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Abstract: In this paper, a new bivariate exponentiated Pareto distribution is introduced. The proposed 
bivariate distribution is constructed based on  Gaussian copula with exponentiated Pareto distribution as 
marginals. Several properties of the proposed bivariate distribution can be obtained using the Gaussian 
copula property.  Moreover, different methods of estimation are considered to estimate the unknown 
parameters of proposed bivariate distribution and their performances are compered through numerical 
simulations. 
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I. Introduction 
The Pareto distribution has many important applications. It is used to describe geophysical, 

social, scientific, actuarial, and other types of phenomena. However, the Pareto distribution does not 
provide a reasonable parametric fit for some practical applications where the underlying hazard rates are 
non decreasing. Gupta et al. (1998) introduced a new two-parameter distribution as a generalization of 
the standard Pareto of the second kind, called the exponentiated Pareto distribution. They proved that the 
exponentiated Pareto distribution is effective in analyzing many lifetime data. The failure rates take 
decreasing and upside-down bathtub shapes depending on the value of the shape parameter. 

In this situation, we could consider some existing bivariate lifetime distribution that has been 
introduced in the literature such as the studies of Freund (1961), Marshall and Olkin (1967), Mardia 
(1970), Sarhan and Balakrishnan (2007), Kundu et al. (2010), Gupta et al. (2010), Al-Mutairi et al. 
(2011), Sankaran et al. (2014), and Olkin and Trikalinos (2015).  A flexible way to derive different 
bivariate lifetime distributions could be given by copula function, see for example, Adham and Walker 
(2001), AL-Hussaini and Ateya (2006), Al-Dayian et al. (2008), Quiroz-Flores (2009),Gupta et al. (2010), 
Kundu and Gupta (2011), El-Sherpieny et al. (2013), Kundu (2014), Achcar et al. (2015) and El-Gohary 
and El-Morshedy (2015).  

The main aim of this paper is to introduce a bivariate exponentiated Pareto distribution with a 
bivariate gamma mixing distribution based on  Gaussian copula.  In addition, estimate of the parameters 
will be investigated and analyzed. We will also use simulation study to examine the performance of this 
new distribution and real data set has been analyzed to illustrate the flexibility of the proposed 
distribution. 

The paper is organized as follows: In section 2, some preliminaries are provided. In section 3, the 
proposed bivariate exponentiated Pareto distribution is defined. The estimation of the unknown 
parameters are presented in section 4. In section 5, we conduct Monte Carlo simulation . 
 

II. Preliminaries 
2.1 M mixture representation 

The idea of M mixture representation is to write the density of a random variable T on (0, ∞) in the form 
of compound distribution as follows:            

 
 

 for all 𝑢 ∈ Ω, U is a non-negative latent variable follows a gamma distribution with shape parameter 2 
and scale parameter 1, denoted by G (2; 1). 
And 𝑓𝑇|𝑈 𝑡|𝑢  can be written as follows 

𝑓𝑇 𝑡 =  𝑓𝑇|𝑈 𝑡|𝑢 
`

Ω
𝑓𝑈 𝑢 𝑑𝑢, (1) 
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And  

𝑓𝑈 𝑢 = 𝑢 exp −𝑢 , 𝑢 ≥ 0. ( 3) 

where 𝑇 𝑡  is the hazard function, and  𝐻𝑇 𝑡  is the cumulative hazard function . 

In(1999), walker and Stephen used this idea for the Weibull distribution in order to introduce their new 
family of distributions, called beta-log-normal, by replacing the 𝐺 2,1  mixing distribution with the 
closest log-normal-distribution, 𝐿𝑁(𝜇, 𝜍2).  Adham and Walker (2001)applied this mixture 
representation to the Gompertz distribution in order to introduce a multivariate Gompertz-type 
distribution.  Furthermore, one may construct a more general lifetime distribution with more flexibility, 
for example, a generalized exponential, Weibull or Gompertz, via the generalization of the mixing 
distribution 𝐺 2,1 .  That is, one can use 𝐺 𝜃, 1  as a mixing distribution, instead of the 𝐺 2,1 , in order to 
present a generalized lifetime distribution.  Hence, the mixing distribution given by (3) is replaced by, 

𝑓𝑈 𝑢 =
1

Γ𝜃
𝑢𝜃−1 exp −𝑢 , 𝑢 ≥ 0. (4) 

Adham (2001) has implemented the above mixture representation, with the 𝐺 𝜃, 1  mixing distribution.  
She has introduced a generalized Gompertz distribution.  In addition, she has discussed Bayesian 
inference of the generalized Gompertz distribution. 
Here, if concentrate on the exponentiated Pareto (EP) distribution, the cumulative distribution function 
(cdf) is given by:  

𝐹 𝑡, 𝜃, 𝜆 =  1 −  1 + 𝑡 −𝜆 
𝜃  

 , 𝑡 > 0 , 𝜃 > 0 , 𝜆 > 0,   (5) 

where𝜃and 𝜆  are two shape parameters.  
The corresponding probability density function (pdf) is given by 

 
 
 

 
The hazard function is given by: 

 
 
 
 
 

 The cumulative hazard function is given by: 
 
 
 
 
 

 
2.2 Copula 

Sklar (1959) introduced the name of "copula".  A copula is a function which joins or “couples” a 
multivariate distribution function to its one-dimensional marginal distribution functions.  As suggested 
by Trivedi and Zimmer (2007) the copula function allows for the construction of previously unknown 
bivariate distributions derived from known marginals.  In addition, this function can link any type of 
marginal distribution, it is straightforward to construct bivariate distributions using marginals from 
completely different families while other construct bivariate distributions methods such as conditional 
distributions and mixing distributions, often rely on marginals from the same family.  
A bivariate copula can be defined informally as follows: Let 𝑇1and 𝑇2be continuous random variables with 
distribution functions 
FT1

 t1 = P T1 ≤ t1 and  FT2
 t2 = 𝑃 𝑇2 ≤ 𝑡2 .  

According to Sklars theorem, there exists a copula C such that  

𝐹𝑇 𝑡1 , 𝑡2  = 𝐶  𝐹𝑇1
 𝑡1  , 𝐹𝑇2

 𝑡2   .                                                                               9  

If 𝐹𝑇1
 𝑡1  and 𝐹𝑇2

 𝑡2  are continuous and differentiable and C is unique then from (3), the joint density can 

be written as  

𝑓𝑇|𝑈 𝑡|𝑢 =  
𝑇 𝑡 

𝑢
 𝐼 𝑢 > 𝐻𝑇 𝑡  , (2) 

𝑓 𝑡, 𝜃, 𝜆 = 𝜃 𝜆  1 −  1 + 𝑡 −𝜆  
𝜃−1 

 1 + 𝑡 − 𝜆+1 , 𝑡 > 0 , 𝜃 > 0 , 𝜆 > 0. (6) 

 𝑡, 𝜃, 𝜆 =
𝜃 𝜆 1 −  1 + 𝑡 −𝜆  

𝜃−1 
 1 + 𝑡 − 𝜆+1 

1 −  1 −  1 + 𝑡 −𝜆 𝜃  
, 𝑡 > 0 , 𝜃 > 0 , 𝜆 > 0. 

(7) 

𝐻 𝑡, 𝜃, 𝜆 = −𝑙𝑛  1 −  1 −  1 + 𝑡 −𝜆  
𝜃  
 , 𝑡 > 0 , 𝜃 > 0 , 𝜆 > 0. 

(8) 
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𝑓𝑇 𝑡1 , 𝑡2  =   𝑓𝑇𝑗
 𝑡

𝑗
 𝐶`  𝐹𝑇1

 𝑡1  , 𝐹𝑇2
 𝑡2   

2

𝑗 =1

,                                                     (10) 

where 𝑓𝑇1
 𝑡1  , 𝑓𝑇2

 𝑡2  are the density functions corresponding to 𝐹𝑇1
 𝑡1  , 𝐹𝑇2

 𝑡2  and 𝐶` =
𝜕2𝐶

𝜕𝐹𝑇1𝜕𝐹𝑇2

  is the 

copula density.   
A large number of copulas have been proposed in the literature, and each of these imposes a different 
dependence structure on the data, the interested readers are referred to  Joe and Xu (1996), Trivedi and 
Zimmer (2007), Balakrishnan and Lai (2009) and Nelsen (2013).  In this paper, we focus on the Gaussian 
copula since it is a flexible and has full range of dependence. In addition, it is easy to generalize to multi-
dimensions. 

The distribution function of bivariate Gaussian (normal) copula with correlation parameter ρ take the 
form 

𝐶𝐺𝑎𝑢𝑠𝑠  𝑣1  , 𝑣2  ;  𝜌 =  Φ𝜌 Φ
−1 𝑣1 , Φ−1 𝑣2 , 𝜌 

=   
𝑒𝑥𝑝  

−1

2 1−𝜌2 
 𝑦1

2 − 2𝜌𝑦1𝑦2 + 𝑦2
2  

2𝜋 1 − 𝜌2

Φ−1 𝑣1 

−∞

Φ−1 𝑣2 

−∞

𝑑𝑦1𝑑𝑦2 ,                     (11) 

where Φ𝜌  denotes the bivariate standard normal distribution function with correlation parameter 

ρ ∈  −1, 1  and Φ−1 denotes the inverse of univariate standard normal distribution function. 
The density of the bivariate Gaussian copula is 

C`Gauss  v1  , v2 ;  ρ  =    
exp  

−1

2 1−ρ2 
 y1

2 − 2ρy1y2 + y2
2  

2π 1 − ρ2
,                               (12) 

where 𝑦1 = Φ−1 𝑣1 , 𝑦2 = Φ−1 𝑣2 , 𝑣1 = 𝐹1 𝑡1 is the marginal distribution for the random variable𝑇1  and 
𝑣2 = 𝐹2 𝑡2  is the marginal distribution for the random variable𝑇2 . 
 

III. Bivariate Exponentiated Pareto Distribution Based on Mixture and Gaussian Copula 
Adham and Walker (2001) combine the mixing and copula ideas in order to come up with bivariate 
Gompertz distribution, which is easy to analyse and allows full dependence structures. Their idea consists 
of constructing a bivariate gamma distribution of the latent variables U =  U1, U2 with two marginal 

gamma distribution denoted by G(2,1) using copula. That is, obtaining a bivariate gamma distribution 
with only unknown correlation parameter (ρ).  Then obtaining the joint bivariate distribution of 
U andT =  T1 , T2  where T is assumed to be conditionally independent given U, and then integrate over 

the latent variables U to obtain the required joint distribution of T. 
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The second stage uses the bivariate gamma distribution given by (15) as mixing distribution of  𝑇1 , 𝑇2 .  
Assuming that 𝑇1 , 𝑇2  are conditionally independent given 𝑈. 
That is,  

𝑓 𝑇 𝑈  𝑡 𝑢 =  𝑓 𝑇𝑗  𝑈𝑗  
 𝑡𝑗  𝑢𝑗  

2

𝑗 =1

,                                                                   (16) 

 where, 
 

 
and 𝑇𝑗

 𝑡𝑗   , 𝐻𝑇𝑗
 𝑡𝑗   are the hazard and cumulative hazard functions of the univariate EP distribution 

given by () and () after indexing T, 𝜃 and 𝜆 by j, j=1,2, respectively. 
Hence, the joint density function of 𝑇1 , 𝑇2  is given by   

 
where 𝑓𝑈 𝑢1, 𝑢2  is given by (15). 
In other words, the density function of the BEPII can be written as 

𝑓𝑇 𝑡1, 𝑡2 =     
𝑇𝑗

 𝑡𝑗  

𝑢𝑗

𝑓𝑈𝑗  𝑢𝑗  
𝐶 𝐺 𝑣1 , 𝑣2  𝑑𝑢1𝑑𝑢2,

2

𝑗 =1

∞

𝐻 𝑡1 

∞

𝐻 𝑡2 

 

 
where 𝐻 𝑡𝑗  is the cumulative hazard function of the univariate EP distribution given by (8) and 

 𝐶 𝐺 𝑣1 , 𝑣2  is given by (12 ). 
Construct a bivariate exponentiated Pareto distribution (or any other life time distribution) using above 
two stages method will help in the model analysis, because we can estimate the correlation parameter 𝜌 
from the first stage (i.e the bivariate gamma distribution). Then, estimate the other parameters 

𝜃1, 𝜆1 , 𝜃2 𝑎𝑛𝑑 𝜆2   from the second stage (i.e the conditional density functions 𝑓 𝑇𝑗  𝑈𝑗  
 𝑡𝑗  𝑢𝑗  .   

 

IV.  Estimation 
4.1   Maximum Likelihood Estimation 

In this subsection, we discuss the ML estimation of the unknown parameters of the BEPII 
distribution. Let 𝑇𝑖 =  𝑇1𝑖 , 𝑇2𝑖 

` , 𝑖 = 1, . . , 𝑛 be a bivariate random sample of size n from BEPII distribution 
given by (3.14). If T is assumed to be conditionally independent given U, and U =  U1 , U2 ` is latent 

variables from bivariate gamma distribution based on Gaussian copula.  
The two-stage method can be incorporated as follows.   
First: compute the estimates of the marginal parameters (𝜃1, 𝜆1 , 𝜃2, 𝜆2) by maximizing 𝑙 θ1 , λ1 , θ2 , λ2  with 
respect to  θ1 , λ1 , θ2  and λ2 . 

𝑙 θ1 , λ1 , θ2 , λ2 , 𝑢1, 𝑢2 =   log 𝑓𝑇|𝑈 𝑡𝑖 , 𝑢𝑖 

2

𝑗 =1

𝑛

𝑖=1

=    𝑛𝑙𝑜𝑔𝜃𝑗 + 𝑛𝑙𝑜𝑔𝜆𝑗 +  𝜃𝑗 − 1  𝑙𝑜𝑔  1 −  1 + 𝑡𝑗𝑖  
−𝜆𝑗  −  𝜆𝑗 + 1  𝑙𝑜𝑔

𝑛

𝑖=1

𝑛

𝑖=1

 1 + 𝑡𝑗𝑖  

2

𝑗 =1

−  𝑙𝑜𝑔𝑢𝑗𝑖 −   𝑙𝑜𝑔

𝑛

𝑖=1

[1 −  1 −  1 + 𝑡𝑗𝑖  
−𝜆𝑗  

𝜃𝑗
𝑛

𝑖=1

  20  

Second: obtain the estimate of correlation parameter  𝜌 of bivariate gamma distribution based on 
Gaussian copula by maximizing 

 
where vij  is the CDF of G 2,1 , for j = 1,2 

 
4.2 Bayesian Estimation  
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The Gibbs sampler procedure is used to obtain Bayesian estimates of the unknown parameters of the 
BEPII distribution. Assume that the prior distributions of the parameters are  

 
and 𝜋 𝜌  has a uniform prior distribution defined on the interval (-1, 1).  
 Let 𝑇𝑖 =  𝑇1𝑖 , 𝑇2𝑖 `, 𝑖 = 1,2, …𝑛 be a bivariate random sample of size n from BEPII distribution where T is 
assumed to be conditionally independent given U, and  

U =  𝑈1 , 𝑈2 `, latent variables from bivariate gamma distribution based on Gaussian copula.  

Therefore, the joint posterior distribution is given by  

 

 
 

𝑓 𝜆𝑗 |𝜆−𝑗 , 𝜃1 , 𝜃2, 𝑢, 𝑡 ∝ 𝜆𝑗
𝑛−1𝑒𝑥𝑝   𝑙𝑛  

 1 −  1 + 𝑡𝑗𝑖  
−𝜆𝑗 

𝜃𝑗−1

 1 + 𝑡𝑗𝑖  
− 𝜆𝑗 +1 

1 −  1 −  1 + 𝑡𝑗𝑖  
−𝜆𝑗  

𝜃𝑗
 

𝑛

𝑖=1

 𝐼 𝜆𝑗 < 𝐴𝑗   

where 
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𝐴𝑗 = 𝑚𝑖𝑛

 
 
 
 
 −𝑙𝑛  1 −  1 − 𝑒−𝑢𝑗𝑖  

1

𝜃𝑗  

𝑙𝑛 1 + 𝑡𝑗𝑖  

 
 
 
 
 

(27) 

a-Introduce a non-negative latent variable 𝑣, such that  

𝑓 𝜆𝑗 , 𝑣 ∝  𝜆𝑗
𝑛−2 I  𝑣 < 𝜆𝑗𝑑𝑗   I 𝜆𝑗 < 𝐴𝑗  , 

            where  

𝑑𝑗 = 𝑒𝑥𝑝   𝑙𝑛  
 1 −  1 + 𝑡𝑗𝑖  

−𝜆𝑗 
𝜃𝑗−1

 1 + 𝑡𝑗𝑖  
− 𝜆𝑗 +1 

1 −  1 −  1 + 𝑡𝑗𝑖  
−𝜆𝑗 

𝜃𝑗
 

𝑛

𝑖=1

  

b- Choose the initial values of 𝜆𝑗  

c- Sample 𝑣 from U(0, 𝜆𝑗𝑑𝑗 ) 

d-Sample 𝜆𝑗  from 𝑓 𝜆𝑗 |𝑣  where 

𝑓 𝜆𝑗 |𝑣 ∝  𝜆𝑗
𝑛−2I 𝐵𝑗 < 𝜆𝑗 < 𝐴𝑗  ,  

  Where 𝐴𝑗  is given by (27) 

𝑏𝑗 =
𝑣

𝑑𝑗

 .                                                                                                                        (28) 

𝑓 𝜆𝑗 |𝑉  can be sampled easily by using the inverse distribution function method. Then, for 𝛿~𝑈(0,1) 

𝜆𝑗 =   𝐴𝑗
𝑛−1 − 𝐵𝑗

𝑛−1 𝛿 + 𝐵𝑗
𝑛−1 

1
𝑛−1 

, 

where 𝐴𝑗  and 𝐵𝑗  are given by (27) and (28), respectively.  

3) Sample 𝜃𝑗  from 𝑓 𝜃𝑗 |𝜃−𝑗 , 𝜆1, 𝜆2 , 𝑢 , 𝑡  ,where 𝑗 ≠ −𝑗, −𝑗, 𝑗 = 1,2.we use the following steps to sample 𝜃𝑗   

from 𝑓 𝜃𝑗 |𝜃−𝑗 , 𝜆1, 𝜆2, 𝑢 , 𝑡  

𝑓 𝜃𝑗 |𝜃−𝑗 , 𝜆1 , 𝜆2, 𝑢 , 𝑡 ∝ 𝜃𝑗
𝑛−1𝑒𝑥𝑝   𝑙𝑛  

 1 −  1 + 𝑡𝑗𝑖  
−𝜆𝑗  

𝜃𝑗−1

1 −  1 −  1 + 𝑡𝑗𝑖  
−𝜆𝑗 

𝜃𝑗
 

𝑛

𝑖=1

 𝐼 𝜃𝑗 < 𝐴𝑗  . 

where    𝐴𝑗 = 𝑚𝑎𝑥  
𝑙𝑛 1−𝑒

−𝑢𝑗𝑖  

𝑙𝑛 1− 1+𝑡𝑗 𝑖 
−𝜆𝑗  

 (29) 

a- Introduce a non-negative latent variable 𝑣, such that  

𝑓 𝜃𝑗 , 𝑣 ∝  𝜃𝑗
𝑛−2I 𝑣 < 𝜃𝑗𝑑𝑗  I 𝜃𝑗 < 𝐴𝑗 , 

where  𝑑𝑗 = 𝑒𝑥𝑝   𝑙𝑛  
 1− 1+𝑡𝑗𝑖  

−𝜆𝑗  
𝜃𝑗−1

1− 1− 1+𝑡𝑗𝑖  
−𝜆𝑗  

𝜃𝑗
 𝑛

𝑖=1  . 

b- Choose the initial values of 𝜃𝑗  

c- Sample 𝑣 from U(0, 𝜃𝑗𝑑𝑗 ) 

d- Sample 𝜃𝑗  from 𝑓 𝜃𝑗 |𝑣  where 

𝑓 𝜃𝑗 |𝑣 ∝  𝜃𝑗
𝑛−2I 𝐵𝑗 < 𝜃𝑗 < 𝐴𝑗 ,  

where  𝐴𝑗  is given by ( 27),  

𝐵𝑗 =
𝑣

𝑑𝑗

.                                                                                                                              (30) 

𝑓 𝜃𝑗 |𝑣  can be sampled easily by using the inverse distribution function method. Then, for 𝛿~𝑈(0,1) 

𝜃𝑗 =   𝐴𝑗
𝑛−1 − 𝐵𝑗

𝑛−1 𝛿 + 𝐵𝑗
𝑛−1 

1
𝑛−1 

,                                                                    (31) 

where 𝐴𝑗  and 𝐵𝑗  are given by (29) and (30), respectively.  

4) Sample 𝜌 from its posterior distribution  

𝑓 𝜌|𝜃1, 𝜃2 , 𝜆1, 𝜆2, 𝑢, 𝑡 ∝  1 − 𝜌2 
−𝑛

2 𝑒𝑥𝑝   
𝑦2

1𝑖
− 2𝜌𝑦1𝑖𝑦2i + 𝑦2

2𝑖

−2 1 − 𝜌2 

𝑛

𝑖=1

 ,  

To sample the above posterior distribution of 𝜌, the following accept-reject algorithm is motivated: 
Sample 𝜌∗ from Uniform (-1,1) and 𝑣 from Uniform (0,1). 

If 𝑣 ≤
𝑓 𝜌∗|𝜃 ,𝜆 ,𝑢 ,𝑡 

𝑓 𝜌 |𝜃 ,𝜆 ,𝑢 ,𝑡 
,  where 𝜌 =  

𝑦1𝑖𝑦2i

𝑛

𝑛
𝑖=1 ,  the maximum likelihood estimate of 𝜌, then accept 𝜌∗ (i.e. 𝜌 =

𝜌∗), otherwise repeat steps a and b. 
 

V. Simulation 
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In this section, simulation study have been performed for different sample sizes n=15, 30, 50, 80, 
100 and 150 and for different values of the copula parameter, keeping 𝜃1 = 𝜃2 = .9 and λ1 = λ2 =
1.8  and  𝜌 =  0.5, 0.7 and 0.8.  Since we observed the performances to be quite similar for negative 𝜌, so 
we present the results only for positive 𝜌.  In each case we have obtained ML and Bayesian parameter 
estimates for the BEPII distribution using the following:  
 

Algorithm (1): Generating a random samples from BEPII distribution 
The following steps are used to generate random samples from BEPII distribution: 
1. Generate latent random sample from the bivariate gamma distribution based on Gaussian copula.  
2. Generate n independents U(0,1) random variables. 
3. For a given values of the parameters (𝜃1, 𝜆1 , 𝜃2, 𝜆2, 𝜌), the inverse distribution function method can be 

used to generate samples from BEPII distribution using the 𝑓 𝑇𝑗  𝑈𝑗  
 𝑡𝑗  𝑢𝑗  inequation (17). 

 
Steps for obtaining the ML estimation for the parameters of  BEPII distribution: 
The ML estimates of the parameters are obtained numerically according to the following steps: 
1. For given value of the parameters of  𝜃1

∗, 𝜆1
∗, 𝜃2

∗, 𝜆2
∗, 𝜌∗  a sample of size n from BEPII distribution is 

generated using Algorithm (1).  
2. The ML estimates of the marginal parameters is obtained by maximizing (20) with respect to 

θ1 , λ1 , θ2  and λ2 .  
3. The ML estimate of the correlation parameter 𝜌 of the bivariate gamma distribution based on 

Gaussian copula is obtained by maximizing (21) with respect to 𝜌 
 
Steps for obtaining the Bayesian estimation for the parameters of BEPII distribution:  
The Bayesianestimates of  the parameters  are obtained numerically according to the following steps: 
1- For given value of the parameters (𝜃1

∗, 𝜆1
∗, 𝜃2

∗, 𝜆2
∗, 𝜌∗), a sample of size n from BEPII distribution is 

generated using Algorithm (1).  
2- Generate a bivariate observations  𝑦1 , 𝑦2 ,  using the formula  

𝑦𝑗 =  Φ−1  𝐹𝑈𝑗
 𝑢𝑗   

           where  𝐹𝑈𝑗
 𝑢𝑗  is the distribution function of Gamma (2, 1), given by (13) ,     Φ−1 denotes the 

inverse of univariate standard normal distribution function. 
3-  The Bayesian estimates of 𝜌 is computed using the Metro_Hasting function in the (MHadaptive) 

package and  the following are defined: 
 The log-likelihood function and the prior density function of the correlation parameter 𝜌 in (22) and 

(23)                 
 The initial value of   𝜌 
 The number of iteration to run the chain. 
For 1000 replications, ML and Bayesian estimates of the parameters along with the bias and MSE are 
reported in Table (1). 
The results of table (1) for the ML and Bayesian estimation of the unknown parameters can be 
summarized as follows: 
 The performances of the ML and Bayesian estimates are quite satisfactory. It is observed that when 

the sample size increases, the MSE decrease for all the parameters, as expected. In addition, as sample 
size increases the bias for all parameters is mostly decreasing. 

 The bias and MSE of ML and Bayesian estimation of marginals parameters do not seem to depend on 
𝜌. 

 In this subsection,the performances of the ML and Bayesian estimators are compared based on the 
MSE through Monte Carlo simulations and the results are reported in Table (1). 

 
Table (1): The average estimates and the corresponding MSE (reported within brackets) of the 
ML and Bayesian estimators under BEPII distribution when 𝜃1 = 𝜃2 = 0.9, 𝜆1 = 𝜆2 = 1.8 with 

different values of 𝜌 
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From Table (1), in general, the MSE of the Bayesian estimates of the parameters smaller than 
their corresponding MSE of ML estimates. However, it observed that for small sample size, the MSE of ML 
estimate of  𝜌 smaller than their corresponding MSE of Bayesian estimate. Therefore, it can be concluded 
that the Bayesian method based on non-informative prior perform better than the ML method.  
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