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Abstract: In this paper, Sample-and-Hold functions are implemented to give approximate solutions for linear
volterra integral-algebraic equations. The proposed method will transform the problem to a linear lower
triangular system of algebraic equations using the operation matrix associated with the Sample-and-Hold
functions. Convergence result and tested examples are given in order to check the validity and efficiency of the
proposed method.
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I.  Introduction

Couple system of integral algebraic equations (IAEs) including of the first and second kind volterra
integral algebraic equations ,These systems are also called as singular system of integral equations , naturally
appear in mathematical model processes , e.g. the kernel identification subject in heat conduction and
viscoelasticity [1], development of a chemical reaction within a small cell [2], the two dimensional biharmonic
equation in a semi-infinite strip [3], dynamic procedure in chemical reactors [4] and Kirchhoff’s laws. (For more
applications see [5,6] and references therein.)
In this paper, Sample-and-Hold functions will be used to solve linear volterra integral equations (LVIES) with
variable coefficients as given below:

t

AOY() = G + j K(trY(r)dr, 0<t<1, (D

Where A(t) = [ai,j(tg], ij=12,...,n.
Y(t) = [fi(t) f200) ... £,

G(®)= [01(t) G2(t) ... ga(®)]",

K(t, T') = [ki'j(t,r)]. 1,_] = 1,2, R o |

SinceA(t), G(t), K(t,r) are known as functions and Y(t) is unknown . If detA(t) = 0, this system is
denoted as Volterralntegral-Algebraic Equations (IAEs). Under the condition detA(t) = 0,the system can have a
number of solutions or no solution at all. Sufficient conditions for the existence of unique continuous solution
have been introduced in [7].

A little numerical methods are found, to solve these systems such as polynomial spline collocation
method and its convergence results [8], Legendre collocation method [9], Jacobi collocation method including
the matrix-vector multiplication representation [10], Multistep methods based on Adams quadratures rules and
extrapolation formulas [11], Piecewise constant orthogonal functions such as Walsh functions [12,13], block-
pulse functions [14], Haar functions [15,16] .

This paper is ordered as following: in section 2, summary of Sample-and-Hold functions and their
properties have been described. In section 3, the proposed method for solving volterra integral-algebraic
equations have been presented. In section 4, we display illustrative examples,finally a conclusion have been
drawnin section 5.

Il.  Generalized Sample-and-Hold functions (SHFs)
For any Y(t)€ L?[0, A), Y(t) can be represented by a Sample-and-Hold functions.Consider the interval [0, A)
and by considering:

yi(t) = y(ih), i=1,...,m
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Whereh = %, yi(t) is the generosity of the function y(t) at time t and y(ih) is the sample of function y(t) at the
pointt=ih.
The m-set of SHFs,S, (t), consisting of m element functions, and is defined as following [17]:
1, for (i—1h<t<ih
Si@) =
0, elsewhere
Wherei=1,...,m

2.1 Properties:

The Sample-and-Hold functions are similar to Block Pulse functions in aspects. Further it'seasy to satisfy the
following properties and by same way of [14].

(i)- S, (ST (t) = diag(S,, (1)), where S, ()= [ S, (©)S,(t) ... S, (©) ]".

(ii)-SE ()S,,, (1) = 1.

(iii)- ST 1S, (HU =TS, (t), U = diag(U), where U be an m-vector. ...(2)

(iv)- SrTn (t)JS,, (t) = I7S,, (1) , for every mxm matrix J and Jis an m-vector with entries equal to the diagonal
elementsof J. ...(3)

2.2 Operational Matrix of the Integration for SHFs
The integral fot S, (v)dtis expanded in terms of SHFs and by arranging the coefficients in matrix form,we have

t
f S, (T)dt = P, S, (t).
0
Where P is given by [18]:

1222 2 2 2
01 2 2 2 2 2
h{0012 222\
pszIO 0201 2%2|
0000 12 2
00 00 01 2
0000 0 0 1/ xm

2.3 Function approximation
A square integrable time function y(t) of Lebesgue measure may also be extended into an m-term Sample-and-
Hold functions seriesint € [0,A) as

() = Zyls () = Y3Su(t) = SE(OY, . (4)

Where Ym 2 [y, o Y 1
Where y; = y(ih) the i sample of the functiony(t). Actually, y,'s are the sample of y(t)with the sampling

period h .

2.4 Convergence Analysis

Assume y € L?[0,A). Let S,, is called the set of all linear combination of Sample-and-Hold Functions S;, where
i=12,...,m.We defined partial sum of SHFs of y as Z,, = >/, ¥;S;(t), where S; is the i" Sample-and-Hold
functions.

By using orthogonallty property,

12,17 = <Zylsa) Zyls (t»—Zm il

Also,(y — Zm ,Si) = (y S) (Zn ,Si ) =y, —y; = O,where i=1,2,....m, since {(y—2Z,,S) =0, we get
Y = Zy = 0then || y = Z,,|l = 0, since(y, S;) = [ S, ()dt, where i=1,2, ..., m

Pythagorean theorem state,

Iyl? = lly = ZnlI* + 11Z,, 117 - (5)

From this we have, [|1Z,, 11 = X% |yi 2SI < llyll>.

The infinite series Y2, |y:12[IS;|1> has non-negative terms and it's partial sum are bounded above by ||y||?.1t's
convergence and satisfies Bessel's inequality Y52, 1v;[?1IS: 11 < llyll?.

Since S,, € S;,4+1, thenorm || y — Z,,, || are decreasing and hence lim,,_ || y — Z,,|| = 0, this gurantens that
the numerical solution converges to exact solution.

Further, from equation (5), we have ||y||? = lim, el ¥ — Zn 12 = T2 0 1211S; 112
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can be written as:

n

I11.  The Approach
Let us consider the system of linear volterra integral-algebraic equations with variable coefficients (1), which

Z ap,q (O, () = g, () + Zf ky @t 1)y,(r)dr, 0<t<1,...(6)

q=1

q=10

Where p=1,2,...,nandr = 5

Writing the coefficient a,, , , y, ,gpandkp g in terms of Sample-and-Hold functions yields:
baSm(®) = Sp (DA
YVq (t) = Ygsm ) =

Where Yo = [ Yq0¥q1 - Yaul™ Kpq = [k52] and A, q = [al] with i, j=1.....,
system (6) can be extended in m-terms of Sample -and-Hold functions expansion as follows,

Ay q(t) =

pq
Sh®Y,

9p(8) = GySpn (1) = Sp ()G,
pq(t T') - ST (t)Kp qu (T)’

D Sh (DA ViSu () = GIS, (t)+2f ST (O)K, S () ST (1) Y, dr
q=1

= GIS, (6) + s;g(t)z j Ky o Sm () ST ()Y, dr

q=10

q=10

= GIS,(t) + ST (t)ZKp_q f S () ST ()Y, dr

q=1 0

According to equation (2), we have:
n

SH(E) Y Apg YIS () = GIS, (6) + ST(t)ZKM
q=1 q=1

= GIS, (b) + ST(t)ZKM Js () dr

t

0

t

f Y, Smr () dr

t

0

SH(D) Y Ayg Y38 () = GIS, (t)+ST(t)ZKM Y, P Su(®)

By usiné equation (3) we obtain:

Hence

Or

Where Y; is an m-vector with element equal to the diagonal entries of the mxm matrix Z"
an m-vector with element equal to the diagonal entries of the mxm matrix}.g_; Ay,

Now we can calculate Yp

n
)
9=
n
h Z K;Sql)yql
9=

WhICh can be written as:

hz KDy 4 hz

as
5
2
q=

@1
Kpq Vo1 T

+hz

Al S = Gr Sy () + Yy S (D)

T ~ T 4+ 9T
Ap =G, + Y,

(€BY)
Kp,q Va1

n

h 22

2 qu Yq2
q=

n
h
3,2) (3.3)
Kp.q Y2 EZK‘PCI Yq3
q=

n
2
KSZ )yq2+ s Z
q=

(m,m)

Kp.q

Yam

m.The p"equations, from the

Kp ~Gp+Y...(7)
Y, P andA is
since Yq = dlag(Yq).
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- n
h
(€%))
Ez Ky 4 0 0 0
q=1
n h n
(2,1) (2.2)
h Z Kp.q EZ Kp.q 0 0 Yq1
?P = qul q‘:l n Va2
h :
31 (32) (33)
hz Kq o h Z Y%a" 5/, %pa 0 Vom
q mx1
q=1 q=1 q=1
n : n n h n
(m,1) m,2) (m,3) (m,m)
h Z Kpg R ) G, h ) % 2 q
L g=1 q=1 q=1 q=1 “mxm
Hence
i K@D 0 0
2m
i K@D Zi K@2) 0 YD
o _|™ m Y@
Yp = 1 1 1 .
—_KGBL kB2  ___gB3) :
m : m : 2m ym|
lK(m.l) lK(m.Z) lK(mﬁ) LK(m.m)
Lm m m 2m dnxm
And
n
1
a;g Yq1
q=1
n
@
A = Ap,q Yq2
p =
n
Z az(:.rcll) Yam
,q:l ]
Substituting equation (7) into equation (1), also replace = with equality, we obtains,
L gaw 0 0 0
2m
ADT YD G lK(Z.l) i K®@2) 0 0 Yy
A® ||y [ _{e@ | | ™ 2m ) Y®
: : : KB kB2 KB 0 :
AM) ] [y(m) G m m- 2m ym)
lK(m,l) lK(m,Z) lK(m.S) LK(m.m)
Lm m m 2m .

This can be written as:
i—1

ADY® = gO 4+ i}((i,i)y(i) + lz K@Dyl , i=12,...,m,
2m m

i=1

Where YO = [y;,y5; o ymi]T, A©O = [az(,g] and KD = [

YO = [AD —%K(i'i)]‘l GO +%Z KOYD | i=1,2,...,m,

i—1

j=1

. (8)

K%)]forp,q =1,2,...,n. By simplifying Eq. (8), we get:

. (9)

IfA(t) is singular, [A®) — iK(i'i)]transform to be nonsingular and hence equation (9) given Sample-and-Hold

coefficientsrecursively. Employing this coefficients with Y(t) = [Y? Y® ... Y™Is_ (¢), now the numerical
solution can be facility calculated.
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V.

Ilustrative Examples:

In this section, we represent three illustrative examples in order to utilize the efficiency and accuracy of the
proposed method.

Example (1):

Assume the system of linear volterra integral equations with variable coefficients.
t

fi®) in(t) ®)
(—12t D (f; (i)) - (cs;)l;l(tt) j zttC:iSn(tt)

)

tcos(r)

sin(t)cos(r)

—t%sin(r)

—sin(t)sin(r)) <

Where the exact solution is found in [19] as f;(¢t) = sint, f,(t) = cost.

proposed method and Block Pulse functions (BPFs)[14] with the exact solution.

Table (1): Comparison between the approximatesolution of equation (10) using the proposed method andBlock

Pulse method withthe exact solution when m=32.

fi(r)
fz(r)) dr ... (10)

Following tables (1 - 3) represent a comparison between the approximatesolution ofequation (10) using the

Comparison between the approximate solution of equation (10) using the proposed method and Block

t f1 (SHFs) f1 (BPFs) Exact f; Absolute Error Absolute Error
m=32 m=32 f1(SHFs) f1(BPFs)
0.4 3.952E-001 3.894E-001 3.894E-001 5.749E-003 8.87E-003
0.7 6.584E-001 6.422E-001 6.442E-001 1.423E-002 2.02E-003
0.9 7.872E-001 7.649E-001 7.833E-001 3.87E-003 1.839E-002
r J2 (SHFs) J2 (BPFs) Exact /) Absolute Error | Absolute Fivor
m~32 m=32 J2(SHFs) J2 (BPFs)
0.4 | 918.609E-003 896.107E-003 | 9.211E-001 2.452E-003 2.495E-002
0. 7 ’52.629E-()(_)3 61 4.549[-.7()03 ".648{:-()0'_1‘ 1 32 1 11-0()2 1 .ﬁ()3l?-()()l
0.9 | 616.702E-003 | 357.368E-003 | 6.216E-001 | 4.908E-003 2.642E-001
Table (2)

Pulse method with the exact solution when m=128.

Comparison between the approximatesolution of equation (10) using the proposed method and Block

Pulse method with the exact solution when m=256.

t f1 (SHFs) f1 (BPFs) Exact f; Absolute Error f; Absolute Error f;
m=128 m=128 (SHFs) (BPFs)
0.4 3.952E-001 3.913E-001 3.894E-001 5.749E-003 1.9E-003
0.7 6.466E-001 6.393E-001 6.442E-001 2.387E-003 4.877E-003
0.9 7.872E-001 7.716E-001 7.833E-001 3.87E-003 1.174E-002
t f, (SHFs) f, (BPFs) Exact f, Absolute Error Absolute Error f,
m=128 m=128 f, (SHFs) (BPFs)
0.4 918.609E-003 889.143E-003 9.211E-001 2.452E-003 3.192E-002
0.7 762.825E-003 619.258E-003 7.648E-001 2.017E-003 1.456E-001
0.9 616.702E-003 339.387E-003 6.216E-001 4.908E-003 2.822E-001
Table (3)

t f1 (SHFs) f1 (BPFs) Exact f; Absolute Error f; Absolute Error f;
m=256 m=256 (SHFs) (BPFs)
0.4 3.916E-001 3.895E-001 3.894E-001 2.158E-003 1.092E-004
0.7 6.442E-001 6.408E-001 6.442E-001 2.387E-003 3.439E-003
0.9 7.848E-001 7.705E-001 7.833E-001 1.455E-003 1.283E-002
t f, (SHFs) f, (BPFs) Exact f; Absolute Error f, Absolute Error f,
m=256 m=256 (SHFs) (BPFs)
0.4 920.146E-003 890.346E-003 9.211E-001 9.152E-004 3.072E-002
0.7 762.825E-003 616.909E-003 7.648E-001 2.017E-003 1.479E-001
0.9 619.772E-003 342.384E-003 6.216E-001 1.838E-003 2.792E-001
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Example (2) :
Assume the system of linear volterra integral-algebraic equations with variable coefficients.
t
3r 2t+1

(200 Jaetn arcen)(iy)or v

Where the exact solution is found in [14] as fi(t) = 1+t , fo(t) = —t.
Following tables (4 - 6) represent a comparison between the approximate solution ofequation (11) using the

—t?
. 5t3+7t4 +
3 6

proposed method and Block Pulse functions (BPFs) [14] with the exact solution.

Comparison between the approximate solution of equation (11) using the proposed method and Block

Table (4)

Pulse method with the exact solution when m=32.

Comparison between the approximate solution of equation (11) using the proposed method and Block

Pulse method with the exact solution when m=128.

t f1 (SHFs) f1 (BPFs) Exact f; Absolute Error f; Absolute Error f;
m=32 m=32 (SHFs) (BPFs)
0.4 1.376E+000 9.324E-001 1.4E+000 2.374E-002 4.676E-001
0.7 1.684E+000 9.009E-001 1.7E+000 1.645E-002 7.991E-001
0.9 1.869E+000 8.368E-001 1.9E+000 3.133E-002 1.063E+000
t f, (SHFs) f. (BPFs) Exact f, Absolute Error f, Absolute Error f;
m=32 m=32 (SHFs) (BPFs)
0.4 -390.789E-003 507.834E-003 -4E-001 9.211E-003 1.078E-001
0.7 -696.109E-003 -592.340E-003 -7E-001 3.891E-003 1.077E-001
0.9 -880.548E-003 -558.420E-003 -9E-001 1.945E-002 3.416E-001
Table (5)

Comparison between the approximate solution of equation (11) using the proposed method and Block

t f1 (SHFs) f1 (BPFs) Exact f; Absolute Error f; Absolute Error f;
m=128 m=128 (SHFs) (BPFs)
0.4 1.399E+000 9.543E-001 1.4E+000 1.253E-003 4.457E-001
0.7 1.694E+000 1.232E+000 1.7E+000 5.652E-003 4.681E-001
0.9 1.897E+000 1.518E+000 1.9E+000 3.188E-003 3.816E-001
t f, (SHFs) f, (BPFs) Exact f;, Absolute Error Absolute Error f,
m=128 m=128 f, (SHFs) (BPFs)
0.4 -402.257E-003 -643.604E-003 -4E-001 2.257E-003 2.436E-001
0.7 -697.425E-003 -1.047E+000 -7E-001 2.575E-003 3.468E-001
0.9 -899.718E-003 -1.424E+000 -9E-001 2.817E-004 5.244E-001
Table (6)

Pulse method with the exact solution when m=256.

t f1 (SHFs) f1 (BPFs) Exact f; Absolute Error f; Absolute Error f;
m=256 m=256 (SHFs) (BPFs)
0.4 1.399E+000 8.721E-001 1.4E+000 1.423E-003 5.279E-001
0.7 1.699E+000 8.222E-001 1.7E+000 1.276E-003 8.778E-001
0.9 1.898E+000 7.719E-001 1.9E+000 2.388E-003 1.128E+000
t f, (SHFs) f, (BPFs) Exact f;, Absolute Error f, Absolute Error f,
m=256 m=256 (SHFs) (BPFs)
0.4 | -400.361E-003 -543.706E-003 -4E-001 3.608E-004 1.437E-001
0.7 | -700.270E-003 -631.770E-003 -7E-001 2.7E-004 6.823E-002
0.9 | -899.082E-003 9.177E-004 -9E-001 9.177E-004 3.142E-001
Example (3) :
Assume the system of linear volterra integral-algebraic equations with variable coefficients.
t
(1 0) (fl(t)) _ (gl(t)) + f (t3 +r+1 cos(3r) + 1> (fl(r)) dr (12)
0 0/\f2(t) 92(t) t+r+2 sinBr)+2/\fL(1)
0

Withg;(t) =1— 1+t +t3)sint — % (3 + cos 3t)(sin® %)
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Following tables (7 - 9) represent a comparison between the approximate solution ofequation (12) using the

1
g>(t)=1—cost—2(1+t)sint +E(_8 — 6t + 8 cos 3t + sin 6t)
Where the exact solution is found in [9] as f;(t) = cos t, f,(t) = sin 3t .

proposed method and Block Pulse functions (BPFs) [14]with the exact solution .

Table (7)

Comparison between the approximate solution of equation (12) using the proposed method and Block
Pulse method with the exact solution when m=32.

t fi (SHFs) f. (BPFs) Exact f; Absolute Error f; Absolute Error f;
m=32 m=32 (SHFs) (BPFs)

0.4 9.329E-001 8.765E-001 9.211E-001 1.185E-002 4.455E-002

0.7 7.700E-001 5.080E-001 7.648E-001 5.166E-003 2.568E-001

0.9 6.413E-001 1.137E-001 6.216E-001 1.972E-002 5.079E-001

t f, (SHFs) f, (BPFs) Exact f;, Absolute Error f, Absolute Error f,
m=32 m=32 (SHFs) (BPFs)

0.4 1.615E+000 766.728E-003 9.32E-001 6.827E-001 1.653E-001

0.7 1.526E+000 1.215E+000 8.632E-001 6.625E-001 3.522E-001

0.9 1.207E+000 1.835E+000 4.274E-001 7.8E-001 1.408E+000

Table (8)

Comparison between the approximate solution of equation (12) using the proposed method and Block
Pulse method with the exact solution when m=128.

Comparison between the approximate solution of equation (12) using the proposed method and Block

Pulse method with the exact solution when m=256.

t fi (SHFs) f, (BPFs) Exact f; Absolute Error f; Absolute Error f;
m=128 m=128 (SHFs) (BPFs)
0.4 9.225E-001 8.676E-001 9.211E-001 1.454E-003 5.342E-002
0.7 7.674E-001 5.146E-001 7.648E-001 2.584E-003 2.502E-001
0.9 6.233E-001 8.309E-002 6.216E-001 1.689E-003 5.385E-001
t f, (SHFs) f. (BPFs) Exact f, Absolute Error f, Absolute Error f,
m=128 m=128 (SHFs) (BPFs)
04 253.911E-003 793.656E-003 9.32E-001 6.781E-001 1.384E-001
0.7 152.386E-003 1.218E+000 8.632E-001 7.108E-001 3.549E-001
0.9 -431.397E-003 1.913E+000 4.274E-001 8.588E-001 1.486E+000
Table (9)

t f1 (SHFs) f1 (BPFs) Exact f; Absolute Error f; Absolute Error f;

m=256 m=256 (SHFs) (BPFs)

0.4 9.221E-001 8.691E-001 9.211E-001 1.024E-003 5.193E-002

0.7 7.651E-001 5.114E-001 7.648E-001 2.955E-004 2.535E-001

0.9 6.231E-001 8.833E-002 6.216E-001 1.449E-003 5.333E-001

t fo (SHFs) f, (BPFs) Exact f, Absolute Error f, Absolute Error f,
m=256 m=256 (SHFs) (BPFs)

0.4 1.615E+000 787.902E-003 9.32E-001 6.833E-001 1.441E-001

0.7 155.532E-003 1.221E+000 8.632E-001 7.077E-001 3.577E-001

0.9 1.243E+000 1.899E+000 4.274E-001 8.154E-001 1.471E+000

V. Conclusion

In this manuscript, we have used Sample-and-hold functions method for the numerical solutions of
linear volterra integral-algebraic equations. The method is calculable on SHFs and operational matrix of
integration. The method trade with system of linear volterra integral equations with variable coefficients and
volterra integral-algebraic equations with same ease. The systems of algebraic equations are transform to linear
lower triangular systems. Numerical results, which assure optical results, demonstrate the effectiveness and
applicability of the method.Further, the main advantage is that the attending method, which is facile and direct,
needs less computational effort thanother numerical methods.
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