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Abstract: In this paper some products of k-Pell number and k-Pell-Lucas number are investigated .1t also
present generalized identities on the product of k-Pell and k-Pell-Lucas numbers to establish connection
formulas between them with the help of Binet's formula.

Date of Submission: 18-10-2017 Date of acceptance: 03-11-2017

. Introduction
Past several years have witnessed serious and sincere devotion of the scholars towards the study of the
Fibonacci sequence, a well known sequence of numbers. A considerable amount of research work has been done
in this regard and many papers have also been published. All of these exhibit eminence of Fibonacci sequence
such as the work of Hoggatt in [7] and Vorobiov in [1], among others also relating with Fibonacci sequence in
Falcon and Plaza [6]. The Fibonacci sequence belongs to group of sequences which are defined recursively .The
sequence of Pell, Pell-Lucas and Modified Pell number also fall in this category.
For any positive real number k, The k-Pell sequence {Py .} [2] defined as
Pro=0,Py1=1,
I:’k,n+1=2Pk,n"'kpk,n—l; n>1 [1]
The k-Pell-Lucas sequence {Qyn}[4] defined as
Qo= Qk1=2,
Qk,n+1=2Qk,n+ Qk,n»l; n> 1 [2]
The Binet's formula [3] for k-Pell sequence and k-Pell-Lucas sequence are given by
Pz (3]

ri—r
Qo= +17 [4]
Wherer;=1 ++1+ k andr,=1-v1 + k are the roots of characteristic equation of the sequences {Px},{Q«n}
respectively.
And also
n+1=2,
nr=-K,
rn —1=2.
For k = 1, we obtain the silver ratio which is related with the Pell number. Silver ratio is the limiting ratio of
consecutive Pell numbers.

2. Product of k-Pell Numbers and k-Pell-Lucas Numbers
Theorem 2.1. Py 2n.Qu2n = Piyan, Wheren > 1.

Proof.

- rlzn _r22n 2n 2n
Py 2n-Quizn = [f]-[rl + 75"

rn-—nr2
_ i ()2 = (r )2 ="
rn-—nr2

_rit—rg"

B ri-nr

= Pk14n' [5]
Theorem 2.2. Py 2n.Quzn+2 =Proans2 - 2(K)?", where n > 1.
Proof.
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TZ =T
Prcon-Quznss = [4] [r27+2 4 p2n+2]

r1—"
4n+2+r2n 2n+2 _ 22n 1211-%—2 24n+2
) 4- +2 4 +2 ner 2 2
-n r_z - (1) [rl rz]
1-T12 an r1—r
= Puaniz - (-K) ) 2
= Pyansz - 2(K) " [6]
Theorem 2.3. Pyon.Quznst = Proanst - (K)*", where n > 1.
Proof.
=" 1 on+1 2n+1
Pk,2n-Qk-2n+1:[ — ] [ + 1]
4n+1+r2n 2n+1_ ZZn_r12n+1_r£l-n+1
- r1-r
4-n+1_ 4n+1
= T - 2+ (ry.1,)?". [rz_rl]
1—T2 on r1—"12
= Pkr4n+2 - ('k)
= Pryan+2 - (k)zn- [7]
Theorem 2.4. Py 20.Quzn+s = Proansa - (K)*(4 -3K), where n > 1.
Proof.
2n_
Pian-Quoznes = [T—lr _:2 ] [r2n*3 4 rfnt3]
411+32+ 2n 2n+3 Zn 2n+3 4n+3
LSY T LWRES! 2
4 +3 4n+3 ner 3 3
nrs_pjn 3 —r
= e ]
= Pt (—h [ )
= Pyania- (=) [Qp2 + (—K)]
= Pyyan+3 - (—k)zn[4 — 2k — k]
= Pryan+3 - (—k)zn[4 — 3k]. ) [8]
Theorem 2.5. Py 20.1.Q2ni1 = Proan + 2(K)*"™, where n > 1.
Proof.
I S s S 2n+1 2n+1
Py 2n1-Quozne1 = 7r1—r [ri + 7"
+r2n 1 2Zn+1 zZn 1 1Zn-%—l ,rz4n
r1—12
+ ( )Zn [ TZ _Tl ]
r1=12 (r1=12)(r172)
+
—ﬂmrwﬁwf%g]
= Pian+ 2(k)* 71 , [9]
Theorem 2.6. Py 2n+1.Qiozn = Proansat (K)™", where n > 1.
Proof.
Rty 2ntl o
Py 2n+1.Quizn = [ — ] [ +1f"]

4n+1

+T2n +1 zZn 2Zn+1_r12n _rétn+1

r-rz
411 +1__.4n+1

=T r1—T!
=N 2 + (Tl T )Zn [ 1 2]
r1-"ry r1—1r

:Pmm+®” [10]
3. Generalized Identities on the Products of k-Pell Number and k-Pell-Lucas Number
Theorem 3.1. P m-Quin = Piomsn - (- K)™ Pion-m, Where n = 1,m = 0..

Proof.
PrmQun = [=| [ + 73]
L S L G L LR L
-T2 n—-m
m [r2 "

= Prmurt (17.1)" [2 =]

= Pk;m+n - ('k) pk:n—m . [11]
Theorem 3.2. Py n.Qu2n+m = Pisanem = (- K)" Pionem, Wherem = 1,m = 0.
Proof.
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ri—r
Pk,n-Qk,2n+m [ ! 2] [r2n+m + r2n+m]

r—n

r13n+m+rn r22n+m_ré'1 r12n+m 23n+m
- r—n

rptm_pntm
= Pranem+ (1. 12)" [T]
1—72
= Pianem - ('k) Piansm - [12]
Theorem 3.3. Py onem-Qion = Pioanem + (-K)" Pionem » Wheren = 1,m > 0.

Proof.
1Zner_ r22n+ n n
Pk,2n+m-Qk,n [7].[?‘1 + 1Y) ]

r—nr
r13n+m+ r2n+m é’L 22n+m _rln_ r23n+m
- r1—r
_ n | - aner
= Pignemt (711.72) [ri]
n 1—12
= I3k13n+m + ('k) Pk:n+m . ) [13]
Theorem 3.4. Py 20.Qznem = Proanem - (- K)™" Piom , Wheren = 1,m = 0.
Proof.
— rlz - 2n+m 2n+m
Py.2n-Quiznem = [ﬁ] [rf +7; ]
4n+m+r2n 2n+m _ 2211 r12n+m éln+m
r1—r
rm_ Fm
= Pk,4n+m - (rl )Zn [—2]
on r—r2
= Pk,4n+m - ('kg Pk:m .
— n
- Pk,4n+m - (k) I:’kum . , [14]
Theorem 3.5. Py onim-Quozn = Proansm + (K)™" Piom, Wheren > 1,m = 0.
Proof.

T12n+m_ T22n+ m
Pk 2n+m- QkaZn [ r1—1g ] [T + r ]
4n+m

+r2n+m 22n 22n+m.r12n_r£1n+m

r—=r2

_ 2 1 "2
= Proansm + (1. 12)“" [—]
r1—1T2

= Pyansm + ('kg Pim -
= Piansm + (K) " Piom - [15]

Il.  Conclusion
In this paper we established connection formulas between k-Pell number and k-Pell-Lucas number through use
of Binet's formula.
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