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Abstract: An analysis of complex functions and mapping that are holomorphic in nature are studied and 

discussed in this paper through Riemann surfaces, which involves Riemann Mapping theorem and 

Caratheodory’s theorem. Furthermore Montel’s theorem, Runge’s theorem and Mergelyan’s theorem over the 

holomorphic nature is studied with its basic properties and developed in this paper. To enhance the reliability 

over the nature of holomorphism the metrics of Riemann surface and conformal maps of plane to disk is 

analyzed and studied in this paper.  
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I. Inroduction 
Mathematical analysis that investigates functions of complex numbers is complex analysis. It is in 

particular the theory of conformal mappings, has many physical applications and is also used 

throughout analytic number theory. Complex analysis has a new boost from complex dynamics and the pictures 

of fractals produced by iterating holomorphic functions. Complex analysis is widely applicable to two-

dimensional problems in physics, string theory which studies conformal invariants in quantum field theory. 

Complex analysis is thought of as the subject that applies the theory of calculus to imaginary numbers.  

In sixteenth century Italian mathematicians named Scipione del Ferro (1465-1526), Nicolo Tartaglia (1500-

1557),  Girolamo Cardano (1501-1576), and  Rafael Bombelli (1526-1572)  made significant contributions 

leading up to the invention of complex numbers:   In 1545,Girolamo Cardano published  “Ars Magna" (The 

Great Art), in which he gave for the first time an algebraic solution to the general cubic equation but  his 

computations were limited to numbers in "real domain" (also a Maple computing environment).  Cardano is 

credited for making the following important discovery known as Cardano's Substitution.   

William Rowan Hamilton (1805-65) in an 1831 memoir defined ordered pairs of real numbers (𝑎, 𝑏) to 

be a couple. He defined addition and multiplication of 

couples: (𝑎, 𝑏)  +  (𝑐, 𝑑)  =  (𝑎 +  𝑐, 𝑏 +  𝑑) 𝑎𝑛𝑑 (𝑎, 𝑏)(𝑐, 𝑑)  =  (𝑎𝑐 −  𝑏𝑑, 𝑏𝑐 +  𝑎𝑑). This is in fact an 

algebraic definition of complex numbers. 

  Organization of the paper is with respective sections: preliminaries, metric of Riemann surface, 

conformal map of plane to disk, Montel’s theorem of holomorphic functions, Riemann mapping theorem, 

Caratheodory’s theorem of conformal mapping, Runge’s theorem of holomorphic open sets, Mergelyan’s 

theorem of holomorphism and conclusion. 

 

II. Preliminaries 

Definition 2.1: A curve  𝑧 𝑡 =  𝑥 𝑡 , 𝑦 𝑡  = 𝑥 𝑡 + 𝑖𝑦 𝑡 ∀𝑎 ≤ 𝑡 ≤ 𝑏 , and 𝑧 𝑡   is a parametrization for the 

curve C.  C is a curve that goes from the initial point  𝑧 𝑎 =  𝑥 𝑎 , 𝑦 𝑎  = 𝑥 𝑎 + 𝑖𝑦 𝑎   to the terminal 

point 𝑧 𝑏 =  𝑥 𝑏 , 𝑦 𝑏  = 𝑥 𝑏 + 𝑖𝑦 𝑏 .  If we had another function whose range was the same set of points 

as  𝑧 𝑡  but whose initial and final points were reversed, we would indicate the curve this function defines by C. 

 

Definition 2.2: Piecewise smooth curve: We define a curve to be the range of a continuous complex-valued 

function 𝑧 𝑡  defined on the interval  [𝑎. 𝑏].  That is, a curve C is the range of a function given by  𝑧 𝑡 =

 𝑥 𝑡 , 𝑦 𝑡  = 𝑥 𝑡 + 𝑖𝑦 𝑡 ∀𝑎 ≤ 𝑡 ≤ 𝑏 , where both 𝑥 𝑡 𝑎𝑛𝑑 𝑦 𝑡   are continuous real-valued functions. If 
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both 𝑥 𝑡 𝑎𝑛𝑑 𝑦 𝑡    are differentiable, we say that the curve is smooth. A curve for which 𝑥 𝑡 𝑎𝑛𝑑 𝑦 𝑡   are 

differentiable except for a finite number of points is called piecewise smooth.   

 

Definition 2.3: Interior Point: The point 𝑧0 is said to be an interior point of the set S, that there exist 𝜀, 

neighborhood of 𝑧0  that contains only points of S [1]. 

 

Definition 2.4: Exterior Point: The point  𝑧0  is called an exterior point of the set S if there exist 𝜀, 

neighborhood of 𝑧0 that contains no points of S [1].   

 

Definition 2.5: Boundary Point: If the point 𝑧0  is neither an interior point nor an exterior point of S, then it is 

called a boundary point of S and has the property that each 𝜀 neighborhood of 𝑧0  contains both points in S and 

points not in S [1].    

 

Definition 2.6: Complex functions: A complex function is a function whose domain and range are subsets of 

the complex plane. 

For any complex function, both the independent variable and the dependent variable may be separated 

into real and imaginary parts: 𝑧 = 𝑥 + 𝑖𝑦 and𝜔 = 𝑓 𝑧 = 𝑢 𝑥, 𝑦 + 𝑖𝑣(𝑥, 𝑦) 

where 𝑥, 𝑦 ∈ 𝑅𝜀 and 𝑢 𝑥, 𝑦 𝑎𝑛𝑑 𝑣(𝑥, 𝑦) are real-valued functions [2]. 
 

Definition 2.7: Holomorphic functions: Holomorphic functions are complex functions defined on an open 

subset of the complex plane that are differentiable. [3] 
 

III. Metric Of Riemann Surface 
A metric on the complex plane is of the form     𝑑𝑠2 =⋋2  𝑧, 𝑧  𝑑𝑧 𝑑𝑧   , where λ is a real, positive function of  𝑧  

and the length of a curve 𝛾 in the complex plane is thus given by   𝑙 𝛾 =  ⋋ (𝑧, 𝑧) 
𝛾

 𝑑𝑧 and its area of a subset 

is given by  𝑎𝑟𝑒𝑎  𝑀 =  ⋋2 (𝑧, 𝑧 )
𝑖

2𝑀
𝑑𝑧^𝑑𝑧  where  ^  is the exterior product used to construct the volume 

form. The determinant of the metric is  ⋋4, and its square root  is ⋋2 .  

The Euclidean volume form on the plane is 𝑑𝑥^𝑑𝑦 and so   𝑑𝑧^𝑑𝑧  =  𝑑𝑥 + 𝑖𝑑𝑦 𝑑𝑥−𝑖𝑑𝑦 = −2𝑖𝑑𝑥^𝑑𝑦. 

A function ∅(𝑧, 𝑧 ) is said to be the potential of the metric if  4
𝜕

𝜕𝑧

𝜕

𝜕𝑧    
∅ 𝑧, 𝑧  =⋋2 (𝑧, 𝑧 ) 

The Laplace–Beltrami operator is given by      ∆=
4

⋋2

𝜕

𝜕𝑧

𝜕

𝜕𝑧    
=

1

⋋2 (
𝜕2

𝜕𝑥 2 +
𝜕2

𝜕𝑦 2) 

The Gaussian curvature of the metric is given by     𝐾 = −∆𝑙𝑜𝑔 ⋋. This curvature is one-half of the Ricci scalar 

curvature. Isometries preserve angles and arc-lengths. 

  

Remark: On Riemann surfaces, isometries are identical to changes of coordinate (both the Laplace–Beltrami 

operator and the curvature are invariant under isometries).  

 

Example:  Let S be a Riemann surface with metric  ⋋2  𝑧, 𝑧  𝑑𝑧 𝑑𝑧  and let T be Riemann surface with 

metric𝜇2 𝜔, 𝜔  𝑑𝜔𝑑𝜔 . Then a map 𝑓: 𝑆 → 𝑇with 𝑓: 𝜔(𝑍)  is an isometric if and only if it is conformal and if 

𝜇2 𝜔, 𝜔    
𝜕𝜔

𝜕𝑧

𝜕𝜔 

𝜕𝑧    
=⋋2 (𝑧, 𝑧 ).Here, the requirement that the map is conformal is nothing more than the statement   

𝜔 𝑧, 𝑧  = 𝜔(𝑧), that is,  
𝜕

𝜕𝑧    
𝜔 𝑧 = 0. 

 

IV. Conformal Map Of Plane To Disk 
 The upper half plane can be mapped conformal to the unit disk with the Mobius transformation  

𝜔 = 𝑒𝑖∅ 𝑧−𝑧0

𝑧−𝑧0   
 [4], where w is the point on the unit disk that corresponds to the point z in the upper half plane. In 

this mapping, the constant z0 can be any point in the upper half plane; it will be mapped to the center of the disk. 

The real axis  maps to the edge of the unit disk  𝜔 = 1. The constant real number ∅ can be used to 

rotate the disk by an arbitrary fixed amount. The canonical mapping is  𝜔 =
𝑖𝑧+1

𝑧+𝑖
 [5] which takes i to the center 

of the disk, and 0 to the bottom of the disk. 

 

V. Montel’s Theorem Of Holomorphic Functions. 
Montel's theorem: It refers to theorems about families of holomorphic functions. These are named after Paul 

Montel, and give conditions under which a family of holomorphic functions is normal. [6] 

 

 

http://en.wikipedia.org/wiki/Real_number
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Theorem 3.1: First version of Montel's theorem: Uniformly bounded families: 

Statement:  A uniformly bounded family of holomorphic functions defined on an open subset of the complex 

numbers is normal. 

Proof: The first version of Montel's theorem is a direct consequence of Marty's Theorem (which states that a 

family is normal if and only if the spherical derivatives are locally bounded) and Cauchy's integral formula. This 

theorem is also known as the Stieltjes–Osgood theorem. 

 

Corollary 3.2: Suppose that F is a family of meromorphic functions on an open set D. If 𝑍0 ∈ 𝐷 is such that F is 

not normal at 𝑍0, and 𝑈 ∁ 𝐷 is a neighborhood of 𝑍0, then ∪𝑓∈𝑓
𝑓(𝑢)

 is dense in the complex plane. 

Proof: Suppose that all the functions in F omit the same neighborhood of the point 𝑍0. By post composing with 

the map 𝑍 ↦
1

𝑧−𝑧0
 we obtain a uniformly bounded family, which is normal by the first version of the theorem. 

 

Theorem 3.3: Second Version: Stronger version of Montel's Theorem (The Fundamental Normality Test): 

Statement:  A family of holomorphic functions ⇔ all of which omit the same two values𝑎, 𝑏 ∈ 𝐶, is normal. 

Sufficient Condition: The conditions in the above theorems are sufficient, but not necessary for normality 

Necessity Condition: The family 𝑍 ↦ 𝑍 + 𝑎: 𝑎 ∈ 𝐶 is normal, but does not omit any complex value. 

Proof: The second version of Montel's theorem can be deduced from the first by using the fact that there exists a 

holomorphic universal covering from the unit disk to the twice punctured plane
𝐶

{𝑎,𝑏}
. (Such a covering is given 

by the elliptic modular function).This version of Montel's theorem can be also derived from Picard's theorem, by 

using Zalcman's lemma. 

 

VI. Riemann Mapping Theorem 
Uniqueness of the Riemann mapping 4.1: 

1. Simple Riemann mappings have no explicit formula using only elementary functions. 

2. Simply connected open sets in the plane can be highly complicated. 

3. The analog of the Riemann mapping theorem for more complicated domains is not true.  

4. Any doubly connected domain except for the punctured disk and the punctured plane is conformally 

equivalent to some annulus {z : r < |z| < 1} with 0 < r < 1. 

5. The analogue of the Riemann mapping theorem in three or more real dimensions is not true.  

6. Even if arbitrary homeomorphisms in higher dimensions are permitted, contractible manifolds can be found 

that are not holomorphic to the ball. 

7. The Riemann mapping theorem is the easiest way to prove that any two simply connected domains in the 

plane are homomorphism.  

 

Theorem 4.2: 

Statement:  If U is a non-empty simply connected open subset of the complex number plane C which is not all 

of C, then there exists a biholomorphic (bijective and holomorphic) mapping f from U onto the open unit disk   

𝐷 = {𝑍 ∈ 𝐶:  𝑍 < 1}.This mapping is known as a Riemann mapping. [5] 
Proof: Given U and z0, we want to construct a function f which maps U to the unit disk and z0 to 0. Assume 

that U is bounded and its boundary is smooth  𝑓 𝑧 = (𝑧 − 𝑧0)𝑒𝑔(𝑧), where 𝑔 = 𝑢 + 𝑖𝑣,  is some (to be 

determined) holomorphic function, then  z0 is the only zero of f. We require   𝑓(𝑧) = 1  for 𝑧 ∈ 𝜕𝑧0, so we 

need, 𝑢 𝑧 = −𝑙𝑜𝑔 𝑧 − 𝑧0 , on the boundary. Since u is the real part of a holomorphic function, we know 

that u is necessarily a harmonic function; i.e., it satisfies Laplace's equation. Once the existence of u has been 

established, the Cauchy-Riemann equations for the holomorphic function g allow us to find v (this argument 

depends on the assumption that U be simply connected). Once u and v have been constructed, one has to check 

that the resulting function f does indeed have all the required properties. 

Uniformization theorem: The Riemann mapping theorem can be generalized to Riemann surfaces.  If U is a 

simply-connected open subset of a Riemann surface, then U is biholomorphic to one of the following: 

the Riemann sphere, C or D. This is known as the Uniformization theorem. 

Smooth Riemann mapping theorem: In the case of a simply connected bounded domain with smooth 

boundary, the Riemann mapping function and all its derivatives extend by continuity to the closure of the 

domain. This can be proved using regularity properties of solutions of the Dirichlet boundary value problem, 

which follow either from the theory of Sobolev spaces for planar domains or from classical potential theory. 

Other methods for proving the smooth Riemann mapping theorem include the theory of kernel functions
 
or 

the Beltrami equation. 

 

 

http://en.wikipedia.org/w/index.php?title=Marty%27s_Theorem&action=edit&redlink=1
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VII. Caratheodory’s Theorem Of Conformal Mapping 
Statement:   Form   1:   If U is a simply connected open subset of the complex plane C, whose boundary is 

a Jordan curve Γ then the Riemann map f: U → D  from U to the unit disk D extends continuously to the 

boundary, giving a homeomorphism 𝐹 : 𝛤 →  S1.Such a region is called a Jordan domain. [8] 

Statement: Form 2: U there is a homeomorphism 𝐹 : 𝑐𝑙(𝑈)  →  𝑐𝑙(𝐷) from the closure of U to the closed unit 

disk 𝑐𝑙(𝐷) whose restriction to the interior is a Riemann map, i.e. it is a bijective holomorphic conformal map.  

Statement:    Form    3 :   For any pair of simply connected open sets U and V bounded by Jordan curves 

𝛤1 𝑎𝑛𝑑 𝛤2, a conformal map 𝑓 :  𝑈 →  𝑉 extends to a homeomorphism  𝐹: 𝛤1 →  𝛤2. Let 𝑔 :  𝐷  𝑈 be the 

inverse of the Riemann map, where 𝐷 ⊂  𝑪 is the unit disk, and 𝑈 ⊂  𝑪 is a simply connected domain. 

Then g extends continuously to 𝐺 : 𝑐𝑙(𝐷)  →  𝑐𝑙(𝑈) if and only if the boundary of U is locally connected. 

Context of Caratheodory's theorem:  Compared to general simply connected open sets in the complex 

plane C, those bounded by Jordan curves are particularly well-behaved. It is a study of boundary behavior of 

conformal maps. Jordan curve boundary is sufficient for such an extension to exist; it is by no means necessary. 

[9] 

Example : The map 𝑓(𝑧)  =  𝑧2 from the upper half-plane H to the open set G that is the complement of the 

positive real axis is holomorphic and conformal, and it extends to a continuous map from the real line R to the 

positive real axis R
+
; however, the set G is not bounded by a Jordan curve. 

 

VIII. Runge’s Theorem Of Holomorphic Open Sets 
Statement: If A to be a subset of the Riemann sphere 𝑪 ∪ {∞}  and requires that A intersect also the unbounded 

connected component of K (which now contains ∞). That is, the rational functions may turn out to have a pole at 

infinity, in general formulation the pole can be chosen instead anywhere in the unbounded connected component 

of K. 

Proof: 

Let C denote the set of complex numbers and K be a compact subset of C, f be a function which 

is holomorphic on an open set containing K. If A is a set containing at least one complex number from 

every bounded connected component of 𝑪\𝐾 then there exists a sequence (𝑟)𝑛 , 𝑛 ∈ 𝑁  of rational 

functions which converges uniformly to f on K and such that all the poles of the functions (𝑟)𝑛 , 𝑛 ∈ 𝑁  are in A. 

Not every complex number in A needs to be a pole of every rational function of the sequence (𝑟)𝑛 , 𝑛 ∈ 𝑁  , 

that do have poles, those poles lie in A. Choose any complex numbers from the bounded connected components 

of 𝑪\𝐾 and the existence of a sequence of rational functions with poles only amongst those chosen numbers. 

For the special case in which C\K is a connected set (or equivalently that K is simply-connected), the set A in the 

theorem will clearly be empty. Since rational functions with no poles are simply polynomials, we get the 

following corollary: If K is a compact subset of C such that C\K is a connected set, and f is a holomorphic 

function on K, then there exists a sequence of polynomials (𝑃𝑛) that approaches f uniformly on K. There is a 

closed piecewise-linear contour Γ in the open set, containing K in its interior. By Cauchy's integral 

theorem𝑓 𝜔 =
1

2𝜋𝑖
 

𝑓 𝑧 𝑑𝑧

𝑧−𝜔⎾
 for w in K. Riemann approximating sums can be used to approximate the contour 

integral uniformly over K. Each term in the sum is a scalar multiple of (z − w)
−1

 for some point z on the contour. 

Thus an uniform approximation by a rational function with poles on Γ. 

Take poles at specified points in each component of the complement of K. 

 To check:  terms of the form (𝑧 − 𝑤)−1.  

If z0 is the point in the same component as z, take a piecewise-linear path from z to z0. If two points are 

sufficiently close on the path, any rational function with poles only at the first point can be expanded as a 

Laurent series about the second point. That Laurent series can be truncated to give a rational function with poles 

only at the second point uniformly close to the original function on K. Proceeding by steps along the path 

from z to z0 the original function (𝑧 − 𝑤)−1. can be successively modified to give a rational function with poles 

only at z0. 

If z0 is the point at infinity, then by the above procedure the rational function (𝑧 − 𝑤)−1 can first be 

approximated by a rational function g with poles at R > 0 where R is so large that K lies in w < R. The Taylor 

series expansion of g about 0 can then be truncated to give a polynomial approximation on K. 
 

IX. Mergelyan’s Therom Of Holomorphism 
Mergelyan's theorem ([10], [11]), is the ultimate development and generalization of the Weierstrass 

approximation theorem and Runge's theorem. It gives the complete solution of the classical problem of 

approximation by polynomials 
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Statement: Let K be a compact subset of the complex plane C such that  
𝐶

𝐾
 is connected. Then, every continuous 

function𝑓: 𝐾 → 𝐶, such that the restriction
𝑓

𝑖𝑛𝑡 (𝑘)
 is holomorphic, can be approximated 

uniformly on K with polynomials (Here int(K) denotes the interior of K.) 

Proof: In the case that 
𝐶

𝐾
 is not connected, in the initial approximation problem the polynomials have to be 

replaced by rational functions. An important step of the solution of this further rational approximation problem 

was also suggested by Mergelyan in 1952. Further deep results on rational approximation are due to, in 

particular, A. G. Vitushkin. 

Weierstrass and Runge's theorems were put forward in 1885, while Mergelyan's theorem dates from 1951. This 

rather large time difference is not surprising, as the proof of Mergelyan's theorem is based on a new powerful 

method created by Mergelyan. After Weierstrass and Runge, many mathematicians (in 

particular Walsh, Keldysh, and Lavrentyev) had been working on the same problem. The method of the proof 

suggested by Mergelyan’s is constructive, and remains the only known constructive proof of the result.  

 

X. Conclusion 
In the nineteenth century there were many contributions. The French mathematician Augustin Louis 

Cauchy (1789-1857) contributed theorems that are part of the body of complex analysis.  The German 

mathematician Johann Carl Friedrich Gauss (1777-1855) reinforced the utility of complex numbers by using 

them in several proofs of the Fundamental Theorem of Algebra.  In an 1831 paper, he produced a clear 

geometric representation of by identifying it with the point in the coordinate plane.  He also described the 

arithmetic operations with these new complex numbers. It would be a mistake, however, to conclude that 

in 1831 complex numbers were transformed into legitimacy. In that same year the prolific logician Augustus De 

Morgan (1806-1871) commented in his book, On the Study and Difficulties of Mathematics." The remarkable 

behavior of holomorphic functions near essential singularities is described by Picard's Theorem. Functions that 

have only poles but no essential singularities are called meromorphic. Laurent series are similar to Taylor 

series but can be used to study the behavior of functions near singularities. 

A bounded function that is holomorphic in the entire complex plane must be constant; this is Liouville's 

theorem. It can be used to provide a natural and short proof for the fundamental theorem of algebra which states 

that the field of complex numbers is algebraically closed. If a function is holomorphic throughout 

a connected domain then its values are fully determined by its values on any smaller sub domain. The function 

on the larger domain is said to be analytically continued from its values on the smaller domain. This allows the 

extension of the definition of functions, such as the Riemann zeta function, which are initially defined in terms 

of infinite sums that converge only on limited domains to almost the entire complex plane. Sometimes, as in the 

case of the natural logarithm, it is impossible to analytically continue a holomorphic function to a non-simply 

connected domain in the complex plane but it is possible to extend it to a holomorphic function on a closely 

related surface known as a Riemann surface. 
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