
IOSR Journal of Mathematics (IOSR-JM) 

e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 13, Issue 6 Ver. IV (Nov. - Dec. 2017), PP 72-79 

www.iosrjournals.org 

DOI: 10.9790/5728-1306047279                                www.iosrjournals.org                     72 | Page 

 

On the Incidence Chromatic Number of Sierpiński Graphs 
 

Handan Akyar
1
 

1
(Department of Mathematics, Anadolu University, Turkey) 

Corresponding Author:Handan Akyar 

 

Abstract : In this paper we consider the incidence coloring of Sierpiński graphs 𝑆(𝑛, 𝑘) and prove that the 

incidence chromatic number of Sierpiński graphs 𝑆(𝑛, 3) is 4 when 𝑛 > 1. Moreover, an alternative proof for 

the incidence chromatic number of the complete bipartite graph 𝐾𝑚,𝑛  is given. Algorithms for coloring 

incidence graphs of Sierpiński graphs 𝑆(𝑛, 3) and complete bipartite graph 𝐾𝑚,𝑛  are presented explicitly. 
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I. Introduction 
  The incidence coloring of a graph was first introduced by Brualdi and Massey (see [1]). An 

incidence in a graph 𝐺 = (𝑉, 𝐸) is an ordered pair (𝑣, 𝑒) with 𝑣 ∈ 𝑉 and 𝑒 ∈ 𝐸, such that the vertex 𝑣 and the 

edge 𝑒 are incident. The set of all incidences in 𝐺 usually denoted by 𝐼(𝐺). For every vertex 𝑣, we denote by 𝐼𝑣  

the set of all incidences of the form (𝑣, {𝑣, 𝑤}) and by 𝐴𝑣  the set of all incidences of the form (𝑤, {𝑤, 𝑣}). 

The incidences (𝑣, 𝑒) ∈ 𝐼(𝐺) and (𝑤, 𝑓) ∈ 𝐼(𝐺) are called adjacent if one of the following holds: 

 

i. 𝑣 = 𝑤,  

ii. 𝑒 = 𝑓,  

iii. The edge {𝑣, 𝑤} equals 𝑒 or 𝑓.  

A 𝑘-incidence coloring of a graph 𝐺 is a mapping 𝜎 from 𝐼(𝐺) to a set 𝑋 of 𝑘 different colors such that adjacent 

incidences are assigned different colors. The incidence chromatic number 𝜒𝑖(𝐺) of 𝐺 is the smallest number 𝑘 

such that 𝐺 admits a 𝑘-incidence coloring. 

Certainly, it is not easy to find the incidence chromatic number of an arbitrary graph, but many results on 

incidence coloring were obtained by several researchers, including especially Brualdi and Massey (see [1]). 

Brualdi and Massey proved that the following results hold for a graph 𝐺 with maximum degree Δ(𝐺): 

 

 𝜒𝑖(𝐺) ≥ Δ(𝐺) + 1, (1) 

 𝜒𝑖(𝐺) ≤ 2Δ(𝐺), (2) 

 𝜒𝑖(𝐾𝑛) = 𝑛, (𝑛 ≥ 2) (3) 

 𝜒𝑖(𝐾𝑚,𝑛) = 𝑚 + 2, (𝑚 ≥ 𝑛 ≥ 2) (4) 

 𝜒𝑖(𝑇) = Δ(𝑇) + 1  (foreverytree𝑇oforder𝑛 ≥ 2). (5) 

Brualdi and Massey also conjectured that 𝜒𝑖(𝐺) ≤ Δ(𝐺) + 2, but in [2] Guiduli showed that 𝜒𝑖(𝐺) ≥

Δ(𝐺) + Ω(logΔ(𝐺)), which means that this conjecture is invalid. Guiduli also proved that 𝜒𝑖(𝐺) ≤ Δ(𝐺) +

𝑂(logΔ(𝐺)) and showed that the problem of incidence coloring is a special case of directed star arboricity 

which was introduced by Algor and Alon (see [3]). The problem of determining incidence chromatic number of 

a graph has been extensively studied by many authors, and is still a fruitful area of research in graph theory (see 

[1, 2, 4—8] and references there in)Although Brualdi and Massey’s result, given by equation (4), on complete 

bipartite graph 𝐾𝑚,𝑛  is correct, their proof is sadly inaccurate (see [7]). In [7] a correction for the proof of 

equation (4) is proposed without any interpretation. In the following theorem, we provide an alternate proof for 

equality (4).  

 

Theorem 1.1For all 𝑚 ≥ 𝑛 ≥ 2, 𝜒𝑖(𝐾𝑚,𝑛) = 𝑚 + 2. 
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Proof. It is clear that 𝑚 + 1 colors are not sufficient to color 𝐼(𝐾𝑚,𝑛) (see [1]). So we have 𝑚 + 2 ≤

𝜒𝑖(𝐾𝑚,𝑛) and to complete the proof, it remains to be shown that 𝐾𝑚,𝑛  has an incidence coloring with 𝑚 + 2 

colors.Since for each 𝑚 ≥ 𝑛 ≥ 2, 𝐾𝑚,𝑛  is a subgraph of 𝐾𝑚,𝑚 , the inequality 𝜒𝑖(𝐾𝑚,𝑛) ≤ 𝜒𝑖(𝐾𝑚,𝑚 ) holds. 

Hence, it is enough to show that 𝜒𝑖(𝐾𝑚,𝑚 ) ≤ 𝑚 + 2. 

Then let us consider the complete bipartite graph 𝐾𝑚,𝑚  with partition sets 𝑉1 = {𝑤1 , 𝑤2 , … , 𝑤𝑚 } and 𝑉2 =

{𝑢1, 𝑢2, … , 𝑢𝑚 }, and color it using the following method: 

If (𝑤𝑖 , {𝑤𝑖 , 𝑢𝑗 }) ∈ 𝐼𝑤𝑖
⊂ 𝐼(𝐾𝑚,𝑚) then 

 𝜎1((𝑤𝑖 , {𝑤𝑖 , 𝑢𝑗 })) =  

𝑚 if𝑗 = 𝑚 − 𝑖 + 1,
𝑚 + 1 if𝑗 = 𝑚and𝑖 ≠ 1,
𝑗 otherwise.

  

If (𝑢𝑗 , {𝑢𝑗 , 𝑤𝑖}) ∈ 𝐴𝑤𝑖
⊂ 𝐼(𝐾𝑚,𝑚 ) then 

 𝜎2((𝑢𝑗 , {𝑢𝑗 , 𝑤𝑖})) =  
𝑚 + 2 𝑖𝑓𝑗 = 𝑚 − 𝑖 + 1,
𝑚 + 1 𝑖𝑓𝑗 ≠ 𝑚and𝑖 = 1,
𝑚 − 𝑖 + 1 otherwise,

  

where 𝑖, 𝑗 ∈ {1,2, … ,𝑚}. 

By means of 𝜎1 and 𝜎2 we define a new function 𝜎: 𝐼(𝐾𝑚,𝑚 ) → {1,2, … ,𝑚 + 2} by  

 𝜎((𝑣, 𝑒)) =  
𝜎1((𝑣, 𝑒)) if𝑣 ∈ 𝑉1 ,
𝜎2((𝑣, 𝑒)) if𝑣 ∈ 𝑉2.

  

We shall now show that adjacent incidences are assigned different colors by 𝜎. Let (𝑤𝑖 , {𝑤𝑖 , 𝑢𝑗 }) ∈ 𝐼𝑤𝑖
 be any 

incidence element then it has three type of neighbors: 

 

1. (𝑤𝑖 , {𝑤𝑖 , 𝑢𝑟}) (1 ≤ 𝑟 ≤ 𝑚, 𝑟 ≠ 𝑗), using the definition of 𝜎1, we have 𝜎((𝑤𝑖 , {𝑤𝑖 , 𝑢𝑗 })) ≠ 𝜎((𝑤𝑖 , {𝑤𝑖 , 𝑢𝑟})). 

2. (𝑢𝑘 , {𝑢𝑘 , 𝑤𝑖}) (1 ≤ 𝑘 ≤ 𝑚), by virtue of the definition of 𝜎1 and 𝜎2, we get 𝜎((𝑤𝑖 , {𝑤𝑖 , 𝑢𝑗 })) ≠

𝜎((𝑢𝑘 , {𝑢𝑘 , 𝑤𝑖})). 

3. (𝑢𝑗 , {𝑢𝑗 , 𝑤𝑝}) (1 ≤ 𝑝 ≤ 𝑚), in the same way, because of the definition of 𝜎1 and 𝜎2, we obtain 

𝜎((𝑤𝑖 , {𝑤𝑖 , 𝑢𝑗 })) ≠ 𝜎((𝑢𝑗 , {𝑢𝑗 , 𝑤𝑝})). 

Therefore, all neighbors of (𝑤𝑖 , {𝑤𝑖 , 𝑢𝑗 }) ∈ 𝐼𝑤𝑖
 are colored different from itself.Similarly, let 

(𝑢𝑗 , {𝑢𝑗 , 𝑤𝑖}) ∈ 𝐴𝑤𝑖
 be any incidence element. If we interchange the partition sets 𝑉1 and 𝑉2, then one can easily 

conclude that (𝑢𝑗 , {𝑢𝑗 , 𝑤𝑖}) and its all neighbors are assigned different colors. This completes the proof.In the 

following example, we demonstrate how to color incidence graph of a complete bipartite graph by the method 

given in the proof of Theorem 1.1. 

 

Example 1.2 We can give an incidence coloring of the complete bipartite graph K4,4 using the method presented 

in the proof of Theorem 1.1 as follows: 

𝜎((𝑤1, {𝑤1 , 𝑢1})) = 1 𝜎((𝑤2, {𝑤2 , 𝑢1})) = 1 𝜎((𝑤3, {𝑤3 , 𝑢1})) = 1 𝜎((𝑤4 , {𝑤4 , 𝑢1})) = 4, 

𝜎((𝑤1 , {𝑤1, 𝑢2})) = 2 𝜎((𝑤2, {𝑤2 , 𝑢2})) = 2 𝜎((𝑤3, {𝑤3 , 𝑢2})) = 4 𝜎((𝑤4 , {𝑤4 , 𝑢2})) = 2, 

𝜎((𝑤1 , {𝑤1, 𝑢3})) = 3 𝜎((𝑤2, {𝑤2 , 𝑢3})) = 4 𝜎((𝑤3, {𝑤3 , 𝑢3})) = 3 𝜎((𝑤4 , {𝑤4 , 𝑢3})) = 3, 

𝜎((𝑤1 , {𝑤1, 𝑢4})) = 4 𝜎((𝑤2, {𝑤2 , 𝑢4})) = 5 𝜎((𝑤3, {𝑤3 , 𝑢4})) = 5 𝜎((𝑤4 , {𝑤4 , 𝑢4})) = 5, 

𝜎((𝑢1 , {𝑢1 , 𝑤1})) = 5 𝜎((𝑢2, {𝑢2 , 𝑤1})) = 5 𝜎((𝑢3, {𝑢3 , 𝑤1})) = 5 𝜎((𝑢4, {𝑢4 , 𝑤1})) = 6, 

𝜎((𝑢1 , {𝑢1, 𝑤2})) = 3 𝜎((𝑢2 , {𝑢2 , 𝑤2})) = 3 𝜎((𝑢3 , {𝑢3 , 𝑤2})) = 6 𝜎((𝑢4, {𝑢4 , 𝑤2})) = 3, 

𝜎((𝑢1 , {𝑢1, 𝑤3})) = 2 𝜎((𝑢2 , {𝑢2 , 𝑤3})) = 6 𝜎((𝑢3 , {𝑢3 , 𝑤3})) = 2 𝜎((𝑢4, {𝑢4 , 𝑤3})) = 2, 

𝜎((𝑢1 , {𝑢1, 𝑤4})) = 6 𝜎((𝑢2 , {𝑢2, 𝑤4})) = 1 𝜎((𝑢3 , {𝑢3, 𝑤4})) = 1 𝜎((𝑢4, {𝑢4 , 𝑤4})) = 1. 
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Figure1: A proper coloring of 𝐼(𝐾4,4) with 6 colors 

 

In Fig. 1, means that the incidence element (𝑤1 , {𝑤1 , 𝑢1}) is colored by color 1. 

The Sierpiński graphs 𝑆(𝑛, 𝑘) (𝑛, 𝑘 ≥ 1) is defined on the vertex set {0,1, … , 𝑘 − 1}𝑛 , in which two different 

vertices 𝑢 = (𝑢1, … , 𝑢𝑛) and 𝑣 = (𝑣1 , … , 𝑣𝑛) are adjacent if and only if there exists an 𝑕 ∈ {1, … , 𝑛} such that 

i. 𝑢𝑡 = 𝑣𝑡 , for 𝑡 = 1,… , 𝑕 − 1, 

ii. 𝑢𝑕 ≠ 𝑣𝑕 , and 

iii. 𝑢𝑡 = 𝑣𝑕  and 𝑣𝑡 = 𝑢𝑕  for 𝑡 = 𝑕 + 1,… , 𝑛. 

 

In the sequel we will use abbreviation 𝑢1𝑢2 …𝑢𝑛  for the vertex (𝑢1, … , 𝑢𝑛). From the definition of 

𝑆(𝑛, 𝑘), it is clear that |𝑉(𝑆(𝑛, 𝑘))| = 𝑘𝑛 , |𝐸(𝑆(𝑛, 𝑘))| =
𝑘(𝑘𝑛−1)

2
, 𝑆(1, 𝑘) ≅ 𝐾𝑘  and 𝑆(2, 𝑘) ≅ 𝑃2𝑘 . For 

𝑖 ∈ {0,1, … , 𝑘 − 1} we call vertices of the form 𝑖𝑖 … 𝑖 extreme vertices of 𝑆(𝑛, 𝑘). Obviously, only 𝑘 of 𝑘𝑛  

vertices are extreme vertices of 𝑆(𝑛, 𝑘). In Fig. 2, the Sierpiński graphs 𝑆(2,5) and 𝑆(3,4) with their vertex 

labelings are illustrated. Let 𝑛 ≥ 2, then for 𝑖 ∈ {0,1, … , 𝑘 − 1} we define 𝑖𝑆(𝑛 − 1, 𝑘) be the subgraph of 

𝑆(𝑛, 𝑘) induced by the vertices of the form 𝑖𝑣2𝑣3 …𝑣𝑛 . The edge {𝑖𝑗𝑗 … 𝑗 , 𝑗𝑖𝑖 … 𝑖} is the unique edge between 

𝑖𝑆(𝑛 − 1, 𝑘) and 𝑗𝑆(𝑛 − 1, 𝑘) and it is denoted by 𝑒(𝑛)𝑖𝑗  or 𝑒(𝑛)𝑗𝑖  (see Fig. 3). For further information on 

Sierpiński graphs 𝑆(𝑛, 𝑘), please see [9]. 

 

  
Figure2:Sierpiński graphs 𝑆(2,5) and 𝑆(3,4) 
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Figure3:Sierpiński graph 𝑆(3,3) and its subgraphs 0𝑆(2,3), 1𝑆(2,3), 2𝑆(2,3) and 20𝑆(1,3) 

 

Sierpiński graphs and their coloring properties have been extensively studied in the literature by some 

authors. In [10], Parisse showed that 𝜒(𝑆(𝑛, 𝑘)) = 𝑘, for 𝑛, 𝑘 ∈ ℕ. In [11], Klavžar showed that 𝜒′(𝑆(𝑛, 3)) = 3 

and this coloring is unique. This result was extended by Jakovac and Klavžar who showed that for any 𝑘, 

𝜒′(𝑆(𝑛, 𝑘)) = 𝑘. They also proved that for any 𝑛 ≥ 2 and any odd 𝑘 ≥ 3, 𝜒′′ (𝑆(𝑛, 𝑘)) = 𝑘 + 1 (see [12]). The 

exact value of the total chromatic number of 𝑆(𝑛, 𝑘) was given by Hinz and Parisse and they obtained for any 

𝑘, 𝑛 ≥ 2, 𝜒′′ (𝑆(𝑛, 𝑘)) = 𝑘 + 1 (see [13]).In [14], authors concentrated on Sierpiński graphs and presented 

certain results on their metric aspects,domination-type invariants with an emphasis on perfect codes, different 

colorings, and embeddingsinto other graphs.We previously studied the game chromatic number and the game 

coloring number of Sierpiński graphs, and obtain certain results (see [15]). Namely, the game chromatic number 

of a graph 𝐺 is defined via a two-person finite game. Two players, generally called Alice and Bob, with Alice 

going first, alternatively color the uncolored vertices of 𝐺 with a color from a color set 𝑋, such that no two 

adjacent vertices have the same color. Bob wins if at any stage of the game before the 𝐺 is completely colored, 

one of the players has no legal move; otherwise, that is, if all the vertices of 𝐺 are colored properly, Alice wins. 

The game chromatic number 𝜒𝑔(𝐺) of 𝐺 is the least number of colors in the color set 𝑋 for which Alice has a 

winning strategy.Accordingly, the game coloring number of a graph 𝐺 is defined by modifying the rules of the 

above-mentioned coloring game as follows. The players fix a positive integer 𝑘, and instead of coloring vertices, 

only mark an unmarked vertex each turn. Bob wins if at some stage, some unmarked vertex has 𝑘 marked 

neighbors, while Alice wins if this never happens. The game coloring number of a graph 𝐺 is defined as the 

least number 𝑘 for which Alice has a winning strategy on graph 𝐺, and it is denoted by the symbol col𝑔(𝐺). 

Although game chromatic number and game coloring number of the graphs are extensively studied, and many 

significant results are obtained, there are still many open problems in this subject (please see [15—29] and 

references therein).In the following theorem, we obtain the game coloring number of Sierpiński graphs 𝑆(𝑛, 𝑘), 

and particularly the game chromatic number of Sierpiński graphs 𝑆(𝑛, 3).  

 

Theorem 1.3 ([15])For any 𝑛 ≥ 1 and 𝑘 ≥ 2 

 col𝑔(𝑆(𝑛, 𝑘)) =  
𝑘 if𝑛 = 1,
𝑘 + 1 if𝑛 > 1,

  

and 

 𝜒𝑔(𝑆(𝑛, 3)) =  
3 if𝑛 = 1,
4 if𝑛 > 1.

  

 

We could not prove, but we conjecture that for each 𝑘 ≥ 1 
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 𝜒𝑔(𝑆(𝑛, 𝑘)) =  
𝑘 if𝑛 = 1,
𝑘 + 1 if𝑛 > 1.

  

 

1.2 Main Theorem 

 In this section, we state a theorem which gives the exact value of the incidence chromatic 

number of Sierpiński graphs 𝑆(𝑛, 3). 

Theorem 2.1𝜒𝑖(𝑆(𝑛, 3)) =  
3 if  𝑛 = 1,
4 if  𝑛 > 1.

  

Proof. If 𝑛 = 1 then 𝑆(1,3) ≅ 𝐾3, and since for each 𝑘 ≥ 1, 𝜒𝑖(𝐾𝑘) = 𝑘, we get 𝜒𝑖(𝑆(1,3)) = 3. 

Now let 𝑛 ≥ 2. Clearly, Δ(𝑆(𝑛, 3)) = 3 and from (1) we obtain 

 4 ≤ 𝜒𝑖(𝑆(𝑛, 3)). 

Let 𝑋 = {0,1,2,3} be the set of colors. If we prove there is a proper coloring 𝜎 of 𝐼(𝑆(𝑛, 3)) with colors from 𝑋, 

then we complete the proof for 𝑛 ≥ 2. We prove it by induction on 𝑛. 

Consider the base case when 𝑛 = 2, then we have a proper coloring 𝜎0 of 𝐼(0𝑆(1,3)) using only 3 colors, since 

𝜒𝑖(0𝑆(1,3)) = 3. We choose 𝜎0 as follows: 

 

 𝜎0: 𝐼(0𝑆(1,3)) → {0,1,2} ⊂ 𝑋, 𝜎0((0𝑖, {0𝑖, 0𝑗})) = 𝑗  (𝑖, 𝑗 = 0,1,2). 

Let us define a permutation 𝑝1 from 𝐼(0𝑆(1,3)) to 𝐼(1𝑆(1,3)) 

 

𝑝1((00, {00,01})) = (11, {11,10}), 𝑝1((00, {00,02})) = (11, {11,12}),

𝑝1((01, {01,00})) = (10, {10,11}), 𝑝1((01, {01,02})) = (10, {10,12}),

𝑝1((02, {02,00})) = (12, {12,11}), 𝑝1((02, {02,01})) = (12, {12,10}),
 

and a permutation 𝑝2 from 𝐼(0𝑆(1,3)) to 𝐼(2𝑆(1,3)) 

 

𝑝2((00, {00,01})) = (22, {22,21}), 𝑝2((00, {00,02})) = (22, {22,20}),

𝑝2((01, {01,00})) = (21, {21,22}), 𝑝2((01, {01,02})) = (21, {21,20}),

𝑝2((02, {02,00})) = (20, {20,22}), 𝑝2((02, {02,01})) = (20, {20,21}).
 

We also define two permutations 𝑐1 , 𝑐2: 𝑋 → 𝑋, 

 

 𝑐1 =  
0 1 2 3
0 3 2 1

 and𝑐2 =  
0 1 2 3
0 1 3 2

 . 

Now, composing the functions 𝑐1, 𝜎0 and the inverse of 𝑝1 we get a proper coloring of 𝐼(1𝑆(1,3)) as follows: 

 𝜎1: 𝐼(1𝑆(1,3)) → {0,2,3} ⊂ 𝑋, 𝜎1 = 𝑐1 ∘ 𝜎0 ∘ 𝑝1
−1. 

Similarly, we obtain a proper coloring of 𝐼(2𝑆(1,3)) as follows: 

 𝜎2: 𝐼(2𝑆(1,3)) → {0,1,3} ⊂ 𝑋, 𝜎2 = 𝑐2 ∘ 𝜎0 ∘ 𝑝2
−1. 

 

  
Figure4: Proper colorings of 𝐼(1𝑆(1,3)) and 𝐼(2𝑆(1,3)) by virtue of proper coloring of 𝐼(0𝑆(1,3)) 

 

Finally, we give a proper coloring of incidence elements (𝑖𝑗, 𝑒(2)𝑖𝑗 ) = (𝑖𝑗, {𝑖𝑗, 𝑗𝑖})𝑖, 𝑗 = 0,1,2, 𝑖 ≠ 𝑗 

which are not belong to 𝐼(0(𝑆(1,3))), 𝐼(1(𝑆(1,3))) and 𝐼(2(𝑆(1,3))). We color an incidence element 

(𝑖𝑗, {𝑖𝑗, 𝑗𝑖})𝑖, 𝑗 = 0,1,2, 𝑖 ≠ 𝑗 with a color not used in 𝐼(𝑖𝑆(1,3)). Then, since 3 ∉ ℛ(𝜎0), we can color incidence 

element (0𝑗, {0𝑗, 𝑗0})) with color 3. Similarly, since 1 ∉ ℛ(𝜎1), we can color incidence element (1𝑗, {1𝑗, 𝑗1})) 

with color 1, and finally since 2 ∉ ℛ(𝜎2), we can color incidence element (2𝑗, {2𝑗, 𝑗2})) with color 2. Here, 

ℛ(𝜎0) denotes the range of 𝜎0. Hence, we get 

 𝜎∗((0𝑗, {0𝑗, 𝑗0})) = 3, 𝜎∗((1𝑗, {1𝑗, 𝑗1})) = 1,  and𝜎∗((2𝑗, {2𝑗, 𝑗2})) = 2. 

As a result, by combining all these colorings together, we obtain the following proper coloring of 𝐼(𝑆(2,3)): 
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 𝜎: 𝐼(𝑆(2,3)) → 𝑋 = {0,1,2,3}, 

 𝜎((𝑖𝑗, {𝑖𝑗, 𝑘𝑙})) =  

𝜎0((𝑖𝑗, {𝑖𝑗, 𝑘𝑙})) if  (𝑖𝑗, {𝑖𝑗, 𝑘𝑙}) ∈ 𝐼(0𝑆(1,3)),

𝜎1((𝑖𝑗, {𝑖𝑗, 𝑘𝑙})) if  (𝑖𝑗, {𝑖𝑗, 𝑘𝑙}) ∈ 𝐼(1𝑆(1,3)),

𝜎2((𝑖𝑗, {𝑖𝑗, 𝑘𝑙})) if  (𝑖𝑗, {𝑖𝑗, 𝑘𝑙}) ∈ 𝐼(2𝑆(1,3)),

𝜎∗((𝑖𝑗, {𝑖𝑗, 𝑘𝑙})) otherwise ,

  

where 𝑖, 𝑗, 𝑘, 𝑙 ∈ {0,1,2}. 

Now, suppose that the induction hypothesis holds for 𝑛 where 𝑛 ≥ 2, that is, 𝜒𝑖(𝑆(𝑛, 3)) = 4 for 𝑛 ≥ 2, and we 

want to prove that it also holds for 𝑛 + 1. By the induction hypothesis, we have a proper coloring 

𝜎0: 𝐼(0𝑆(𝑛, 3)) → 𝑋 of 𝐼(0𝑆(𝑛, 3)) using 4 colors. 

Similar to the above strategy we define the permutation 

 

 𝑝1: 𝐼(0𝑆(𝑛, 3)) → 𝐼(1𝑆(𝑛, 3)), 

 
(0𝑢2𝑢3 …𝑢𝑛+1 , {0𝑢2𝑢3 …𝑢𝑛+1, 0𝑣2𝑣3 …𝑣𝑛+1}) →

(1𝑢2
′ 𝑢3

′ …𝑢𝑛+1
′ , {1𝑢2

′ 𝑢3
′ …𝑢𝑛+1

′ , 1𝑣2
′ 𝑣3

′ …𝑣𝑛+1
′ })

 

such that for all 𝑖 = 2,3, … , 𝑛 + 1 

 𝑢𝑖
′ =  

1 if𝑢𝑖 = 0,
0 if𝑢𝑖 = 1,
2 if𝑢𝑖 = 2,

 and𝑣𝑖
′ =  

1 if𝑣𝑖 = 0,
0 if𝑣𝑖 = 1,
2 if𝑣𝑖 = 2.

  

Likewise, we define the permutation 

 𝑝2: 𝐼(0𝑆(𝑛, 3)) → 𝐼(2𝑆(𝑛, 3)), 

 
(0𝑢2𝑢3 …𝑢𝑛+1 , {0𝑢2𝑢3 …𝑢𝑛+1, 0𝑣2𝑣3 …𝑣𝑛+1}) →

(2𝑢2
′ 𝑢3

′ …𝑢𝑛+1
′ , {2𝑢2

′ 𝑢3
′ …𝑢𝑛+1

′ , 2𝑣2
′ 𝑣3

′ …𝑣𝑛+1
′ })

 

such that for all 𝑖 = 2,3, … , 𝑛 + 1 

 𝑢𝑖
′ =  

2 if𝑢𝑖 = 0,
1 if𝑢𝑖 = 1,
0 if𝑢𝑖 = 2,

 and𝑣𝑖
′ =  

2 if𝑣𝑖 = 0,
1 if𝑣𝑖 = 1,
0 if𝑣𝑖 = 2.

  

We define two permutation functions 𝑐1, 𝑐2: 𝑋 → 𝑋, 

 𝑐1 =  
 

0 1 2 3
0 3 2 1

 if𝑛isodd,

 
0 1 2 3
1 0 2 3

 if𝑛iseven; 

  

and 

 𝑐2 =  
 

0 1 2 3
0 1 3 2

 if𝑛isodd,

 
0 1 2 3
2 1 0 3

 if𝑛iseven.

  

Now, composing the functions 𝑐1, 𝜎0 and the inverse of 𝑝1 we get a proper coloring of 𝐼(1𝑆(𝑛, 3)) as follows: 

 𝜎1: 𝐼(1𝑆(𝑛, 3)) → 𝑋, 𝜎1 = 𝑐1 ∘ 𝜎0 ∘ 𝑝1
−1 . 

Analogously, we obtain a proper coloring of 𝐼(2𝑆(𝑛, 3)) as follows:  

 𝜎2: 𝐼(2𝑆(𝑛, 3)) → 𝑋, 𝜎2 = 𝑐2 ∘ 𝜎0 ∘ 𝑝2
−1. 

 

Finally, we give a proper coloring of incidence elements  

 (𝑖𝑗𝑗 … 𝑗, 𝑒(𝑛 + 1)𝑖𝑗 ) = (𝑖𝑗𝑗 … 𝑗, {𝑖𝑗𝑗 … 𝑗 , 𝑗𝑖𝑖 … 𝑖}), 𝑖, 𝑗 = 0,1,2, 𝑖 ≠ 𝑗 

which are not belong to 𝐼(0(𝑆(𝑛, 3))), 𝐼(1(𝑆(𝑛, 3))) and 𝐼(2(𝑆(𝑛, 3))). By the coloring strategy we always 

have a color from 𝑋 which is not used in 𝐼(𝑖1𝑖2 … 𝑖𝑛𝑆(1,3)) where 𝑖1 , 𝑖2 , … , 𝑖𝑛 ∈ {0,1,2}. Thus, we can color an 

incidence element (𝑖𝑗𝑗 … 𝑗, {𝑖𝑗𝑗 … 𝑗 , 𝑗𝑖𝑖 … 𝑖})𝑖, 𝑗 = 0,1,2, 𝑖 ≠ 𝑗 with a color not used in 𝐼(𝑗𝑗 … 𝑗𝑖𝑆(1,3)). Hence, 

we get 

 𝜎∗((0𝑗𝑗 … 𝑗, {0𝑗𝑗 … 𝑗 , 𝑗00…0})) = 3, 

 𝜎∗((1𝑗𝑗 … 𝑗, {1𝑗𝑗 … 𝑗 , 𝑗11…1})) = 1, 

 𝜎∗((2𝑗𝑗 … 𝑗, {2𝑗𝑗 … 𝑗 , 𝑗22…2})) = 2 

when 𝑛 is odd, and 

 𝜎∗((𝑖00…0, {𝑖00…0 , 0𝑖𝑖 … 𝑖})) = 0, 

 𝜎∗((𝑖11…1, {𝑖11…1 , 1𝑖𝑖 … 𝑖})) = 1, 
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 𝜎∗((𝑖22…2, {𝑖22…2 , 2𝑖𝑖 … 𝑖})) = 2 

when 𝑛 is even. 

As a result, by combining all these colorings together, we obtain the following proper coloring of 𝐼(𝑆(𝑛 +

1,3)): 

 𝜎: 𝐼(𝑆(𝑛 + 1,3)) → 𝑋 = {0,1,2,3}, 

 𝜎((𝑢1 …𝑢𝑛+1, {𝑢1 …𝑢𝑛+1, 𝑣1 …𝑣𝑛+1})) =

 
 
 
 

 
 
 
𝜎0((𝑢1 …𝑢𝑛+1, {𝑢1 …𝑢𝑛+1, 𝑣1 …𝑣𝑛+1}))  if

(𝑢1 …𝑢𝑛+1, {𝑢1 …𝑢𝑛+1, 𝑣1 …𝑣𝑛+1}) ∈ 𝐼(0𝑆(𝑛, 3)),

𝜎1((𝑢1 …𝑢𝑛+1, {𝑢1 …𝑢𝑛+1, 𝑣1 …𝑣𝑛+1}))  if

(𝑢1 …𝑢𝑛+1, {𝑢1 …𝑢𝑛+1, 𝑣1 …𝑣𝑛+1}) ∈ 𝐼(1𝑆(𝑛, 3)),

𝜎2((𝑢1 …𝑢𝑛+1, {𝑢1 …𝑢𝑛+1, 𝑣1 …𝑣𝑛+1}))  if

(𝑢1 …𝑢𝑛+1, {𝑢1 …𝑢𝑛+1, 𝑣1 …𝑣𝑛+1}) ∈ 𝐼(2𝑆(𝑛, 3)),

𝜎∗((𝑢1 …𝑢𝑛+1, {𝑢1 …𝑢𝑛+1, 𝑣1 …𝑣𝑛+1}))  otherwise.

  

This completes the proof. 

 

Although, for any 𝑛 and 𝑘, it is not easy to use the technique, presented in the proof of Theorem 2.1, to 

determine the incidence chromatic number of Sierpiński graphs 𝑆(𝑛, 𝑘), we conjecture that  

 𝜒𝑖(𝑆(𝑛, 𝑘)) =  
𝑘 if𝑛 = 1,
𝑘 + 1 if𝑛 > 1.

  

 

II. Conclusion 
In this study,we focus on Sierpińskigraphsandprove that the incidence chromatic number of Sierpiński 

graphs 𝑆(𝑛, 3)is 4 when𝑛 > 1. We also presentaproof for the incidence chromatic number of the complete 

bipartite graph 𝐾𝑚,𝑛 . We have given algorithms for coloring incidence graphs of Sierpińskigraphs𝑆(𝑛, 3) and 

complete bipartite graph 𝐾𝑚,𝑛 . Further, we conjecture that the incidence chromatic number of Sierpiński graphs 

𝑆(𝑛, 𝑘) is 𝑘 + 1 when 𝑛 > 1. 
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