 2.1 Every topology on a finite set is a complement topology.

Proof:

Let τ be a topology on a finite set X and let τ^c be its complement. Then

- Clearly both ∅ and X belong to τ^c.
- 2. Let $\{G_i\}_{i=1}^n \subset \tau^c$. Then $\bigcap_{i=1}^n G_i = (\bigcup_{i=1}^n G_i^c)^c$. But $G_i \in \tau^c \Rightarrow G_i^c \in \tau$. $\Rightarrow \bigcup_{i=1}^n G_i^c \in \tau$. $\Rightarrow \bigcap_{i=1}^n G_i = (\bigcup_{i=1}^n G_i^c)^c \in \tau^c$. $\Rightarrow \tau^c$ is closed under finite intersections.
- 3. Let $\{G_{\alpha}\}_{\alpha\in\Delta}\subset\tau^{c}$. Then $\bigcup_{\alpha\in\Delta}G_{\alpha}=(\bigcap_{\alpha\in\Delta}G_{\alpha}^{c})^{c}$. Now, $G_{\alpha}\in\tau^{c}\Rightarrow G_{\alpha}^{c}\in\tau$. $\Rightarrow\bigcap_{\alpha\in\Delta}G_{\alpha}^{c}\in\tau$, as finite intersections of sets of τ belong to τ . (We observe that the intersection cannot be infinite since X is finite.) Hence, since the complement of every set in τ is collected in τ^{c} , it follows that $\bigcup_{\alpha\in\Delta}G_{\alpha}=(\bigcap_{\alpha\in\Delta}G_{\alpha}^{c})^{c}\in\tau^{c}$. This implies that τ^{c} is also closed under arbitrary unions. Hence the complement of every topology on a finite set is a topology on the set.

Example 2.1

Let $X = \{x_1, x_2, x_3, \dots, x_n\}$ be any non-empty finite set and let

$$\tau = {\emptyset, X, {x_1}, {x_1, x_2}}$$

be a topology on X. Then $\tau^c = \{X, \emptyset, \{x_2, x_3, \dots, x_n\}, \{x_3, x_4, \dots, x_n\}\}$ is clearly a topology on X.

Example 2.2

Let $X = \{x_1, x_2, x_3, \dots, x_n\}$ be a non-empty finite set and let

$$\tau_k = \{\emptyset, X, \{x_1\}, \{x_1, x_2\}, \cdots, \{x_1, x_2, \cdots, x_k\}\}; 1 \le k < n.$$

Then τ_k is a topology on X, for all k. Now

$$\tau_k^c = \{X, \emptyset, \{x_2, \dots, x_n\}, \{x_3, \dots, x_n\}, \dots, \{x_{k+1}, \dots, x_n\}\}\$$

is also a topology on X, $1 \le k < n$. (This example illustrates the remark after Definition 2.2 above. More of such examples appear at the end of section 3.) The proof of theorem 2.1 above points the way for a more general result.

Theorem 2.2 Let X be any nonempty set and let τ be a finite topology (topology with finite cardinality) on X. Then τ is a complement topology on X.

Corollary 2.1 Let X be an infinite set and let τ be a topology on X. Then the complement τ^c of the topology τ is itself a topology on X if τ contains only a finite number of open sets.

Example 2.3

Let $a, b \in R$ be any two real numbers. Then $\tau = \{\emptyset, R, \{a\}, \{b\}, \{a, b\}\}$ is a topology on R. Without loss of generality, we can let a < b. Then the complement

$$\begin{aligned} &\tau^c = \{\emptyset, R, R - \{a\}, R - \{b\}, R - \{a, b\}\} \\ &= \{\emptyset, R, (-\infty, a) \bigcup (a, +\infty), (-\infty, b) \bigcup (b, +\infty), (-\infty, a) \bigcup (a, b) \bigcup (b, +\infty)\} \\ &\text{of } \tau \text{ is easily seen to be a topology on } R. \end{aligned}$$

Let $G_0 = N = \{0, 1, 2, \cdots\}$, $G_1 = \{1, 2, 3, \cdots\}$, $G_2 = \{2, 3, 4, \cdots\}$. Then $\tau = \{\emptyset, G_k\}_{k=0}^2$ is easily seen to be a topology on N. The complement of τ , $\tau^c = \{\emptyset, N, \{0\}, \{0, 1\}\}$ is also a topology on N. In general if $G_0 = N$, $G_1 = N - \{0\}$, $G_2 = N - \{0, 1\}$, $G_3 = N - \{0, 1, 2\}, \cdots$, $G_n = N - \{0, 1, 2, \cdots, n-1\}$, then $\tau = \{\emptyset, G_k\}_{k=0}^n$ is a topology on N, and its complement τ^c is also a topology on N.

Now, every topology τ on a finite set is necessarily finite. Hence theorem 2.2 asserts, relative to theorem 2.1, that every finite topology on an infinite set is a complement topology. This raises the following interesting question: Are the finite topologies the only topologies on infinite sets that are complement topology? That is, is a complement topology on an infinite set necessarily finite? The next theorem which answers the above question in the negative provides a characterization of complement topologies.

Theorem 2.3 A topology τ on a set X is a complement topology if, and only if τ is closed under arbitrary intersections.

Proof:

 \Longrightarrow Clearly if τ is a complement topology then it is closed under arbitrary intersections.

 \Leftarrow . Let τ be closed under arbitrary intersections and let τ^c be the complement of τ . We show that τ^c is a topology on X. We need only show that τ^c is closed under arbitrary unions, as the other properties of a topology are easily seen to be satisfied by τ^c . So, let $\{A_\alpha : \alpha \in \Delta\} \subset \tau^c$ be any family of sets of τ^c . We consider

$$\left(\bigcup_{\alpha \in \Delta} A_{\alpha}\right)^{c} = \bigcap_{\alpha \in \Delta} A_{\alpha}^{c}$$

Clearly $A_{\alpha}^{c} \in \tau$, for all $A_{\alpha} \in \tau^{c}$. Since τ is, by hypothesis, closed under arbitrary intersections $\bigcap_{\alpha \in \Delta} A_{\alpha}^{c} \in \tau$. Hence the left side of (1) is an element of τ ; implying that $\left[\left(\bigcup_{\alpha \in \Delta} A_{\alpha}\right)^{c}\right]^{c} = \left(\bigcup_{\alpha \in \Delta} A_{\alpha}\right) \in \tau^{c}$.

From theorem 2.3, it follows that every discrete topology is a complement topology; and in particular it follows that discrete topologies of in_nite sets (which necessarily contain in_nitely many open sets) are complement topologies. And there are other complement topologies, with in_nitely many open sets, which are not discrete topologies.

Lemma 2.1 (Comparison) Let τ_1 and τ_2 be any two complement topologies on a set X such that (say) τ_1 is weaker than τ_2 . Then τ_1^c is weaker than τ_2^c .

III. Application

Definition 3.1 A family $C = \{\tau_{\alpha}\}_{{\alpha} \in \Delta}$ of topologies on a set, X, is called a chain of topologies, on X, if elements of C are pair-wise comparable, in that for any two topologies, τ_{α} and τ_{β} , in C, either τ_{α} is weaker than τ_{β} or vice versa.

Definition 3.2 Any topology which is an element of a chain C of topologies on a set is called a chain element topology.

Theorem 3.1 Let $X = \{x_1, x_2, x_3, \dots, x_n\}$ be any non-empty finite set. There exists a finite family of topologies on X forming a chain, such that the family of their complement topologies is also a chain.

Proof: Let

 $G_1 = X - \{x_1\} = \{x_2, x_3, \dots, x_n\}.$

Then $\tau_1 = \{\emptyset, G_0, G_1\}$ is a topology on X. Let

$$G_0 = X$$
:

$$G_1 = X - \{x_1\} = \{x_2, x_3, \dots, x_n\};$$

$$G_2 = X - \{x_1, x_2\} = \{x_3, x_4, \cdots, x_n\}.$$

Then $\tau_2 = {\emptyset, G_k}_{k=0}^2$ is a topology on X, stronger than τ_1 .

:

Let

$$G_0 = X;$$

$$G_1 = X - \{x_1\} = \{x_2, x_3, \dots, x_n\};$$

$$G_2 = X - \{x_1, x_2\} = \{x_3, x_4, \cdots, x_n\};$$

$$G_3 = X - \{x_1, x_2, x_3\} = \{x_4, x_5, \cdots, x_n\};$$

÷

$$G_k = X - \{x_1, x_2, \cdots, x_k\} = \{x_{k+1}, x_{k+2}, \cdots, x_n\},\$$

 $1 \leq k \leq n$. Then $\tau_k = \{\emptyset, G_t\}_{t=0}^k$ is a topology on X finer than τ_{k-1} . Hence $\{\tau_k\}_{k=1}^n$ is a (finite) family of topologies on X forming a chain in that

$$\tau_1 < \tau_2 < \cdots < \tau_n$$
.

We also see that

$$\tau_1^c = \{\emptyset, X, \{x_1\}\};$$

$$\tau_2^c = \{\emptyset, X, \{x_1\}, \{x_1, x_2\}\}, \text{ etc.}$$

are topologies (in chain) on X.

Proof of Theorem 3.1 can be extended to any set even if in nite with a chain of complement topologies. The next corollary states this.

Corollary 3.1 Let $C = \{\tau_{\alpha}\}_{{\alpha} \in \Delta}$ be a chain of complement topologies on any set X. Then the family $C^* = \{\tau_{\alpha}^c : \tau_{\alpha} \in C\}_{{\alpha} \in \Delta}$ of complements of the topologies in C is also a chain of complement topologies on X. Conversely, the family of the complements of the topologies in a chain of complement topologies on any set X is itself also a chain of complement topologies on X.

More Examples

- [1] The usual topology u on the set R of real numbers is not closed under arbitrary intersections and is thus not a complement topology.
- [2] The usual topology on the Cartesian plane is not closed under arbitrary intersections and is, hence, not a complement topology.
- [3] The lower limit (or Sorgenfrey) topology on R is not closed under arbitrary intersections and is also not a complement topology.
- [4] Let $X = \{x_1, x_2, \dots, x_n\}$ be a finite set, and let $k \in N$ be such that $2k-1 \le n$. Then

$$\tau_{2k-1} = \{\emptyset, X, \{x_1\}, \{x_1, x_3\}, \dots, \{x_1, x_3, \dots, x_{2k-1}\}\}$$

is a topology on X, for $1 \le k \le \lceil \frac{n-1}{2} \rceil$. We see also that

$$\tau_{2k-1}^c = \{X, \emptyset, \{x_2, \dots, x_n\}, \{x_2, x_4, \dots, x_n\}, \dots, \{x_2, x_4, \dots, x_n\}\}$$

is a topology on X.

[5] Let $X = \{x_1, x_2, \dots, x_n\}$ be a finite set, and let $k \in N$ be such that $2k - 1 \le n$. Then $\tau_{2k-1} = \left\{\emptyset, X, \bigcup_{t=1}^k \{x_{2t-1}\}\right\}$ is a topology on X, for $1 \le k \le \left[\frac{n-1}{2}\right]$. Also $\tau_{2k-1}^c = \left\{X, \emptyset, X - \bigcup_{t=1}^k \{x_{2t-1}\}\right\}$ is a topology on X; $1 \le k \le \left[\frac{n-1}{2}\right]$. [6] Let $X = \{x_1, x_2, \dots, x_n\}$ be a finite set, $n = mt + r, 0 \le r < m$. Let $\tau_m = \{\emptyset, X, \{x_m\}, \{x_m, x_{2m}\}, \dots, \{x_m, x_{2m}, \dots, x_{tm}\}\} = \left\{\emptyset, X, \bigcup_{i=1}^k \{x_{im}\}\right\}$; $1 \le k \le t$. Then τ_m is a topology on X. And we see that $\left\{X, \emptyset, X - \bigcup_{i=1}^k \{x_{im}\}\right\}$; $1 \le k \le t$ is a topology on X.

Remark

It is known that a topological space (X, τ) is a T_1 -space if, and only if, singletons are τ -closed subsets of X. It is observable from the foregoing that if a topology τ on a set X is a complement topology then the very sets which are seen as τ -closed are the sets which constitute the open sets of another topology on X, with equal cardinality as τ . These imply the following.

Corollary 3.2 If (X, τ) is a T_1 topological space, then τ is a complement topology if, and only if, τ is the discrete topology of X.

Proof:

Since (X, τ) is T_1 , singletons of X are τ -closed. Since τ is a complement topology on X and singletons of X are τ -closed, it follows that singletons are among the τ^c -open sets. Hence every subset of X is τ^c -open, implying that τ^c is the discrete topology of X. Since $(\tau^c)^c = \tau$, it follows that τ is the discrete topology of X.

Remark

That a topology is a complement topology does not imply that it is T_1 . Also, every T_1 -space is not a complement topology. By Corollary 3.2, a T_1 -space which is a complement topology must be a discrete topology. It follows that if a T_1 -space is not discrete then it cannot be a complement topology. For example, the set R of real numbers with its usual topology u is T_1 but u is not a complement topology. Hence all complement topologies are not T_1 and all T_1 -spaces are not complement topologies.

References

- [1]. Angus E. Taylor and David C. Lay; Introduction to Functional Anal-ysis; Second Edition, John Wiley and Sons, New York, 1980.
- [2]. Benjamin T. Sims; Fundamentals of Topology; Macmillan Publish-ing Co., Inc., New York; Collier Macmillan Publishers, London and Canada. 1976.
- [3]. Edwards R.E.; Functional Analysis: Theory and Applications; Dover Publications Inc., New York, 1995.
- [4]. James R. Munkres; Topology; Second Edition, Prentice-Hall of India Private Limited, New Delhi, 2007.
- [5]. Seymour Lipschutz; Theory and Problems of General Topology; Schaum's Series, McGraw-Hill Publications, New York, 1965.
- [6]. Sheldon W. Davis; Topology; McGraw-Hill Higher Educa-tion/Walter Rudin Series in Advanced Mathematics, Boston, 2005.
- [7]. Sidney A. Morris; Topology Without Tears; July 24, 2016 Version, From Internet. Link: sidney.morris@gmail.com; and www.sidneymorris.net
- [8]. Royden H.L. and Fitzpatrick P.M.; Real Analysis; PHI Learning Private Limited, 4th Edition, 2012
- [9]. V.S. Medvedev, E.V. Zhuzhoma Morse-Smale Systems with Few Non-wandering Points; Topology and Its Applications (498-507), Elsevier B.V., 2013
- [10]. Simmons, G.F. Introduction to Topology and Modern Analysis; McGraw-Hill, New York, 1963.
- [11]. Titchmarsh, E.C. Theory of Functions Second Edition, Oxford Uni- versity Press, Oxford, 1939.
- [12]. Sheldon W. Davis Topology; McGraw Hill Higher Education, Boston, 2005.

Chika Moore. "Complement Topologies." IOSR Journal of Mathematics (IOSR-JM) 13.3 (2017): 73-77.