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Abstract: In this paper we introduce the concept of quasi G-topological simple group. Also some basic
properties, theorems and examples of a quasi G-topological simple groups are investigated. Moreover we
studied the important result, If the mapping between two quasi G-topological simple groups is G-continous at
the identity element, then £ is G-continous.
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. Introduction
Csaszar[6], Introduced the notion of generalized neighbourhood system and generalized topological space. Also
Csaszar[6], Investigated the generalized continous mappings. In this paper we introduce the new concept of
quasi G -topological simple group. Quasi G -topological simple group have both topological and algebraic
structures such that the translation mappings and the inversion mapping are G-continous with respect to the
generalized topology. Also some basic results are studied and discussed.

Il.  Preliminaries
Definition:2.1[3] Let X be any setand let ¢ < P(X) be a subfamily of power set of X. Then G is called a
generalized topology if ¢ € G and for any index set I, U;¢; 0; € G,0;, € G,i € 1.
Definition: 2.2 [3] The elements of G are called G-open sets. Similarly, generalized closed set (or) G-closed, is
defined as complement of a G-open set.
Definition: 2.3 [3] Let X and Y be two G-topological space. A mapping f: X — Y is called a G-continous on
X if for any G-open set 0 inY, f~1(0) is G-open in X.
Definition : 2.4 [3] The bijective mapping f is called a G-homeomorphism from X to Y if both £ and £~ are
G-continous. If there is a G-homeomorphism between X and Y, then they are said to be G-homeomorphic. It is
denoted by X = Y.
Definition : 2.5 [3] Collection of all G-interior points of A c X is called G-interior of A. It denoted
by Intg(A). By definiton it obvious that Int;(A4) c A.
Note: 2.6 [3] (i). G-interior of A, Int;(A) is equal to union of all G-open sets contained in A.

(ii). G-closure of A as intersection of all G-closed sets containing A. It is denoted by Cl;(A).
Definition: 2.7 [3] Let (G, *) isagroup and given x € G,L,: G — G defined by L, (y) =x*yandR,:G —
G defined by R, (y) = y * x, denote left and right translation by x, respectively.

Definition: 2.8 [1] A quasi topological group G, is a group which is also a topological space if the following
conditions are satisfied,

(i). Left translation L,: G — G, x € G and right translation R,: G — G, x € G are continous and

(ii). The inverse mapping i: G — G defined by i(x) = x~1,x € G is continous.

Definition: 2.9 [20] A group G is called a simple group if it has no nontrivial normal subgroup of G.

I11.  Quasi Generalized Topological Simple Groups
Definition: 3.1 A quasi G-topological simple group G, is a simple group which is also a G-topological space if
the following conditions are satisfied,
(i). Left translation L,: G — G, x € G and Right translation R,: G = G, x € G are G-continous and
(ii). The inverse mapping i: G — G defined by i(x) = x~1,x € G is G-continous .
Example: 3.2 Any group of prime order with indiscrete or discrete G-topology is a quasi G-topological simple
group.
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Example: 3.3 Let G = {(8 8
0 0

onGhyg = {(1),{(0 0)}} Clearly (G, +, G) quasi G-topological simple group.

Example: 3.4 G = {1, w, w?}, where w® =1, is a simple group under multiplication. Now we define a
generalized on G by G = {qb, G, {w}}. Then the inverse mapping i is G-continous at the points 1,w? and not G-
continous at the point w. In right translation mapping, R; is G-continous at each point of G, R,, is G-continous at
the points w, w? and not G-continous at the point 1 and R, 2 is G-continous at the point 1, w and not G-continous
at the point w2. Similarly we can prove left translation(L,).
Theorem: 3.5 Let (G, *,§G) be a quasi G-topological simple group and S, be the collection of all G-open
neighbourhood at identity e of G. Then
(i). For every U € B,, there is an element V € B, such that V=1 € U.
(ii). For every U € B,, thereisan element V € B, suchthatV «x c Uandx =V < U, foreach x € U.
Proof: (i). Since (G, *,G) is a quasi G-topological simple group. Therefore, for every U € S,, there exists
V € B, such that i(V) = V~! € U, because the inverse mapping i:G — G is G-continous.
(ii). Since (G, *,G) is a quasi G-topological simple group. Thus for each G-open set U containing x, there exists
V epB,suchthat R, (V) = V+x < U. Similarly, L,(V) =x =V c U.
Theorem: 3.6 Let G be a quasi G-topological simple group and g be any element of G. Then the right
translation(R,) and left translation(L,) of G by g is a G-homeomorphism of the space G onto itself.
Proof: First we prove that R, is a bijection. Assume that y € G, then the element yg~! maps to y. Therefore R,
is surjective.
Assume that R, (x) = R, (¥).
=XxXg =Yg
= x = y. Hence R is 1-1. Since G is a quasi G-topological simple group, R, is G-continous.
Consider Rg‘1 which maps xg to x, this is equivalent to the map from x to xg~*. Therefore Rg‘l(x) =
Ry-1(x). Since R,-1(x) is G-continous, R, ~1(x) is G-continous. Similarly we will prove that the left
translation (L,). Hence the theorem.
Theorem: 3.7 Let G be a quasi G-topological simple group and U be any G-open set in G. Then
(i).a*Uand U = ais G-openin G forall a € G.
(ii). For any subset A of G, the sets U * A and A = U are G-open in G.
Proof: Let x € U * a. We want to show that x is a G-interior pointof U x a. Let x = u * a forsomeu € U =
Uxaxat.Thenu=xx*a"1. Weknowthat R,-1: G — G is G-continous. Then for every G-open set
containing R,-1(x) = x * a~! = u, there exists a G-open set M,, containing x such that R,-1( M, ) € U.
= M,xa ! cU.
= M, €U=xa.
= x is a G-interior point of U * a. Therefore U = a is G-open in G. Similarly we can prove that a = U is G-
open G.
(ii). By above result, U * a is G-open, foralla € G. Then U * A = U,eq U * a also G-open in G. Similarly we
can prove that A = U is G-open in G.
Theorem: 3.8 Suppose that a subgroup H of a quasi G-topological simple group G contains a non-empty G-
open subset of G. Then H is G-open in G.
Proof: Let U be a non-empty G-open subset of G with U c H.Forevery g € H, theset L,(U) = U * g is G-
openin G, then H = U,y U * g is G-open in G.
Theorem: 3.9 Every quasi G-topological simple group G has G-open neighbourhood at the identity element e
consisting of symmetric G-neighbourhoods.
Proof: For an arbitrary G-open neighbourhood U of the identity e, if V = UNU™!, thenV = V1, the set V is
an G-open neighbourhood of e , which implies that V is a symmetric G- neighbourhood and V c U.
Theorem: 3.10 Let f: G — H be a homomorphism of quasi G-topological simple groups.If f is G-continous at
the neutral element e; of G, then f is G-continous.
Proof: Let x € G be arbitrary and suppose that W is an G-open neighbourhood of y = f(x) in H. Since the left
translation L, in H is a G-continous mapping , there exists an G-open neighbourhood V' of the neutral element e
in H such that L,,(V) = yV € W. Since f is G-continous at e of G, then f(U) < V, for some G-open
neighbourhood U of e; in G. Since L,: G - G is G-continous, then xU is an G-open neighbourhood of x in G.
Now we have f(xU) = f(x)f(U)

= yf)

cyv

C W. Hence f is G-continous at the point x € G.

)} be a trivial simple group under addition and we define a generalized topology
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Theorem: 3.11 Suppose that G, H and K are quasi G-topological simple groups and that ¢:G - H and :
G — K are homomorphism Such that 1)(G) = K and Ker { < Ker ¢. Then there exists homomorphism
f:K — H such that ¢ = f o v. In addition, for each G-neighbourhood U of the identity element e;; in H, there
exists a G-neighbouhood V of the identity element e, in K such that p~1(V) ¢ ¢ ~1(U), then f is G-continous.
Proof: Algebraic part of the theorem is well known. Suppose U is a G-neighbourhood of ey in H. By
assumption, there exists a G-neighbouhood V of the identity element e, in K such that, W = y~1(V) c
¢~ (V).
= oW) = o~ (V) c ¢(¢~ (1)
= ¢(W) = f(V) c U. Hence f is G-continous at the identity element of K. Therefore by above theorem, f is
G-continous.
Corollary: 3.12 Let¢p: G - Handy: G — K be G-continous homomorphism of a quasi G-topological simple
groups G, H and K Such that (G) = K and Ker ¢ < Ker ¢. If the homomorphism 1 is G-open, then there
exists a G-continous homomorhism, f: K — H such that ¢ = f o .
Proof: The existence of a homomorphism f: K - H such that ¢ = f o 1. Take an arbitrary G-openset V in H.
Then f~1(V) =y (¢p~1(V)). Since ¢ is G-continous and 1 is an G-open map, f~1(V) is G-open in K. Therefore
f is g-continous.
Theorem: 3.13 Let G be a quasi G-topological simple group and H is a normal subgroup of G. Then H also a
normal subgroup of G.
Proof: Now we have to prove that gHg~' € HVY g € G.
Since H is a normal subgroup of G, gHg~* € HVY g € G.
Now gHg™! ¢ HV g €G.
= gHg™! cHVg€GQ.
= gHg™! € H,vg € G. Therefore H is a normal subgroup of G.
Corrollary: 3.14 Let G be a quasi G-topological simple group and Z(G) be the centre of G. Then Z(G) is a
normal subgroup of G.
Proof: proof follows from the above theorem.
Corollary: 3.15 Let G and H be a quasi G-topological simple groups. If f: G = H is a homomorphism mapping
then kerf is a normal subgroup of G.
Theorem: 3.16 Let G and H be quasi G-topological simple groups with neutral elements e; and ey,
respectively, and let p be a G-continous homomorphism of G onto H such that, for some non-empty subset U of
G, the set p(U) is G-open in H and the restriction of p to U is an G-open mapping of U onto p(U). Then the
homomorphism p is G-open.
Proof: It suffices to show that x € G, where W is an G-open neighbourhood of x in G, then p(W) is a G-open
neighbourhood of p(x) in H. Fix a point y in U, and let L be the left translation of G by yx~!. Then L is a G-
homeomorphism of G onto itself such that ,
Ly-1(x) = yx~*

=y.
SoV = U n L(W) is an G-open neighbourhood of y in U. Then p(V) is G-open subset of H. consider the left
translation h of H by the inverse to p(yx~1).
Now clearly, (hop o 1) = h(p(l(x)))

=h(p®»))

=p(xy p()

=p(xy~'y)

=p(x).
Hence h (p(l(W))) = p(W). Clearly h is a G-homeomorphism of H onto itself. Since p(V) is G-open in H,

h(p(V)) is also G-open in H. Therefore p(W) contains the G-open neighbourhood h(p(V)) of p(x) in H. Hence
p(W) is a G-open neighbourhood of p(x) in H.

Definition: 3.17 Let H be a subgroup of quasi G-topological simple group G. Then H is called neutral in G if
every G-neighbourhood U of the identity e; in G, there exists a G-neighbourhood V of e, such that VH < HU.
Theorem: 3.18 Let H be a subgroup of quasi G-topological simple group G. Suppose that, for every G-open
neighbourhood U of the identity e; in G, there exists an G-open neighbourhood V of e in G such that xVx™! c
U whenever x € G. Then H is neutral in G.

Proof: Given a G-neighbourhood U of e in G. Take an G-open neighbourhood V of e; satisfying,
WxlcUVxeG

=>xV cUx,Vx€EG

= HV c UH,V x € G. Then H is neutral in G.
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