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Abstract: Measles is a highly contagious illness caused by the measles virus. Measles remains one of the 

leading causes of death among young children around the world. The objective of this study is to examine the 

effect of vaccination and human contact interactions on the transmission of measles virus. Data on contact 

interactions among 3000 young children in Ajaka community, Kogi State, Nigeria were collected. A graph 

representing this population and their interconnectedness was generated. The effects of different converges of 

vaccination on the epidemiology of measles virus were investigated. The results show that effective measles 

vaccination is crucial for the elimination of measles among the children in the community. Therefore, mass 

vaccination for measles is recommended in order to eliminate or at least significantly reduce the menace of 

measles outbreaks.  
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I. Introduction 
Measles is a highly infectious illness caused by a paramyxovirus, of genus morbilivirus. The virus lives 

in the mucus of the nose and the throat of people with this infection. It is one of the first and worst childhood 

diseases. Sign and symptoms of measles include cough, runny nose, inflamed eyes, sore throat, fever and a red 

blotchy skin rash.  It can lead to serious and fatal complications including pneumonia, diarrhea, encephalitis, 

blindness, deafness or impaired vision. Physical contact, coughing and sneezing can spread the infection. Once 

quiet common, measles can now almost always be prevented with a vaccines [1]. 

Measles is still a leading cause of death among young children, despite the availability of an effective 

vaccine for the past 40years. Although it is rare in many developed countries, it remains a common illness in 

many developing countries and more than half a million people, mostly children, died from measles in 2003 [2]. 

As reported in [3], measles caused an estimated 2.6 million deaths in 1980, 75% decrease in deaths from 2000 

through 2013, 145,700 deaths in 2013, and estimated 20 million cases every year. 

 

II. Graphs and Modeling 
Models are available to capture the important processes in measles disease transmission. As reported in 

[5], Allen and his collaborators, in 1991, studied a discrete-time model with vaccination for measles epidemic. 

They used a discrete-time, age-independent SIR-type epidemic model.  They applied their model to measles 

epidemic on a university campus.  [6] developed a simple stochastic mathematical model to investigate the 

dynamics of measles epidemic. Their model is a multi-dimensional diffusion process with SEIR compartments. 

An analysis on extensive simulations of a stochastic metapopulation model (SEIR type) focusing on Seasonality 

and extinction in chaotic metapopulations can be seen in [7]. [8] presented a detailed analysis of the pattern of 

measles outbreaks in the small isolated community of the Faroe Islands. Measles outbreaks in that population 

showed frequent fade-out of infection resulting in long intervals when the disease was absent from the islands. 

They used a Lattice-based epidemic model to provide a theoretical estimate of the scaling exponents. A 

mathematical model for the simulation of a localized measles epidemic was presented in [9]. Susceptible-

Exposed-Infected-Recovered (SEIR) model was used in [10] to study the transmission dynamics of measles. A 

univariate time series analysis on pertusis, mumps, measles and rubella based on Box-Jenkins or Auto-

Regressive Integrated Moving Average (ARIMA) model was carried in [11].  

As reported in [11], most mathematical models are used to study the epidemiology of childhood viral 

diseases, such as measles. He described the period of infectiousness by an exponential distribution. He used 

Susceptible Infectious Recovered (SIR) model in his study. [13] used SEIR deterministic model to provide 

useful insights into the mechanic of many common childhood diseases such as measles. A survey of stochastic 

epidemic models can be seen in [14]. 
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The aforementioned models have an obvious limitation. Most of these models assume random 

interactions, but in reality interactions are usually not random. Human contact interactions are a network and 

this network can be described by a graph.  In this article, attention is focused on a graph-based model.  

Graphs used in the literature can be classified on the properties of interest. From the dynamism point of 

view, graphs or networks can be classified as static or dynamic depending on whether their structures change 

with time. From the field of application perspective, we have social networks, information networks, 

technological networks, epidemic networks, to mention a few. Each of these types of networks can be narrowed 

to specific networks. Graph classifications based on degree distribution exist. For instance, scale-free graphs, 

Poisson graphs. Graphs such as unipartite, bipartite or multipartite are based on the node types. For a general 

knowledge of graphs and their theory, the reader is referred to [16, 17, 19, 20, 21, 22]. 

Real world network are large, and in most cases it is virtually impossible to describe them in detail or 

to give an accurate model for how they came to be. To circumvent this problem, random graphs have been 

considered as network models. The field of random graphs was established in late 1950s and early 1960s. For 

detail, see [16].      

In this article, our interest is in social networks and how they affect the epidemiology of diseases. A 

social network is a social structure made up of individuals (or organizations) called nodes which are connected 

by some specific types of interdependency, such as friendship, enmity, common interest, financial exchange, 

dislike, sexual relationship or relationship of beliefs, knowledge or prestige. For detail of social network 

analysis, the reader is referred to [23].  

The plan of this paper is as follows. In section 2, we present graphs and modeling; and model 

description is presented in section 3. Simulation is presented in section 4. Section 5 is devoted to results. Finally, 

discussion of results and conclusive remarks are passed in section 6 and 7 respectively 

 

III. Model Description 
We construct a graph or network model, wherein each individual is represented by a node and the 

edges are the links between the individuals. A Poisson distribution is used to generate degree sequence; and the 

graph is constructed using the mechanism of configuration model.  

We simulate epidemics on our graph based on the following procedure. 

1. Specify the proportion already vaccinated at initial time     
2. Specify the total population       
3. Specify the degree distribution as a Poisson distribution with the parameter value    
4. Generate the graph by the mechanism of configuration model. 

5. At each time step, apply the infection operator   . A susceptible node may be exposed by neighbouring 

infected nodes with probability   , which is determined by the number of infected nodes             
6. At each time step, apply local progression operator   . An exposed individual progresses to an infectious 

state     
7. At each time step, an infectious individual recovers with probability      
 

Repeat these steps until statistical significance is obtained. 

 

IV. Simulation 
We use the following parameter values in Table 1. 
                                                
parameters Definition Parameter value source 

   Transmission probability per day         [24] 

  Rate of progression from exposed to infectious state       [24] 

   Fixed probability for recovery               
c Proportion vaccinated before start of outbreak        variable 

 

 The values of our model parameters are based on published epidemiological data shown in Table 1. 
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V. Results 
The results of our simulation experiments are displayed in the sequel. 
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VI. Discussion 

Measles is a highly infectious disease caused by measles virus. Vaccination is one of the preventive 

interventions for measles spread. Vaccination confers some level of immunity on individuals so that when they 

are exposed to an infected person they remain protected. Our graph-based model is used to simulate the effects 

of vaccination on the transmission dynamics of measles disease. Our results show that in absence of vaccination 

or any other measure, the presence of an index case in a population can lead to an exponential increase in the 

number of cases because of high infectivity of the virus. This can be seen in Figure 1. Small vaccination 

coverage cannot stop measles epidemics; it can only relatively reduce the number of cases.  We observe from 

our results that the size of epidemic decreases with the vaccination coverage and that there is an outbreak for 

any vaccination coverage less than 95%. Herd immunity can be achieved for vaccination coverage of 95% and 

above. Our findings show that high vaccination coverage guarantees herd immunity and prevent measles 

outbreak. Therefore high vaccination coverage can only be sufficient for the elimination of measles in a 

population.  
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VII. Conclusion 

In this article, we have developed a graph-based model and used it to simulate the transmission dynamics of 

measles disease. The main results are shown in Figures 1 through 8.  Our results show that measles is highly 

infectious; that small coverage can still precipitates measles outbreak. Therefore, to eliminate measles from the 

society mass vaccination is recommended.  
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