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I. Introduction 
 A recent research came across the problem of estimating the bounds of function 

1 2 1
( )

1 2
f x

x x x
  

 
 and function 

1 3 2
( )

1 2
f x

x x x
  

 
 in analytic expressions. Compared 

with the ordinary problem of finding a function’s extremum, this problem is indeed a time-consuming one for its 

requests of ‘analytic expressions‘, which means that one ought to deduce and derive out the solution in analytic 

expressions. A technical engineer will naturally look into the classical handbooks of inequalities for some 

guidance. But unfortunately, to this problem, he/she will be disappointed because there is little information in 

present literatures, such as the bibliographies [1] to [8]. Hence finding a solution is mandatory.  

This article presents solution to the problem. Through mathematical deductions and proofs, the article 

derives out for each function the analytic solutions, which form several inequalities. The analytic solution can be 

utilized in engineering modeling. 

 

II. Main Results and Proofs 

Theorem 1. Let
1 2 1

( )
1 2

f x
x x x

  
 

with 0x  ; then ( ) 0f x   and '( ) 0f x  . 

Proof. Let 
1 1

( )
1

l x
x x

 


 and 
1 1

( )
1 2

r x
x x

 
 

; then it yields 

1 1 1
( )

1 ( 1 ) ( 1)
l x

x x x x x x
  

   
                                               (1) 

and  

1 1 1
( )

1 2 ( 1 2) ( 1)( 2)
r x

x x x x x x
  

      
                                      (2) 

When 0x   it obviously holds 

( ) ( )l x r x  

and thus ( ) ( ) ( ) 0f x l x r x   . 

Direct calculation yields 
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( )

2 ( 1) ( 2)

1 1 2 1
( )

2 ( 1) ( 2)

f x
x x x x x x

x x x

x x x

   
   

   
 

   
 

                                         (3) 

Since 2( 2) ( 1)x x x   , it holds 3 3 6( 2) ( 1)x x x    and thus   

3 3 3 3 6 34 4

1 1 2 2 2

( 2) ( 2) ( 1) ( 1)x x x x x x
   

   
                                    (4) 

Obviously, (3) and (4) result in '( ) 0f x  . 

Corollary 1. Let 
1 2 1

( )
( 1) ( 2)

f x
x x x  

  
 

with 0x   and 0  ; then ( ) 0f x   and 

'( ) 0f x  . 

Proof. 2( 2) ( 1)x x x   yields 2( 2) ( 1)x x x      and thus 

1 1 2 2

( 2) ( 1)( 2)x x xx x
   

  
 

                                    (5) 

which is sure that ( ) 0f x  . 

Direct calculation shows 

2 2 2

1 2 1
'( ) ( )

2 ( 1) ( 2)
f x

x x x  


  

   
 

                                     (6) 

Referring the proof of (5), it knows '( ) 0f x  . 

Theorem 2. Let 
1 2 1

( )
1 2

f x
x x x

  
 

 and 
1

( )
( 1)( 2)

g x
x x x


 

with 2x  ; then 

( ) ( )f x g x . 

Proof. Let 
1 1

( )
2

x
xx

   , where 2x  ; then it holds 

2 1
( ) 0

2

x
x

x



   
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1
'( ) 0

2

x
x

x



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2

(3 4)
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4
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x



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Hence ( )x is a strict concave upward, and it fits for arbitrary 0 [2, )x    

0 0
0 0

2 1
( ) ( ( ) ( 2))

2 2

x x
x x  

 
    

Namely 

0 0 0( ) ( 2) 2 ( 1)x x x       

That is  

0 0 00 0 0

1 1 1 1 1 1
2( )

2 2( 2) 2( 1)2 1x x xx x x
    

  
 

which yields 

0 0 00 0 0

1 2 1 1 1 1

2 1 2( 2)1 2 x x xx x x
    

  
 

Since 2 0 0 0 0 0

0 0 0 0 0 0

( 1)( 2) 2 ( 2) ( 1) 1

2 ( 1)( 2) ( 1)( 2)

x x x x x x

x x x x x x

     


   
, it knows 

0 0 00 0 0

1 2 1 1

( 1)( 2)1 2 x x xx x x
  

  
                                                   (7) 

Owning to the arbitrariness of 0x , the Theorem 2 holds.    

Corollary 2.  Let x and  be real numbers with 2x  and 0  ; then 

1 2 1 1

( 1) ( 2)( 1) ( 2) x x xx x x
    

  
  

                                         (8) 

Proof. (Omitted)  

Corollary 3.  Let x and  be real numbers with 2x  and 0  ; then 

3 3

1 2 1 1 1

( 1) ( 2)( 1) ( 2) x xx x x
   

   
  

                                      (9) 

Proof. 2

2

1 1
( 2) ( 1)

( 2) ( 1)
x x x

x x x
    

 
; then (8) directly derives out (9).  

Theorem 3. Let 
1 3 2

( )
1 2

f x
x x x

  
 

 with 
3 32( 4 2 2 1)

( 3.4)
3

x
 

  ; then ( ) 0f x   and 

'( ) 0f x   

Proof. First let 
1 1

( )
1

l x
x x

 


 and 
2 2

( )
1 2

r x
x x

 
 

with 0x  ; then it holds 

1 1 1
( )

1 ( 1)( 1)
l x

x x x x x x
  

   
                                                (10) 
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2 2 2 1
( )

21 2 ( 1)( 2)( 1 2) ( 1)( )( 1 2)
2

r x
xx x x x x x x x x

   
          

       (11) 

Note that, when 
3 32( 4 2 2 1)

3
x

 
 , 

2

2

x
x


 and 

2
( ) 2

2

x
x x x


  ; comparing (11) with (10) it 

knows ( ) ( )r x l x , namely,  

1 1 2 2

1 1 2x x x x
  

  
 

which is  

1 3 2
0

1 2x x x
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 
                                                           (12) 

Note that 

3 3 3

2 2 2

1 1 3 2
'( ) ( )

2
( 1) ( 2)

f x

x x x

   

 

 

it knows '( ) 0f x  by letting 3y x and referring to (12).  

Theorem 4. Let 
1 3 2

( )
1 2

f x
x x x

  
 

 and with 217
( ) ( 8.02)

6
x   ; then  

2 1
( )

3 ( 1)( 2) 3 ( 1)( 2)
f x

x x x x x x
   

   
                                            (13) 

Proof.  Direct calculation shows 

1 3 2 1
( )

1 2 3 ( 1)( 2)

3 ( 1)( 2) 9 ( 2) 6 ( 1) 1

3 ( 1)( 2)

f x
x x x x x x

x x x x x x

x x x

   
   

      

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and 

1 3 2 2
( )

1 2 ( 1)( 2)

( 1)( 2) 3 ( 2) 2 ( 1) 2

( 1)( 2)

f x
x x x x x x

x x x x x x

x x x

   
   

      


 

 

Let 

( ) 3 ( 1)( 2) 9 ( 2) 6 ( 1) 1h x x x x x x x                                              (14) 

and 

( ) 3 ( 1)( 2) 9 ( 2) 6 ( 1) 2e x x x x x x x                                              (15) 
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Since 
23 3

( 1)( 2)
16 2

x x x x      with 223
2 ( ) 16

8
x    , 

17
( 2) 1

18
x x x x     with 

217
( )

6
x   and 

15 1
( 1)

32 2
x x x x     with 215

( )
8

x  , it yields when 217
( )

6
x   

 

3 17 1
( ) 3( ) 9( ) 6( ) 1 0

2 18 2
h x x x x         

and 

23 15 1
( ) 3( ) 9 9 6( ) 2 0

16 32 8
e x x x x          

Hence when 217
( )

6
x  , inequality (13) holds.  

Corollary 4 Let I be positive integer; then 

1 1 1 1
| | | |

1 1 2i i i i
  

  
                                                       (16) 

1 2 1 1 1
, 1

( 1)( 2) 61 2
i

i i ii i i
    

  
                                              (17) 

1 2 1 1
, 1

( 1)( 2)1 2
i

i i ii i i
   

  
                                              (18) 

2 1 3 2 1
, 8

3 ( 1)( 2) 1 2 3 ( 1)( 2)
i

i i i i i i i i i
      

     
                       (19) 

Proof. Only for (17) because (18) is the integer form of Theorem 2 and (19) is the integer form that 

comes from Theorem 3 and Theorem 4. When 1i  , the right side is 
1 1

0
1 2 3 6

 
 

 while the left side is, by 

Theorem 1, a positive number.  

 

III. Discussions and Expectations 
By Theorem 2 and Theorem 4, one can summarizes that 

1 2 1 1
, [2, )

( 1)( 2)1 2
x

x x xx x x
    

  
                                       (20) 

and  

22 1 3 2 1 17
, (( ) , )

63 ( 1)( 2) 1 2 3 ( 1)( 2)
x

x x x x x x x x x
       

     
                (21) 

However, it is necessary to point out that, these two inequalities are both very rough though they can 

meet with needs of some engineering evaluation. According to Mathematica’s experiments, as shown in figure 

1, the inequality (20) should be hold on interval [ , )  , where 1.0636  . This is more accurate than (20). 
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0.008
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fxgx

 

Fig.1 A Zero point in [1,2] 

Meanwhile, Corollary 3 says 

3 3

1 2 1 1 1
, [2, )

( 1) ( 2)( 1) ( 2)
x

x xx x x
   

     
  

               (22) 

but Mathematica’s experiments show that there is a C and  with 1 4C  and 2  , satisfying 

3 3 3

1 2 1
, [ , )

( 1) ( 2)1 2

C C C
x

x x xx x x
      

  
 

What is the range of C and  ? This article cannot answer the question.  

In (21), the range of x is limited to 217
(( ) , )

6
x  , which is the best result this article can obtain, but 

Mathematica’s experiments show that, the range of x should be limited to ( , )   with 5.728  , as shown in 

figure 2. 
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0.001

0.001

0.002

0.003

0.004

0.005

 

FIG.2 A ZERO POINT AROUND 5.728 

In addition, Mathematica’s experiments also show that, there are real number A, B and  such that 

1 3 2
, [ , )

( 1)( 2) 1 2 ( 1)( 2)

A B
x

x x x x x x x x x
       

     
                     (23) 

For example, when 2A , 2.5B    it holds 

2 1 3 2 2.5
0 , (0, )

( 1)( 2) 1 2 ( 1)( 2)
x

x x x x x x x x x
       

     
                 (24) 
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How to determine the ranges of A, B and  remains a problem that cannot be solved in this article. In 

the end, Mathematica also shows  

3

512 1 3 2 1
, (1.31023, )

512( 2) 2 1 2
x

xx x x x x
       

   
                (25) 

which  this article either remains not proving.  

All these point to future studies. All in all, the results presented in this article need refining and hope to 

see better results in the future. 
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