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Abstract: In this paper certain spaces of testing functions contained in spaces are introduced. The elements of 

the dual spaces are ultradistributions. The finite generalized Hankel-Clifford transform is a continuous linear 

operator in spaces of these type. The finite generalized Hankel-Clifford transformation is defined as a 

continuous linear mapping between the dual spaces. The developed theory is applied to find the general 

solutions for a Cauchy problem.  

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 09-10-2017                                                                           Date of acceptance: 28-10-2017 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I. Introduction 
Finite Hankel and Hankel type transform of classical functions were first introduced by I. N. Sneddon 

[11] and later studied by other authors [3, 6]. Recently J. N. Pandey and R. S. Pathak [8], R. S. Pathak [9] and 

Malgonde and Lakshmi Gorty [5] extended these transforms to certain spaces of distributions as a special case 

of the general theory on orthonormal series expansions of generalized functions. L. S. Dube [7], R. S. Pathak 

and O. P. Singh [10], Malgonde and Lakshmi Gorty [5], investigated finite Hankel transformations and their 

generalizations in other spaces of distributions through a procedure quite different from that one which was in 

[1,4]. All previous authors employ a method usually known as the kernel method.Specifically, Malgonde 

andGorty [5] investigated finite generalized Hankel-Clifford transformation of the first kind given by 
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II. Preliminary results and operational calculus 

 

Property 2.1: The operator 
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is not self adjoint. Considering the operator,  
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Defining the generalized 
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and 
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Property 2.2: The operator 
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f f
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III. Multiplier in spaces 

The smooth functions on 0 1x   which are multipliers in the spaces of the type  
,

,

A B

p
S

 

 is defined 

considering  I  C be a function such that:  

 

Definition:The set of all infinitely smooth functions on (0,1)satisfying 

      
,

,,

m k

k m km k
x D x x x C A a

  
           (3.1) 

where
,

,
k

A C
 

 are positive constants depending on    x x  and 0a  being an arbitrary constant. 

Thus    x x   is in 
,p A

S


and the mapping 
,

: ,
A

p A p
h S S
  

   , is continuous.  

Taking a   in 
,p A

S


 

      
,

,,

m k

k m km k
x D x x x C B b

  
           (3.2) 

where ,
,

k
B C

   are positive constants depending on    x x  and 0b  being an arbitrary constant. 

Considering from [5], 
 

 
/ 2

,
( ) 2z z J z

 

   




J . And as the transformation is an automorphism onto 

,
H

 
for   ,      , ,

1 ,

n
n

nn

d
z z n

d z
    

   NJ J , then for every 
,

H
 

   and , .m k  N  

        
 

 

1

,

0

1
k m k mm k m

k m
y D y y xy xy x D x x d x

 

 
 

  

 
   J    (3.3) 

where       ,
.y x y

 
    

The virtue of boundedness of the function  ,

m

k m
z z

   
J , (3.3) is given by  

  
 

 s u p
c k mm k m

x I

y D y y M x D x x
 
 

 



        (3.4) 

for , an d  0 ,m k  N  being  c    and M  is a constant.  
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IV. The finite generalized Hankel-Clifford transformation in the spaces 

 
Theorem 4.1:  The mappings 
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This formula may be rewritten analogous to [5] as 
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Theorem 4.2:  The operators 

i.    * , ,

, , ,
:

p p
A B A e B e

p p
S S

 

     







  

ii.    ,
:

B

p B p
h S S
  


    

iii.    ,
:

A

p A p
h S S
  


    

are linear and continuous. 

 

The proof is analogous as in [2].  

 

V. Applicationsusing Kepinski-Myller-Lebedev partial differential  

 

Equation using operator 
, 


  in heat equation: 

To illustrate the use of the distributional finite generalized Hankel-Clifford transformation in heat equation, the 

following generalized Kepinski-Myller-Lebedev partial differential equation in a finite interval is solved. 
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where P  is a square matrix of polynomials whose solution is because of the boundary conditions (i) and (ii) and 

y  represents the positive zero of the equation  ,
0ya
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J . Invoking the inversion formula (4.5) to provide 

the required solution   
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VI. Existence Of generalized solutions 

 
Now considering the initial value problem  
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b)      , , 0 0 , , 0
, , ,
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for every   . 
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