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Abstract: In this paper, we introduce a fractional heat conduction equation with a time-fractional derivative 

based on using the fractional heat Fourier law, in a half space in contact with vacuum perfectly-conductive half 

space. The Caputo fractional derivative is used to study the interaction between elastic, thermal, and magnetic 

fields. The solutions for displacement, temperature, stress and perturbed magnetic fields both in the vacuum and 

in the half-space are derived. The solutions are first obtained in terms of Laplace transform. The inverse of the 

Laplace transform is done numerically using a method based on Fourier expansion techniques. Numerical 

results for a copper-like material are presented graphically and discussed.  
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I. Introduction 

The study of electro-magneto-thermoelastic interactions which deals with the interactions among 

strain, temperature and electromagnetic fields in a thermoelastic material is of great practical importance due to 

its extensive uses in diverse field, such as geophysics (for understanding the effect of the Earth's magnetic field 

on seismic waves), damping of acoustic waves in a magnetic field, designing machine elements like heat 

exchangers, boiler tubes where temperature induced elastic deformation occurs, biomedical engineering 

(problems involving thermal stress), emissions of electromagnetic radiations from nuclear devices, development 

of a highly sensitive super conducting magnetometer, electrical power engineering, plasma physics, etc. [1, 2]. 

In the field of magneto elasticity or Magneto-thermo-elasticity, many studies have employed an 

analytical treatment of the interaction between elastic, electromagnetic and temperature fields. A generalized 

thermoelastic problem for an infinitely long hollow cylinder for short times was presented in [3]. The problem 

of Magneto-thermoelasticity of an infinite cylindrical region was solved by Dhaliwal and Singh [4]. Authors [5] 

gave a combined formulation of the two theories of generalized thermoelasticity to discuss the problem of an 

infinite solid with a cylindrical or spherical hole. In [6], authors applied a generalized elasticity theory to solve 

the problem of magneto-thermoelastic waves produced by thermal shock in an infinite elastic solid with a 

cylindrical cavity using the theories described in [3]. Sherief et al. [7] used the Laplace transform technique to 

find the distribution of thermal stresses and temperature in a generally thermoelastic electrically conducting 

half-space under sudden thermal shock and permeated by a primary uniform magnetic field. Solodyak and 

Gachkevich [8] presented an analytical method for obtaining electromagnetic and temperature fields as well as 

mechanical stresses in a ferromagnetic solid subjected to a harmonic electromagnetic field at the frequency 

usually used in industry. In [9], stresses and strains in the mid-plane of a pulsed magnetic field were calculated 

by solving the system of equations describing the displacement in each layer of the coil. 

Fractional calculus is a natural extension of the classical mathematics. In fact, since the foundation of 

the differential calculus the generalization of the concept of derivative and integral to a non-integer order has 

been the subject of distinct approaches. Due to this reason there are several definitions [10, 11, 12] which are 

proved to be equivalent. Fractional calculus has been applied in many fields, ranging from statistical physics, 

chemistry to biological sciences and economics. In recent years, there has been a great deal of interest in 

fractional differential equations. Several definitions of the fractional derivative have been proposed. The history 

and classic transform rules of this subject are well covered in the monograph by Podlubny [13]. 

During recent years, fractional calculus has also been introduced in the field of thermoelasticity. 

Povstenko [14] has constructed a quasi-static uncoupled thermoelasticity model based on the heat conduction 

equation with a fractional order time derivative. He used the Caputo fractional derivative [15] and obtained the 

stress components corresponding to the fundamental solution of a Cauchy problem for the fractional order heat 

conduction equation in both the one-dimensional and two-dimensional cases. In 2010, a new theory of 

generalized thermoelasticity in the context of a new consideration of heat conduction with a fractional order has 

been proposed by Youssef [16]. In the same year, Sherief et al. [17] has constructed another model in 
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generalized thermoelasticity theory by using fractional time derivatives. Abouelregal [18] used the generalized 

thermoelasticity theory that, based on a fractional order model, to solve a one-dimensional boundary value 

problem of a semi-infinite piezoelectric medium. 

A flux rate term was incorporated into the Fourier law of heat conduction by Lord and Shulman [19], 

who formulated a generalized theory, which involves a hyperbolic heat transport equation admitting finite 

speed, though large for thermal signals. Green and Lindsay [20], by including temperature-rate among the 

constitutive variables, developed a temperature-rate-dependent thermoelasticity that does not violate the 

classical Fourier law of heat conduction for bodies having a center of symmetry. This theory also predicts a 

finite speed for heat propagation. The theory of thermoelasticity without energy dissipation is another 

generalized theory and was formulated by Green and Naghdi [21]. It includes the "thermal displacement 

gradient" among its independent constitutive variables, and differs from the previous theories in that it does not 

accommodate dissipation of thermal energy [22]. 

In his paper, the partial derivatives in generalized heat conduction equation were replaced by 

derivatives of non-integer order. The one-dimensional problem of distribution of thermal stresses and 

temperature is consider in a thermoelastic electrically conducting half-space permeated by a primary uniform 

magnetic field when the bounding plane is suddenly heated to a constant temperature. The conducting medium 

is also subjected to a Lorentz force. Thus, two kinds of stress arise: thermal stress caused by eddy current loss 

magnetic stress caused by the Lorentz force. The solutions valid for the deformation, stress, temperature 

distribution and perturbed magnetic field in the half-space as well as in the vacuum are derived. The Laplace 

transform technique is used to solve the problem. The theories of coupled magneto-thermoelasticity, generalized 

magneto-thermoelasticity with one relaxation time and of generalized magneto-thermoelasticity without energy 

dissipation follow as limited cases. 

 

II. Fractional Integral And Fractional Derivatives 
In this section, we will recall the main ideas of the fractional derivatives. Among several definitions for 

the fractional derivative, the Riemann-Liouville derivative and the Caputo derivative are often used. Let us 

consider causal functions, namely complex or real valued functions )(tf  of a real variable t  that are vanishing 

for 0<t . According to the Riemann--Liouville approach to fractional calculus the notion of fractional integral 

of order 0)>(  for a causal function )(tf , sufficiently well-behaved, is a natural analogue of the well-

known formula (usually attributed to Cauchy), but probably due to Dirichlet, which reduces the calculation of 

the  fold primitive of a function )(tf  to a single integral of convolution type. The Cauchy formula reads for 

0>t : 

 ,,;)(
)(

1

1)!(

1
:)(

0

1







  RN tdf

t
tfI

t


 


 (1) 

where I  is the  fold integral operator with )()(0 tftfI  , N  is the set of positive integers, and R  is the 

set of positive reals. Riemann--Liouville analytically continued Cauchy's result by replacing 1)!(   with 

Euler's continuous gamma function )( , thereby producing 
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where I  is the Riemann--Liouville integral operator of order  . Equation (2) is the cornerstone of the 

fractional calculus, although it may vary in its assignment of limits of integration. In this report we take the 

lower limit to be zero and upper limit to be some positive real. Actually,   can be complex [11], but for our 

purposes we only need it to be real.  

It is well known that the relationship between the heat flow and the temperature gradient, based on experimental 

observations, is given by Fourier, which is named as the Fourier law. The law is given in the form of 

 jiji kq =   (3) 

The classical Fourier's law is replaced by Maxwell-Cattaneo's equation 

 ,=0 jijii kq
t

q  



  (4) 

where   is the temperature-change above a uniform reference temperature 0T , assumed to be such that 

  1|/| 00 =TTT  , ijk  and 0  are positive constants, q  is the heat flux vector and 0 , being the time required to 

establish steady-state heat conduction in a volume element after a temperature gradient has suddenly been 
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imposed across the element, is called relaxation time parameter. In the absence of internal heat sources, 

Cattaneo's equation results in the linear hyperbolic heat equation 
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Cattaneo's equation is the most obvious and simple generalization of Classical Fourier's heat law that 

gives rise to a finite propagation speed for thermal disturbances. In Lord and Shulman model, the heat 

conduction equation is of hyperbolic type and is closely connected with the theories of second sound. 

Recently, some interesting models have been proposed successfully by applying the fractional calculus to study 

the physical processes particularly in the area of mechanics of solids, control theory, electricity, heat conduction, 

diffusion problems and viscoelasticity etc. It has been verified/examined that the use of fractional order 

derivatives/integrals leads to the formulation of certain physical problems which is more economical and useful 

than the classical approach. There are some materials (e.g., porous materials, man-made and biological 

materials/polymers and colloids, glassy, etc.) and physical situations (like low temperature, amorphous media 

and transient loading, etc.) where the CTE theory based on the classical Fourier's law is unsuitable. In such 

cases it is better to use a generalized thermoelasticity (and more generally thermo-viscoelasticity) theory based 

on an anomalous heat conduction theory involving fractional time derivatives (see [22]). 

The time-nonlocal dependence between the heat flux vector and the temperature gradient with the " long-tale" 

power kernel can be interpreted in terms of fractional integrals and derivatives [17] 

 ,=0 jijii kq
t

q 








  (6) 

where   is a constant such that 1<0  . 
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In the limit as   tends to one, Eq. (6) reduces to the well-known Cattaneo law used by Lord and Shulman [19] 

to derive the equation of the generalized theory of thermoelasticity with one relaxation time. 

Taking divergence of both sides of Eq. (6), we get 
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Then the time-fractional heat conduction equation take the form [17] 
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III. Basic Equations In Thermoelasticity And Magneto-Thermoelasticity 
In the context of the fractional order theory of generalized thermoelasticity [17], the field equations for a linear, 

homogeneous and isotropic magneto-thermoelastic material, in the absence of the body force, take the following 

form: 

Equations of motion have the form taking into account the Lorentz force has the form 

   ,=2
..

uFuu   div  (10) 

where  BJF 
c

1
=  are the components of Lorentz force 

Since, in generalized thermoelasticity only the infinitesimal temperature derivations from the reference 

temperature are considered, therefore in the absence of the body force and internal heat source, the Duhamel-

Neumann constitutive equations are 

     IuuIuσ   Tdiv=  (11) 

In these equations σ  is the stress tensor, c  is the speed of light in vacuum, B  is the magnetic induction vector, 

J  denotes the current density vector, u  is the displacement vector, I  being the identity tensor,   and  are 

the Lame' constants,   t 23=  , t  is the coefficient of volume expansion, and   is the mass density. 

We take a homogeneous, isotropic and thermally conducting medium, then the time-fractional heat conduction 

equation take the form [17] 
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where e  is the cubical dilatation, EC  is the specific heat and K  is the thermal conductivity. 

The simplified linearized equations of electrodynamics of slowly moving continuous media having perfect 

electrical conductivity are (Maxwell's electromagnetic field equations, neglecting the charge density) 

   ,
4

= Jh
c

curl


 (13) 

   ,= 0

tc
curl






h
E


 (14) 

 0,=.h  (15) 

 ,= 0
0 













 H

u
E

tc


 (16) 

where E  denotes the electric field, h  is the induced magnetic, 0H  is the initial constant magnetic field and 0  

is the magnetic permeability. 

Maxwell stress components are given by 

  ijkkijjiij hHhHhHT  0=  (17) 

After linearization, 
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Equation (1), then, after linearization, reduces to 
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Since, the elastic medium is in contact with the vacuum, equations (13)-(16) have to be supplemented by the 

electrodynamic equations in vacuum. The system of Maxwell's equations in vacuum is expressed as 
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where 0
h  and 0

E  are the perturbed magnetic field and the electric field in vacuum. 

These equations yield the following equations satisfied by 0
E  and 0

h : 

 0=
1 0

2

2

2

2
h



















tc
 (21) 

 0=
1 0

2

2

2

2
E



















tc
 (22) 

Equations (12) and (19) are the field equations of the generalized linear magneto-thermoelasticity with 

fractional order heat conduction, applicable to the coupled theory and two generalizations, as follows: 

The equations of the coupled thermoelasticity CTE theory, when 0=0 , 1= . 

Lord and Shulman's theory LS, when 0>0 , 1== . 

Green and Naghdi's theory GN, when 1=0 , 0= , 1= . 

The correspondent equations for the generalized thermoelasticity without magnetic field results from the above 

mentioned cases by taking 0=0H  and 1= .  

 

IV. Formulation Of The Problem 
We assume that a magneto-thermoelastic wave is produced in an elastic half-space 0x  at a uniform 

reference temperature 0T  in contact with a vacuum 0<x . The magneto-thermoelastic wave propagated in the 

medium 0>x  is assumed to depend on x  and time t  and that the displacement vector has components 

),0,0),(( txu . A magnetic field with constant intensity, namely )(0,0,= 00 HH  where 0H  is a constant acts 

parallel to the bounding plane (take as the direction of the z axis). Due to the application of initial magnetic 

field H , there results an induced magnetic field h  and an induced electric field E . The simplified linear 

equations of electrodynamics of a slowly moving medium for a homogeneous, isotropic and thermally 

conducting elastic solid (13)-(16) are 



Fractional heat conduction in a conducting magneto-thermoelastic the half-space in contact with .. 

DOI: 10.9790/5728-1306033144                               www.iosrjournals.org                                               35 | Page 

 ,,00,
4

= 













x

hc z


J  (23) 

 ,0,0,= 0 













x

u
Hh  (24) 

 ,,00,= 00 












t

u

c

H
E  (25) 

Equations (12) and (19), in one-dimensional case, for a perfect conductor simplify to 
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In vacuum the system of equations of electrodynamics (18) and (19) reduce to 
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The components of Maxwell's stress tensor in the elastic medium 11T  and in vacuum 11

0

T  are given by 
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The normal stress in the elastic medium is obtained as 
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The total stress T  in the half-space is composed of Hook's mechanical stress and Maxwell's stress. Thus, the 

total stress in the half-space is 
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V. Initial And Boundary Conditions 
We assume that the medium is initially at rest and the undisturbed state is maintained at uniform reference 

temperature. Then we have 

 0,>0,
),(

),(0,>0,
),(

),(
0

0
0

0
x

t

tx
txx

t

txu
txu

t
t

t
t



















  (34) 

The regularity boundary conditions are ),(),,( txutxT  and 0),( txxx  as x . 

The continuity of total stress composed of thermoelastic and electromagnetic stress across the boundary 0=x  

yields  
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The tangential component of E field is continuous across 0=x , which leads to  
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The thermal boundary condition on  

 0,=on)(=),( 1 xtHtx   (37) 

where 1  is a constant and )(tH  is the Heaviside unit function. 
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VI. Solution Of The Proplem 
To find the solution of the problem we introduce the following notations and non-dimensional variables 
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where 1c  is the dilatational wave velocity in the half-space and 0a  is the Alfven wave velocity of the medium. 

In terms of the non-dimensional quantities defined in Eq. (34), the governing equations (23) and (24) will be in 

the forms 
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3 /=   and TC  is the non-dimensional finite thermal wave 

speed corresponding to 3c . Equations (25) and (26) are reduce to 
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Further, the boundary condition for continuity of total stress across 0=x  in nondimensional form takes the 

form 
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where .)4/(= 001 TH   

The condition of continuity of E field across 0=x  reduces to 
0
22 = EE  which, by the help of (20)-(22) and 

(37) and (38), yields, in non-dimensional form, the following equation: 
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where .=
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Lastly, the thermal boundary condition gives 

 0,=on)(=),( 2 xHx   (45) 

Where .= 012 T  

The non-dimensional total stress in the half-space is obtained from (30) as 
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The perturbed magnetic field in the half-space in non-dimensional form reduces to 

 
X

U
h'z




=  (47) 

It may be observed that (35) and (37) are fully hyperbolic but the mixed derivative term on the right-

hand side of (36) destroys the wave structure. In fact, this equation predicts a non-wave-like heat conduction 

different from the usual diffusion equation predicted by conventional parabolic heat equation. It is therefore 

expected that the solutions of the coupled equations (35) and (36) with coupled boundary conditions (39) and 
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(40) should be composed of a wave part (dilatational wave) and a diffusive part due to the presence of the 

thermal damping term in the heat transport equation. As (37) (hyperbolic type) uncouples from the system, its 

solution will be composed of a wave part traveling with Alfv'en acoustic wave speed in vacuum. 

Introducing the thermoelastic potential function   defined by the relation 
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U




=  (48) 

Then (35), on integrating with respect to X , yields 
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Equation (36) becomes 
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VII. Solution In The Transformed Domain 
We now define Laplace transform of a function ),( Xg  by 
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where s  is the transform parameter. 

Taking Laplace transform of (35) and (36) and using the initial conditions, we obtain 

 ,=2

2

2















 s

dX

d
 (52) 

     .=
2

2

002

2
2

dX

d
ssss

dX

d
CT


  


 (53) 

Further (37)-(40) in the Laplace transform domain become 
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Elimination of   from (47)  and (48)  yields 
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where 
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The solutions of equation (52) bounded at infinity can be written in the form: 
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where 1C  and 2C  are parameters depending on s  to be determined from the boundary conditions and 1m  and 

2m  are the roots with positive real parts of the characteristic equation 
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1m  and 2m  are given by 
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The expression for displacement and temperature can be written in the 
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Further, (49) yields 
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The boundary conditions (40)-(42) in the Laplace transform domain reduce to the following: 
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From the boundary conditions (59)-(61), it follows that 
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This completes the solution of the problem in the Laplace transform domain. 

 

VIII. Inversion Of The Laplace Transforms 
It is difficult to find the analytical inverse Laplace transform of the complicated solutions for the displacement, 

temperature, stress and strain in Laplace transform domain. We will now outline the numerical inversion method 

to obtain the solution of the problem in the physical domain. Durbin [23] derived the approximation formula 
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where 105=1 st  gives good results for N  ranging from 50  to 1000 . 

It should be noted that a good choice of the free parameters N  and 1st  is not only important for the accuracy of 

the results, but also for the application of the Korrecktur method and the methods for the acceleration of 

convergence. The values of all parameters in Eq. (47) are defined as 20=1t , 0.25=s  and 1000=N  in this 

paper. 

In order to find the displacement distribution u , we use expression (20) with and replacing )(tf  and , )(sF  

respectively. This procedure is repeated for the functions of the stress and temperature distribution. 

 

IX. Numerical Results And Discussion 
In order to illustrate the theoretical results obtained in preceding section and to compare these in the 

context of various theories of thermoelasticity, we now present some numerical results. In the calculation 

process, we consider the material medium as that of copper. The constants of the problem are taken as: 
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17
0

19
0

   H  

 

Using this data, the values of the physical quantities are evaluated and plotted in Figures (1-10). The 

non-dimensional temperature  , displacement U , and total stress   distributions and perturbed magnetic 

fields both in the vacuum 0
zh  and in the half-space zh  were evaluated on the X axis. All the figures show that 

the heat and elastic effects propagate with finite speeds. Initially, the inner surface is passive while the outer 

surface is affected by the thermal shock. As seen in the figures, the effect of the thermal shock propagates into 

the medium with a finite speed. 

Figure 1 indicates variation of temperature versus distance X . It can be found from Figure 1 that for 

fixed time .02= , the temperature has a non-zero value only in a bounded region of space at a given instant. 

Outside this region the value vanishes and this means that the region has not felt thermal disturbance yet. At 

different instants, the non-zero region moves forward correspondingly with the passage of time. This indicates 

that heat propagates as a wave with finite velocity in medium. It is completely different from the case for the 

classical theories of thermoelasticity where an infinite speed of propagation is inherent and hence all the 

considered functions have a non-zero (although may be very small) value for any point in the medium. 

From Figure 2, it can be observed that the medium adjacent to the half space surface 0=X  undergoes 

expansion deformation because of thermal shock while the others compressive deformation. The deformation is 

a dynamic process. With the passage of time, the expansion region moves insides gradually and becomes larger 

and larger. Thus the displacement distribution becomes larger and larger. At a given instant, the non-zero region 

of displacement is finite, which is due to the wave effect of heat. It indicates that heat transfers into the deep of 

the medium with a finite velocity with the time passing. The more the considered instant, the more the thermal 

disturbed region and the radial displacement correspondingly. 

In Figure 3, shows that the total stress with distance X  for various values of the order of fractional 

derivative  . The medium close to the surface 0=X  suffers from tensile stress. This is corresponding to the 

expansion deformation of the medium shown in Figure 2. It also can be find that the tensile stress region 

becomes larger while the compressed becomes smaller with the time passing, which is corresponding to the 

dynamic expansion effect described above. It can also be found from Figure 3, at some instant, the non-zero 

region of stress is finite, which indirectly proves the wave effect of heat. 

Figure 4 shows that the perturbed field gradually increases with distance. Further for time 0.02= , the 

value of perturbed field first gradually increases with distance .4)(0  XX  and then again it gradually 

decreases. The electromagnetic medium is placed in an initial magnetic field, and it deforms because of thermal 

shock. This makes the magnetic flux traversing the cross section of the medium changed. Thus there result an 

induced magnetic filed in vacuum and an induced magnetic field in the medium. It also can be found the 

induced magnetic fields vary with heat wave transferring into the deep of the half space, and again proves the 

wave effect of heat. 

In Figs. (1-5) the temperature, the stress and the displacement distributions and perturbed magnetic 

fields both in the vacuum and in the half-space are plotted against X  respectively for various values of the 

order of fractional derivative   of Caputo derivative. The different values of the parameter   with wide range 

 1<0   cover the two cases of the conductivity;  1<<0   for weak conductivity and 1=  for normal 

conductivity (ordinary heat conduction equation). It should be pointed that, the increasing of the value of the 

parameter   causes increasing in the speed of the waves propagation of the stresses, the displacement and 

perturbed magnetic field in the medium distributions, whereas the distribution of the temperature and perturbed 

magnetic field in the vacuum decreasing. We have also noticed that, the value of   has a significant effect on 

all distributions. 

The distributions of the non-dimensional temperature, displacement, stress and induced magnetic fields 

both in the vacuum and in the half-space at 0.02=  and 0.03=  are shown in Figures (6-10) respectively. 

Figure 6 depict the distributions of temperature   versus X  at the boundary for different values of time (e.g. 

0.2= , 0.03= ). Also we can see that the temperature decreases monotonically with X  as increasing the 

time  . Figure 6 shows that the values of temperature   for 003=  are large compared with those for 

0.02= . From Figure 7, we notice that the magnitude of displacement U  gradually decreases for fixed value 

of space variable X  as time   increases. Values of total stress   for 003=  are large compared to those for 

003= , as shown in Figure 8. From figures 9 and 10, it is clear that the absolute value of magnetic fields 
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gradually decreases with greater wave length as   increases and finally vanishes. We can also see that, the 

changes in the time values make a significant change in all the fields and it is very obvious at the peak points of 

the curves. 

 

X. Conclusion 
A new model of thermoelasticity theory was investigated in the context of a new consideration of heat 

conduction with fractional derivatives. This model based on the heat conduction equation with the Caputo 

fractional derivative of order  . The solution is obtained by applying the Laplace integral transform. The 

numerical results for temperature, displacement, and stresses are computed and illustrated graphically. The 

results are graphically described for the medium of copper. 

The analysis of the results can be summarized as follows: 

 The dependence of the fractional parameter has a significant effect on the thermal and mechanical 

interactions, and plays a significant role in all the physical quantities. 

 At any point the distributions of displacement, stress, and perturbed magnetic field in the medium are 

increased with an increase in   but the effect of fractional parameters is to decrease the values of the 

temperature field and perturbed magnetic field in the vacuum with a wide range  1<0  . 

 It is clear from Figures (6-10) that the different times play a significant role in all the physical quantities. 

 All the physical quantities satisfy the boundary conditions and initial conditions. 

 It is also observed that the theories of coupled thermoelasticity and generalized thermoelasticity with one 

relaxation time can be obtained as limited cases. 

 The values of the distributions of all the physical quantities converge to zero with increasing the distance 
X . 

 The phenomenon of finite speeds of propagation is manifested in all these figures. 

 As a final remarks, the results presented in this paper should prove useful for researchers in material 

science, designers of new materials, low temperature physicists as well as for those working on the 

development of a theory of hyperbolic thermoelasticity with fractional order.  
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Figure 1: The effect of the fractional order parameter   on temperature distribution   
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Figure 2: The effect of the fractional order parameter   on displacement U  
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Figure 3: The effect of the fractional parameter   on the total stress   
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Figure 5: The effect of the fractional parameter   on the induced magnetic field zh  
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Figure 5: The effect of the fractional parameter   on the induced magnetic field in vacuum 
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Figure 6: Temperature distribution for two different of time t . 
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Figure 7: Displacement distribution for two different of time t . 
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Figure 8: The total stress distribution for two different of time t . 
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Figure 9: The induced magnetic field distribution for two different of time t . 
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Figure 10: The induced magnetic field in vacuum distribution for two different of time t . 
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