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I. Introduction 
 The floor function, which is also called the greatest integer function (see in [1]), is a function that takes 

an integer value. For arbitrary real number x, the floor function of x, denoted by x⎢ ⎥⎣ ⎦ , is defined by an inequality 
of 1x x x− < ≤⎢ ⎥⎣ ⎦ . The floor function frequently occurs in many aspects of mathematics and computer science. 
However, as stated in article [2], except the Graham's book [3], one can hardly find a general know-of the 
properties of the floor function though one can find something in the Internet of free wikipedia [4]. Since 
Graham's book was first published 30 year’s ago and its following-up editions made few modification on the 
part of the floor function, it is necessary to sort out the properties of the function as a reference for researchers. 
This article summaries briefly the frequently used properties of the floor function so as for reader to have a 
reference in their studies. 

 
II. Definitions and Notations 

xThe floor function of real number  is denoted by symbol that satisfiesx⎢ ⎥⎣ ⎦ 1x x x≤ < +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ; the fraction 
part of x is denoted by symbol {
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}x that satisfies { }x x x= +⎢ ⎥⎣ ⎦ ; the ceiling function of x is denoted by symbol 
means conclusion B can be derived from condition A; x⎡ ⎤⎢ ⎥ that fits 1x x x≤ < +⎡ ⎤⎢ ⎥ . In this whole article, A B⇒

x∈ Zmeans B holds if and only if A holds. Symbol means the integer set,Z means x is an integer and A B⇔
indicates x is not an integer. x Z∉

 
III. Frequently-used Properties of the Floor Function 

The following properties of the floor functions are sorted by basic inequalities, conditional inequalities 
and basic equalities. 
 
3.1 Basic Inequalities 
In the following inequalities, x and y are real numbers by default.  

 [1](P1)     1x y x y x y+ ≤ + ≤ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 [5](P2)   1 1x y x y x y x y− − ≤ − ≤ − < − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
[1][3](P3)  2 2x y x y x y+ ≥ + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  
[ 5](P4) ( ) ( )m n x m n y mx my nx ny+ + + ≥ + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎥⎦  with m and n being positive integers 
[5](P5)   with n being a positive integer ( 1)nx ny n x y x y+ ≥ − + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 [1][5](P6)  xy x y≥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦  with . , 0x y ≥

yy
x x

⎢ ⎥⎢ ⎥ ⎣ ⎦≤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

[6](P7)   with and . 1x ≥ 0y >

 [3](P8)  ;n x nx≤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ { } 1n x nx n x= ⇔ <⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ , where n is a positive integer. 
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1 1q q

p p
⎢ ⎥ +

≥ −⎢ ⎥
⎣ ⎦

(P9) [7]  for arbitrary positive integers p and q;  

3.2 Conditional Inequalities 
In the following inequalities, x and y are real numbers, and n is an integer. 

[3](P10) x n x n< ⇔ <⎢ ⎥⎣ ⎦ n x≤ ⇔ ≤ ⎢ ⎥⎣ ⎦, n x  
[3](P11) x n y x n y< ≤ ⇔ < ≤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  

(P12) [2] x y x> ⇒ >⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ y  
x y x y≤ ⇒ ≤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦(P13) [2][5]

 
3.3 Basic Equalities 
In the following equalities, x and y are real numbers, m and n are integers. 
(P14) [3][5] . n x n x+ = +⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎥⎦

x x
m m

⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

[5](P15)  with . 1m ≥

,
1,

x x
x

x x
⎧− ∈⎢ ⎥⎪ ⎣ ⎦− =⎢ ⎥ ⎨⎣ ⎦ − − ∉⎢ ⎥⎪ ⎣ ⎦⎩

Z
Z

[5](P16)   

1 ... nnx x x x
n n

1−⎢ ⎥ ⎢= + + + + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥ ⎢⎣ ⎦ ⎣

1 2
2

x x x⎢ ⎥+ + =⎢ ⎥ ⎢
⎥
⎥⎦

[3][5](P17)  with n>0, particularly,  ⎥⎣ ⎦ ⎣⎢ ⎥⎣ ⎦
⎦ and 

1
2 2
x x x+⎢ ⎥ ⎢ ⎥+ = ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. 

(P18)[3] 1 ... 1x x nx
n n n

+ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + + +⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x+ 1
2 2
x x x+⎢ ⎥ ⎢ ⎥+ = ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, particularly,  

1 1n n
m m

−⎡ ⎤ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦
[3](P19)  with . 1m ≥

x x⎢ ⎥⎢ ⎥ = ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦
[1][3](P20)    
[3](P21) log logb bx x⎢ ⎥=⎢ ⎥ ⎢⎣ ⎦ ⎣⎣ ⎦⎥⎦

⎤⎥

 
[3](P22)   with . log 1 log ( 1)b bm m+ = +⎢ ⎥ ⎡⎣ ⎦ ⎢ 1m ≥

a
ab

c b

⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥⎣ ⎦

[3](P23)
c

for arbitrary integer a and positive integers b and c. 

, 1
1

1, | 1

m n m
nm

n m n m
n

⎧⎢ ⎥ +⎪⎢ ⎥+ ⎪⎣ ⎦⎢ ⎥ = ⎨⎢ ⎥⎣ ⎦ ⎢ ⎥⎪ + +⎢ ⎥⎪ ⎣ ⎦⎩

 [1][5](P24)   

1
1

n x
x

≤ ≤

= ⎢ ⎥⎣ ⎦∑[5](P25)   

(P26)[7] 1 4 1 4 2 4n n n n n⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢+ + = + = + = +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ 3⎥⎦  

 
IV. Applications in Number Theory 

The floor function is widely applied in number theory. Here list several very frequently used theorems. 
 

[3](P27)  It needs 2log 1N +⎢ ⎥⎣ ⎦ binary bits to express decimal integer N in its binary expression.   
2

0N N⎢ ⎥− ≥⎣ ⎦(P28) [9] Let N be an integer; then . 

m
p

⎢ ⎥
⎢ ⎥
⎣ ⎦

[5](P29) Let and p be positive integers; then number of p’s multiples from 1 to m is calculated by m . 
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[8](P30) Let and p be positive integers such that 1 p m n< < <,m n ; then number of p’s multiples from m to n is 

calculated by 

,
( , , )

1, |

n m p m
p p

m n p
n m p m
p p

ν

⎧ ⎢ ⎥ ⎢ ⎥
−⎪ ⎢ ⎥ ⎢ ⎥

⎪ ⎣ ⎦ ⎣ ⎦= ⎨
⎢ ⎥ ⎢ ⎥⎪ − +⎢ ⎥ ⎢ ⎥⎪⎣ ⎦ ⎣ ⎦⎩

 

(P31) Arbitrary positive integer i yields 

1 2
2
ii i⎢ ⎥− ≤ ≤⎢ ⎥⎣ ⎦

 

arbitrary positive even integer e yields  

2
2
e e⎢ ⎥ =⎢ ⎥⎣ ⎦

 

and arbitrary positive old integer o yields  

2 1
2
o o⎢ ⎥ = −⎢ ⎥⎣ ⎦

 

Proof. By definition of the floor function, for arbitrary real x , it holds 1
2 2 2
x x⎢ ⎥ x
− < ≤⎢ ⎥⎣ ⎦

, namely, 

2 2
2
xx x⎢ ⎥− < ≤⎢ ⎥⎣ ⎦

1 2
2
ii i⎢ ⎥− ≤. Hence arbitrary positive integer i yields ≤⎢ ⎥⎣ ⎦

. When  is even, let 

with ; then 

e

2 2 2
2
e s s e⎢ ⎥ = = =⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

2e = s 0s > . For the case of o  being an odd integer, let 

with ; then it yields  2o s= − 0s >1
12 2 1 2( 2( 1) 1 ) 2 1 1

2 2
o 1s s s s o⎢ ⎥ ⎢ ⎥= − + = − − − = − − = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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