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Abstract: Logistic regression model is one of the popular mathematical models for analysis of binary data with 

applications in health, behavioural and statistical sciences. The main mathematical concept under the logistic 

regression model is the logit or the natural logarithm of an odds ratio. It is one of the most commonly used 

models to account for confounders in medical literature. This research sought to evaluate the impact of auto-

matic backward model selection criterion on the bias of the parameters for large sample size. This study used a 

data set simulated in R-package using different kinds of controlled variables and also diabetic data obtained 

from Coast General Provincial hospital, Mombasa. The automatic backward selection method was used 

because they are faster and objective since they use the p -value to find the optimal model in which the  fitted 

values are closest to the true outcome probabilities. The overall result was an inclusive logistic regression mod-

el with a subset of statistically significant predictors that best explain the variability in their observations. 
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I. Introduction 

Logistic regression analysis technique can be used to find the best fitting model that best describes the 

relationship between binary outcome and the set of independent variables (Hosmer et al, 2013). The main 

mathematical concept under the logistic regression is the logit or the natural logarithm of an odds ratio. 

Traditionally ordinary least squares (OLS) regression or linear discriminant function analysis were used to 

address the analysis and prediction of a dichotomous outcome. Both techniques were subsequently found to be 

less than ideal for handling dichotomous outcomes due to their strict statistical assumptions namely; linearity, 

normality, and continuity for OLS regression and multivariate normality with equal variances and covariance’s 

for discriminant analysis (Cabrera et al, 2013).  Logistic regression has thus been increasingly used in social 

sciences, educational research especially in higher education (Peng C.Y, 2013). This prediction model is very 

important in clinical decision making because it can guide care providers as well as individuals in deciding 

further disease management.  

This study seeks to evaluate the impact of automatic backward model selection criterion on the bias of 

the parameters for large sample size data by selecting the best variables for the logistic regression model using 

simulated data and a case study diabetes data from Coast General provincial hospital. 

  

II. Literature Review 
Regression methods are commonly used for analysing the relationship between dependent variable and 

one or more independent variables ( Al-Ghamdi, 2001). The most popular regression method is linear regression 

using the method of least squares. It is applicable when the dependent variable is continuous, independent and 

identically distributed. They were the first type of regression analysis to be studied rigorously, and to be used 

extensively in practical applications Yan, Xin (2009). 

Traditionally ordinary least squares (OLS) regression or linear discriminant function analysis were 

used to address the analysis and prediction of a dichotomous outcome. Both techniques were subsequently 

found to be less than ideal for handling dichotomous outcomes due to their strict statistical assumptions namely; 

linearity, normality, and continuity for OLS regression and multivariate normality with equal variances and 

covariance’s for discriminant analysis (Cabrera et al, 2013).  

 

2.1 Logistic Regression Model 

According to (Hosmer et al, 2000), the fact concerning the interpretability of the coefficients is the 

fundamental reason logistic regression has been such powerful tool for epidemiologic research. Based on its 

assumptions, the logit model can be estimated using the maximum log-likelihood method (Gourieroux, 2000). 
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According to Klein Baum et al (2008), logistic regression quantifies the relationship between the dichotomous 

dependent variable and the predictors using odds ratios. Logistic regression curve is an s-shaped or sigmoid 

curve, often used to model population growth (Eberhardt et al, 2012). Logistic regression analysis technique can 

be used to find the best fitting model that best describes the relationship between an outcome and the set of 

independent variables (Hosmer et al, 2013). Logistic regression has thus been increasingly used in social 

sciences, educational research especially in higher education (Peng C.Y, 2013). The main mathematical concept 

under the logistic regression is the logit or the natural logarithm of an odds ratio. Logit model analyses the 

relationship between multiple independent variables and a categorical dependent variable and estimates the 

probability of occurrence of an event by fitting data to a logistic curve (Park et al, 2013). 

 

2.2 Model Assumptions 

McCullagh et al (1983) cited that logit model assummes the following;  

i. The outcome (Y) follows an independent Bernoulli distribution 

ii. A linear predictor ))1/(ln()(' PPxhn ii    is the log odds ratio and P is defined as expectation of 

y and  has a logit link function: 
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Bewick et al (2005)  cited that the following assumptions still applies to logistic regresion model:  

i. The depedent variable to be discrete mostly dichotomous 

ii. The desired outcome should be coded 1, model should be fitted correctly (not overfitted or underfitted with 

variables)  

iii. The model should have little or no multicollinearity 

iv. The  logistic regression does not require a linear relationship between the depedent and independent 

variables, it requires that the independent variables are linearly related to the log odds of an event. 

v. Lastly logistic regression requires large sample sizes because maximum likelihood estimates are less 

powerful than ordinary least squares used in linear regression.  

2.3 Backward Selection  

The best possible logistic regression model can be obtained by a method called stepwise backward 

elimination which in a predictive model is a straightforward way of reaching the highest possible accuracy 

(Menard, 1995). A new sample method can be used to assess the goodness of fit of a previously developed mod-

el by applying the model as it is to the new sample (Harrel et al, 1996). In demonstrating the generalizability of 

a model in order to use it to predict outcomes for future subjects, model validation has to be carried out (Hosmer 

et al, 2000). According to Hosmer et al (2000), full logistic regression model will have all the parameters of 

interest and the simple model has one variable dropped. The likelihood ratio test is chi-square distributed and if 

test is significant then the dropped variable will be a significant predictor in the equation (Premph, 2009) 

Information criterion statistics (AIC) or Bayesian Information Criterion (BIC) ranks the evidence in the 

data to select good models from a set of a-priori chosen models (Burnham et al, 2002). Information criteria are 

generally preferred over multiple hypothesis tests because model building is not inherently a hypothesis testing 

problem and selection via hypothesis testing has shown to include unimportant variables (Burnham et al, 2002). 

According to Hosmer and Lemeshow (2000), the deviance statistic plays an essential role in the 

assessment of goodness of fit of the model.  A comparison between a saturated model and the current model 

where a saturated model is one that contains as many parameters as the number of data points and the current 

model (that contains only the variables being assessed) is made. Large deviance values and P-values less than 

0.05 are an indication of lack of fit of the current model (Agresti, 2007). A p-value greater than 0.05 

significance level is an indication that at least one coefficient is non-zero (Abdelrahman, 2010).  

 

III. Methodology 

3.1 Logistic regression 

The logistic regression model is popular because the logistic function on which the model is based pro-

vides estimates that must lie in the range between 0 -1 and has the appealing S-shaped description of the com-

bined effect of several risk factors on the risk for a disease. (David G. Kleinbaum, 2010).   

The dependent variable in the logistic regression was binary or dichotomous. The maximum likelihood method, 

which yields values for the unknown parameters, was used for estimating the least squares function. Logistic 

regression solved such problems by applying the logit transformation. Logistic regression predicts the logit of Y 

to X.  Since the logit is the natural logarithm (ln) of odds of Y and the odds are the ratios of probabilities (π) of 

Y happening to probabilities (1-π) of Y not happening. 

The logistic regression model according to Harrell (2001) is given by equation  

   iii xyPx /1  =    1
exp1


 TX  ……………………. (3.1) 
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                        1, true/pass     for i n,.....,2,1   

Where iy     =       

                              0, Otherwise 
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where kxxx ....,.........2,1 are the independent variables, 0 is the coefficient of the constant term, 

121 ,........,, p  are the coefficients of the p independent variables and  ix  is the probability of an event 

that dependents on p-independent variables. 

Since      1
exp1


  T

i Xx  

=
 TX exp1
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3.2 Model Estimation 

The coefficients in logistic regression model tell us the relation between a dummy dependent variable 

and continuous or/and categorical independent variables.  The coefficients are expected to have optimal values. 

This is done with the maximum likelihood estimation method which helps to find the set of parameters for 

which the probability of observed data is largest (Scott A., 2008). 
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Where   )0(1)1(  iii YPYP .  From equation 3,  each iy   represents a binomial count in the i
th

   

population, thus the maximum likelihood equation comes from the probability distribution of dependent variable 

Y. 
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 The combination function )( , ii ynC  is the number of different ways to arrange iy   successes from in   trials 
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parameters of the function are reversed. Thus the likelihood function use fixed value for Y resulting to the func-
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Rearranging equation 3, 
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By simplifying and taking the derivative with respect to each  and set it equal to zero to get the critical points 

of the log likelihood function ijijjj
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The estimate of  can be found by setting each of the 1k  equations at equations (3.10)  equal to zero and 

solve for each j . This solution gives a critical point either a maximum or minimum and if the matrix of second 

partial derivative is negative definite it will be maximum (Scott A., 2008). 

This matrix also forms the variance-covariance matrix of the parameter estimates. It can be found by differenti-

ating each of the 1k  equations in equation (3.10) for the second time with respect to each , so the second 

partial derivate will be of the form  
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Putting equation (3.11) equals to zero results to 1k  nonlinear equations with 1k  unknown vari-

ables. Solving a system of nonlinear equations is difficult, so that the solution must be numerically estimated by 

using an iterative process. The iterative solution need to be applied using Newton-Raphson method. To find the 

roots of equation (3.10) it is better to use matrix notation. The equation (3.10) can be written as )(' l and let 

)0( represent a vector of initial approximations for each j , the initial step of Newton-Raphson can be ex-

pressed as 

  )('.)( )0('1)0('')0()1(  ll


  using matrix multiplication )()('   yXl T
 Where  is a col-

umn vector of length N with elements iii pnu  and )(' l will be a column vector of length 1k  with ele-

ments 
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. Also WXXl T)('  where W is a square matrix of order N with diagonal elements 

 iiii pnpn 1  and zero everywhere else, then )(' l , described using matrix multiplication as above, is a 
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1k x 1k  square matrix with elements 
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(Scott A., 2008). The initial step Newton-Raphson can be 

written as;   )(
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yXWXX TT
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This iteration will continue until there is no change between the elements of  from one to the next iteration. 

Then the maximum likelihood estimates will converge.  

 

3.3 Variables Selection  

The potential explanatory variables were examined to determine whether or not they are significant 

enough to be used in the model.  Variable selection plays an important role in classification. When many varia-

bles are involved only that which is really required should be selected to eliminate the less significant variables 

from the analysis. Selecting a subset of the variables instead of the whole set of candidate variables is necessary 

due to the reasons that, it is cheaper to measure only a reduced set of variables, prediction accuracy may be im-

proved through exclusion of redundant and irrelevant variables, the predictor to be built is usually simpler and 

potentially faster when fewer input variables are used and knowing which variables are relevant can give insight 

in to the nature of the prediction problem (Reunanen, 2003).   Automatic backward elimination method was 

used since it is the simplest of all variable selection procedures, can be implemented without special software 

and it is objective since they use the p -value. Its procudere is as follows: 

i. It starts with all the predictors in the model, the predictor with the highest p -value greator than crit is 

removed. 

ii. Refit the model and go to (ii) 

iii. Stop when all p -values are less than crit  

 

IV. Results 

4.1 Simulation Study Algorithm 

A simulation of binary logistic data from Bernoulli distribution. In order to perform a simulation study, 

the parameters defined in the simulation setting section were used to generate a new random dataset in each 

iteration. A general logistic regression model is defined as:  ii Xit )(log  where,    is the probability of 

success for subject ,i  is the vector of regression coefficients and X is the matrix of predictors possibly 

including an intercept. 

 

4.2 Generating data and performing simulation 

The steps followed in simulating a new dataset were as follows:  

a) Generating the matrix of covariates iX  having N rows and npred columns, with values sampled from a 

standard normal distribution,  

b) Compute iX  by classical matrix multiplication, resulting in an  1NX ,  

c) Calculate the 'true' probability of success   from the relationship, 

))exp(1(

)exp(






i

i

X

X


 ………………………………………….4.1  

d) Sample the vector of Bernoulli outcomes from an appropriate distribution using the 'true' probability of suc-

cess , for each observation in the data. 

e) This final dataset is then used for subsequent analysis in that particular iteration  Nsimjj ....2,1,   

f) Finally, data generation steps were repeated for the different parameter settings. 

 

The Simulation function was executed for varying sample sizes and for a given sample size, several da-

tasets were generated. Note that the regression coefficient estimation with ()gls  and backward model selection 

algorithm were both run on the same dataset in each simulation.  This allowed for conclusions to be based on 

exactly the same dataset in each iteration step. 
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4.3 Impact of automatic backward model selection criterion on the bias of the parameters for large 

sample size 

Often, during model building, there is need to select a subset of possible predictors that best explain the 

variability in their observations. A more parsimonious model may be developed either through expert 

knowledge of the important predictors for the phenomenon under investigation, and/or using an automatic 

variable selection methods.  

Automatic variable selection methods do not always result in meaningful models as they may exclude 

important predictors or result in meaningless models, for instance, in the case of dummy coded data. In order to 

investigate the behaviour of the backward variable selection algorithm in a logistic regression model, the 

researcher let the coefficient of 4x in the simulation 0001.04  , signifying negligible contribution of 4x  in 

the model. Moreover, a specified wide range for the coefficients of the remaining predictors is used in order to 

assess the impact of the magnitude of a predictor when included in the model by the backward selection 

algorithm. 

The backward selection methods involves starting by fitting a model with all the variables of interest, 

then the least significant variable is dropped. The process continues by successively re-fitting reduced models 

and applying the same rule until all remaining variables are statistically significant. The results in table 4.1 show 

the proportion (%) of times each predictor was included in the model. 

 

Table 4. 1: Proportion (%) of times each predictor was included in the model 
Sample Size x1 x2 x3 x4 x5 x6 

30 89.8 98.4 87.6 25.6 41.6 45.4 
60 97.8 100.0 98.6 20.0 51.6 54.2 

120 100.0 100.0 100.0 18.0 62.4 79.2 

300 100.0 100.0 100.0 19.4 91.0 97.4 
600 100.0 100.0 100.0 18.0 99.6 100.0 

 
The result of backward selection indicates that; the relative magnitude of the true regression 

coefficients has an impact on the inclusion of the respective predictors in the model. And for small coefficients, 

the sample size has an impact on their inclusion in the model. This further emphasizes the need for adequate 

samples per predictor in the estimation of logistic regression. 

 

4.6 Application of Logistic Regression to Diabetes Data 

 Summary statistics for continuous predictors 

The summary statistics for the continuous predictors; Age, systolic pressure, diastolic pressure, BMI and blood 

sugar  in terms of mean and standard deviation are as shown. 
 Age Systolic Pressure Diastolic Pressure BMI Blood Sugar 

Mean 44.64       120.23 75.22 25.15   8.85 

SD 19.06       23.70 12.03 8.90   8.34 
 

The mean age of the patients was 44.6 years with standard deviation of 19.06, Systolic pressure mean 

(120.23) and sd (23.7), diastolic pressure mean (75.22) and sd (12.03), BMI mean (25.15) and sd (8.9) and 

blood sugar mean (8.85) and sd (8.34).  
 

4.6.2 Summary statistics for the categorical predictors is shown in the table below. 

Table 4. 2: Summary statistics for continuous predictors 

The researcher sought to find out the summary statistics for continuous predictors; diabetes status, gender, Visit 

type and blood sugar test type. 

 Diabetes Gender Visit BloodSugar 

 No :529 Female:675 First :569 First : 40 
 Yes:680 Male :534 Referal:634 Random:1169 

 NA NA Deferal: 6 NA 

     

 

On the status of diabetes, 680 patients were diabetic while 529 were non-diabetic, 675 were female and 

534 male, 634 of the patients were referral’s, 569 had visited for the first time while 6 were deferral. On the type 

of blood sugar test 1169 of the patients was random and 40 was taken before taking any meal. 

4.6.3 Automatic Backward selection criterion 

First, we fit a logistic regression model of the diabetes status regressed against agex 1 , 2x systolic blood 

pressure, 3x diastolic blood pressure, 4x BMI, 5x gender, 6x visit type and 7x Blood sugar. The 

logistic regression equation is defined as, 772211 ........)(log xxxit i   . 
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Table 4. 3: Logistic regression coefficients for the full model 
Term estimate std.error statistic p.value 
Age -0.0291860 0.0066706 -4.375292 0.0000121 
SexFemale -15.3702239 1.3614003 -11.290010 0.0000000 
SexMale -15.6714024 1.3726764 -11.416677 0.0000000 
SystolicPressure 0.1045439 0.0105808 9.880496 0.0000000 
DiastolicPressure -0.0446358 0.0130208 -3.428048 0.0006079 
BMI1 0.1462542 0.0252389 5.794783 0.0000000 
Bloodsugar 0.8361114 0.0685115 12.203955 0.0000000 
BloodSugarRFRandom -0.8530984 0.6320141 -1.349809 0.1770773 

 

The overall test of significance for the regression coefficients is shown on table 4.5 above. Using the p 

values obtained the values that had significant values were considered to be taken in to the logistic regression 

model. All the predictors except the indicator of whether the blood sugar test was the first or random, were 

found to be statistically significant in explaining the diabetes status of patients. The test was carried out at 

05.0 level of significance. 

 

4.6.4 Logistic regression coefficients for the full model. 

Table 4. 4: Logistic regression coefficients for the full model. 
 LR Chisq Df Pr(>Chisq) 
Age 20.768710 1 0.0000052 
Sex 166.054416 2 0.0000000 
SystolicPressure 143.161270 1 0.0000000 
DiastolicPressure 12.094450 1 0.0005057 
BMI1 37.994524 1 0.0000000 
Bloodsugar 533.274342 1 0.0000000 
BloodSugarRF 1.806874 1 0.1788837 

 

4.6.5 Reduced logistic regression model 

The backward variable selection algorithm was further applied to the case study data in order to evaluate wheth-

er a more parsimonious model could be derived. Table 4.7 presents the logistic regression coefficients for the 

reduced model. 

 

4.6.6 Reduced model: logistic regression coefficients for the reduced model 

Table 4. 5: Reduced model: logistic regression coefficients for the reduced model 
term estimate std.error statistic p.value 
Age -0.0293310 0.0066502 -4.410568 0.0000103 
SexFemale -16.2642404 1.2090287 -13.452319 0.0000000 
SexMale -16.5701606 1.2191539 -13.591525 0.0000000 
SystolicPressure 0.1047026 0.0105343 9.939249 0.0000000 
DiastolicPressure -0.0437381 0.0129533 -3.376607 0.0007339 
BMI1 0.1463122 0.0251046 5.828095 0.0000000 
Bloodsugar 0.8334789 0.0682429 12.213417 0.0000000 

 

The final model from the automatic selection algorithm dropped the blood sugar test type which was 

found not to be statistically insignificant in the full model. There was no much disparity in the regression coeffi-

cients between the full and the reduced model. 

 

4.6.6 Logistic regression coefficients for the reduced model 

The Wald statistic was used to assess the contribution of individual predictors or the significance of individual 

coefficients in a given model. Table 4.8 presents the statistical significance of individual regression coefficients 

( )s tested using the Wald Chi-square statistic.  

 

Table 4. 6: Logistic regression coefficients for the reduced model 

 LR Chisq Df Pr(>Chisq) 
Age 21.09510 1 0.0000044 
Sex 401.99232 2 0.0000000 
SystolicPressure 144.14423 1 0.0000000 
DiastolicPressure 11.73598 1 0.0006130 
BMI1 38.48045 1 0.0000000 
Bloodsugar 531.99523 1 0.0000000 
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Table 4.8 presents the regression coefficients for the reduced model using Wald Chi-square statistics. Age, Sex, 

Systolic pressure, Diastolic pressure, bmi and Blood sugar were significant predictors of diabetic status 

( )05.0p . 

 

V. Conclusion 

We can therefore conclude that; there is need to evaluate whether a more parsimonious model could be 

derived by selecting a subset of possible predictors that best explain the variability in their observations. 

Variable selection is a means to an end and not an end to itself. Variable selection helps to construct a model 

that predicts best or explains the relationships in the data. Forward selection criterion has drawbacks, including 

the fact that each addition of a new variable may render one or more of the already included variables non-

significant. Step wise methods use a restricted search through the space of potential models and use a dubious 

hypothesis testing based method for choosing between models. Other methods like AIC and BIC need to be 

combined with the ANOVA table for objective results. An alternate approach used in this research which avoids 

this shortcoming is backward selection. Backward elimination methods are faster, simpler and can be easily 

implemented without special software. They are much objective since they use only the p -value to determine 

which variables to keep or remove.  Finally, on the application of the diabetes data the predictors used to fit  the 

full logistic regression model; age, systolic blood pressure, diastolic blood pressure, BMI, gender, visit type and 

Blood sugar except the indicator of whether the blood sugar test was the first or random, were found to be 

statistically significant in explaining the diabetes status of patients. The test was carried out at 05.0 level 

of significance. The Wald test statistic used to assess the contribution of individual predictors or the significance 

of individual coefficients for the reduced model showed that all the included predictors in the model were 

significant. 
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