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Abstract:  Cholera has long been, and continues to be a global challenge. Despite study of the disease for 

many decades, it continues to be a threat to human existence in the affected regions of the world. It is important 

to continue to try to understand the disease dynamics and how interaction with environment and human factors 

contribute to the epidemic behavior. War, lack of good drinking water and inadequate human faeces disposal 

facilities seems to be the driving force of the epidemic in the affected communities.  In other to find a solution to 

this global challenge, we extended a mathematical model for cholera epidemic by Codeco (2000), by varying 

the net reproduction rate of humans and allowing for susceptibility of recovered individuals. It is proved that 

the disease-free equilibrium state of the extended model exists which is locally asymptotically stable under 

prescribed threshold conditions. Numerical experiments using published data indicated that the disease could 

be controlled or eradicated, provided that the rate of exposure of individuals to contaminated water and that of 

pollution of aquatic environment by infected people is sufficiently reduced. This is consistent with results 

obtained from the stability analysis of the disease-free state of the model.  

Keywords: Cholera; Transmission; disease-free equilibrium; mathematical models; eradication 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 15-01-2018                                                                           Date of acceptance: 05-02-2018 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I. Introduction 

Cholera is an acute bacterial infection caused by vibrio cholerae, non-invasive bacterium called vibrio 

or the „comma bacillus‟ which lives in the small intestine. A disease clinically resembling (but not proved to be) 

cholera was described by early Indian, Greek, and Chinese writers. Alternative names are Asiatic, epidemic, or 

malignant cholera; the name (in English) is derived from choler, the toxin or poison of this bacterium.. Vibrio 

cholerae is a large and very diverse species. It is divided into about 200 serogroups, denoted by 01, 02, 03,…, 

0200 of which only 01 and 0139 contain pathogenic members. Most of the strains isolated from cholera patients 

belong to the 01 serogroup. This serogroup is divided into three serotypes, namely, Inaba, Ogawa, and 

Hijokima, See Reidl et al.  (2002). Cholera infection is caused by ingestion of the organism(s) through 

contaminated water or food (there is no animal reservoir of infection). Snow was the first to hypothesize in 1849 

that cholera was transmitted by contaminated water, though this theory was not generally accepted until 1871.  It 

was not until 1883 the waterborne bacteria now called Vibrio cholerae was “discovered” by Robert Koch and 

the bacteria was finally accepted to be the cholera pathogen, see Lipp et al. (2002).  Recent epidemiological 

research suggests that an individual„s susceptibility to cholera (and other diarrhea infections) is affected by their 

blood type. Those with type O  blood are the most susceptible while those with type AB are the most resistant. 

Between these two extremes are the A and B blood types with type A being more resistant than type B 

Swerdlow et al (1974 ) and Haris et al. ( 2005 ). The incubation period ranges from a few hours to five days, 

See  Reidl et al. (2002) and  Lipp et al.  ( 2002) . Management consists first and foremost of rapid rehydration, 

usually by mouth (using an oral rehydration fluid) only in exceptional cases is an intravenous drip (first 

advocated in the 1831–2 outbreak) necessary. The antibiotics tetracycline and doxycycline reduce the duration 

of diarrhea and excretion of V. cholerae; however, the organism may rapidly become resistant in an epidemic. 

Co-trimoxazole and furazolidone have also been used in individual cases. Public health measures are required 

for long-term control, chlorination of water supplies, boiling of water (in households), construction and 

maintenance of temporary latrines are imperative. Safe feces disposal is also essential. Vaccines have no useful 

role in an outbreak; individual protection is not above 50–60%. Effective surveillance (with identification of 

affected cases) is an essential component of cholera control. New vaccines (using genetic engineering 

techniques) are undergoing clinical trials; they may contribute to effective control of an infection which is likely 

(given experience in South- Africa, Cameron and Nigeria) to remain of considerable importance in tropical 

countries for many years to come, see  Reidl et al.  ( 2002).   

Several mathematics models have been proposed and analyzed on the transmission dynamics of cholera 

. For example Mark et al (2006)  studied the  role of bacteriophage in the control of cholera outbreaks while 
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Bouma et al. (2001) developed a model to assess Ocean surveillance by satellite remote sensing to monitor 

changes in sea surface temperature(SSH) and sea surface height(SST) . 

  Guillaume et al. ( 2005) modeled  the effect of chlorophyll concentration along the coast on cholera 

epidemic while   Alen et al. (2007) proposed an  age structure model  and used partial differential equations to 

study the effect of hyper infective and non hyper infective vibrios on cholera transmission.  According to 

Bertuzzo (2010) the vehicle of infection (Vibrio cholerae) is transported through the network links that are 

thought of as hydrological connections among susceptible communities while Esben  et al. (2010), looked at the 

spread of epidemics in networks, more specific, the spread of Vibrio cholerae in river systems.  

A mathematical model to simulate the role of aquatic reservoir on the persistent outbreak of cholera 

epidemic was developed by Codeco (2000), he assumed constant population, the same human and bacteria birth 

rate n. His work does not reflect a realistic situation because population in developing countries is constantly 

changing due birth and death process. Nevertheless, the work by Codeco (2000) form the bases of our research 

work. In order to study the epidemic of cholera in a varying population, we  extended the model by Codeco 

(2000), by varying the net reproduction rate of humans and allowing for susceptibility of recovered individuals. 

We solved the extended model numerically using Runge-Kutta 4
th

 order method to establish the role of the 

parameters of the extended model in the control of the cholera epidemic.In this paper we intend to study the 

effects of high contribution of infected people to aquatic environment and the effect of high rate of exposure to 

contaminated water. 

The rest of the paper will be organized as follows. We provide the mathematical model in section II 

while the steady state analysis is performed in section III . numerical results are provided in section IV and we 

draw some conclusion in section V. 

      

II. The Mathematical Model 

2.1 The existing model 

We begin our model extension by introducing the model by Codeco ( 2000 ) which is the motivational paper for 

this study . First, we present the assumptions of the existing model 

2.2      Assumptions of the existing model 

The following are assumptions of the existing model: 

(i)          The population was assumed to be constant.  

(ii)  The growth rate (n) of the bacteria is the same as that of the human population. 

(ii) The only route for infection is the ingestion of contaminated water from non-treated source. 

 

2.3 Variables and Parameters of the existing model 

The variables and parameters of the existing model are as defined below. 
Variables/ 

Parameters 

Description 

 S Number of susceptible 

I Number of infected  

H Total human population 

𝐵  Concentration of toxigenic Vibrio cholerae  in water (cell/ml) 

nb growth rate of V. Cholerae in the aquatic environment (day-1) 

mb loss  rate of Vibrio cholerae in the aquatic environment  (day-1) 

r rate which people recover from cholera (day-1) 

e contribution of each infected person to the population of Vibrio cholerae     in the aquatic environment 

(cell/m/day-1/person-1) 

d Death rate of human (day-1) 

a rate of exposure to contaminated water (day-1) 
K Concentration of vibrio cholerae  in water that yields 50% chance of been infected with cholera(cells/ml) 

 

Based on the above assumptions; parameters and variables by Codeco (2000), the following model equations 

were derived 

dt

dS
 =      𝑛(𝐻 − 𝑆) − 𝑎 (𝐵)𝑆

                (2.3.1) 

dt

dI
  =   𝑎 (𝐵)𝑆 –  𝑟𝐼 − 𝑑𝐼

                     (2.3.2) 
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dt

dB

 

= 𝐵(𝑛𝑏 –  𝑚𝑏)  +  𝑒𝐼
                       (2.3.3) 

𝑆(0 )  =  𝐻, 𝐼(0) >  0, 𝐵(0)  =  0                  (2.3.4) 

Experimental studies suggest that it is necessary for a heavy inoculum of V. cholerae in order to develop 

cholera, see Cash et al.( 1974).  Here this dependence is represented by 

    (𝐵)  =  
𝐵

𝐾+𝐵
   

where here  (𝐵)  is the probability of a person been infected with cholera. 

 

2.4        The extended model 

2.4.1      Assumptions of the mode 

In addition to the assumptions of Codeco ( 2000) , we further  assumed that 

(i) The infected individuals also die naturally. 

(ii)      The population is assumed to be homogenous and varying as a result of birth. 

(iii).   The birth and death rates are different  

(iv).      The human and bacteria birth rates are also different  

 

2.5 Variables and parameters of the extended model equations 

In addition to the  variables and  parameters of the existing model , we state the variables and parameters of the 

extended model 

Variables/ 

Parameters 

Description 

 NH(t) Total human population at time t. 

𝛼 disease induce death rate (𝑑𝑎𝑦−1). 

µ natural death rate of the human population (𝑑𝑎𝑦−1). 

ω  human population birth rate (𝑑𝑎𝑦−1). 

NH(t)
 S + I 

  net growth rate of Vibrio cholerae in the aquatic environment (𝛾 = 𝑛𝑏 − 𝑚𝑏)
 
 𝑑𝑎𝑦−1 . 

                                                                                                                                                                                           

2.6  The extended model equations 

From the assumptions, we obtain the extended model equations, which are set of three ordinary differential 

equations. 

        

𝑑𝑆

𝑑𝑡
= 𝜔𝑁𝐻 − 𝑎𝜆(𝐵)𝑆 + 𝑟𝐼 − 𝜇𝑠                                           (2.6.1) 

     

   
𝑑𝐼

𝑑𝑡
=  𝑎𝜆(𝐵)𝑆 − 𝑟𝐼 − 𝜇𝐼 − 𝛼𝐼                                                        (2.6.2) 

         
𝑑𝐵

𝑑𝑡
= 𝛾𝐵 + 𝑒𝐼                                 (2.6.3) 

 

III. Stability Analysis of the Extended Model 
3.1 The Basic Reproduction number (R0) 

𝑅0, the basic reproductive number, is defined as the average number of secondary infections produced when one 

infected individual is introduced into a host population where the rest of the population is susceptible. 𝑅0 is the 

threshold parameter that determines the existence and local stability of the disease-free equilibrium of a 

compartmental infectious disease model, van den Driessche and  Watmough (20002).  If 𝑅0 < 1, there exists a 

locally asymptotically stable equilibrium. In biological terms, it means that on average of an infected individual 

produces less than one new infected individual over the course of its infectious period. Hence the infection 

cannot persist, and the model will eventually reach a locally stable disease-free equilibrium . Conversely, if 

𝑅0 > 1, the disease-free equilibrium is locally unstable, and the infection will persist because each newly 

infected individual will spread the disease to at least one susceptible individual on average. The 𝑅0 expression 

for the extended model using the 'Next Generation Method' is as shown below. Detailed explanation and proofs 

of the method were developed by van den Driessche and Watmough,( 2002). 

Consider the extended model equations: 
𝑑𝑆

𝑑𝑡
= 𝜔𝑁𝐻 −

𝑎𝑆𝐵

𝐾+𝐵
+ 𝑟𝐼 − 𝜇𝑆                                                                                                                                      (2.6.1)  

𝑑𝐼

𝑑𝑡
=

𝑎𝑆𝐵

𝐾+𝐵
− 𝑟𝐼 − 𝜇𝐼 − 𝛼𝐼                                                                                                                                           (2.6.2)  

𝑑𝐵

𝑑𝑡
= 𝐵(𝑛𝑏 − 𝑚𝑏) + 𝑒𝐼                                                                                                                                             (2.6.3)  



A Mathematical Model For Cholera Epidemic 

DOI: 10.9790/5728-1401020615                                      www.iosrjournals.org                                        9 | Page 

We let  

𝐹𝑖 =  
𝐵

𝐾+𝐵
𝑎𝑠

0
  ,  𝑉𝑖 =  

(𝑟 + 𝜇 + 𝛼)𝐼 0
−𝑒𝐼 (𝑚𝑏 − 𝑛𝑏)𝐵

  

𝐹 =  
0

𝑎

𝐾
𝑆∗

0 0
  ,    𝑉 =  

𝑟 + 𝜇 + 𝛼 0
−𝑒 𝑚𝑏 − 𝑛𝑏

  

We now compute our 𝑉−1  as follows 

 𝑉 = (𝑚𝑏 − 𝑛𝑏) 𝑟 + 𝜇 + 𝛼 − 0  

 𝑉 = (𝑚𝑏 − 𝑛𝑏) 𝑟 + 𝜇 + 𝛼   

𝑉−1 =
1

(𝑚𝑏 −𝑛𝑏 ) 𝑟+𝜇+𝛼  
 
𝑚𝑏 − 𝑛𝑏 0

𝑒 𝑟 + 𝜇 + 𝛼
   

𝑉−1 =  

1

𝑟+𝜇 +𝛼
0

𝑒

(𝑚𝑏 −𝑛𝑏 ) 𝑟+𝜇 +𝛼 

1

 𝑚𝑏 −𝑛𝑏  

   

𝐹𝑉−1 =  
0

𝑎

𝐾
𝑆∗

0 0
  

1

𝑟+𝜇+𝛼
0

𝑒

(𝑚𝑏 −𝑛𝑏 ) 𝑟+𝜇+𝛼 

1

 𝑚𝑏 −𝑛𝑏  

   

𝐹𝑉−1 =  
𝑎𝑠∗

𝐾𝑏 𝑚−𝑛 (𝑟+𝜇+𝛼)

𝑎𝑠∗

𝐾𝑏(𝑚

0 0
− 𝑛)   

therefore , 

𝑅𝑜 =
𝑎𝑆∗

𝑘𝑏 𝑚−𝑛 (𝑟+𝜇+𝛼)
          (3.1.1) 

 

3.2 The Existence of the Disease –free Equilibrium state of the Extended model  

To establish the existence of the disease free equilibrium state of the extended model we equate the left hand 

side of equations (2.6.1)- (2.6.3)  to zero . 

   
𝑑𝑆

𝑑𝑡
= 0,

𝑑𝐼

𝑑𝑡
= 0,   

𝑑𝐵

𝑑𝑡
= 0.  

therefore, 

0 = 𝜔 𝑆 − 𝐼 −
𝑎𝑆𝐵

𝐾+𝐵
+ 𝑟𝐼 − 𝜇𝑆                                                                                                                            (   3.2.1)        

0 =
𝑎𝑆𝐵

𝐾+𝐵
− 𝑟𝐼 − 𝜇𝐼 − 𝛼𝐼                                                                                                                                          ( 3.2.2  )   

0 = 𝛾𝐵 + 𝑒𝐼                                                                                                                                                               ( 3.2.3 )    
Theorem 3.1:   Given  𝛾 , 𝑒 , 𝑟 , 𝜇, 𝛼  , 𝑎 , 𝑘 , 𝜔 , > 0 . If 𝜔 =  𝜇 , then there exists a DFE state  

 𝑆,   𝐼   , 𝐵 =    𝑆∗, 0, 0,    where 𝑆∗ is arbitrary.  

Proof: 

Substituting 𝐼 =  0, 𝐵 =  0,   in  (3.2.1), (3.2.2) and (3.3.3)  and solving simultaneously, we have 

    0 = 𝜔𝑆 − 𝜇𝑆      or     𝑆 𝜔 − 𝜇 = 0  

from the hypothesis of the theorem, 𝜔 = 𝜇 , therefore 

   𝑆 =  𝑆∗ ≠ 0. With 𝐼 = 𝐵 = 0,  
 

3.3 Stability Analysis of the disease-free Equilibrium State  of the Extended model 

In this section, we discussed the stability of the disease-free equilibrium state of the extended model. We 

therefore refer to the equations (3.2.1), (3.2.2 )  and (3.2.3)  

Let  

𝑓1 = 𝜔 𝑆 + 𝐼 −  
𝑎𝐵

𝐾+𝐵
− 𝜇 𝑆 + 𝑟𝐼                                                                                                                               3.3.1   

𝑓2 =
𝑎𝑆𝐵

𝐾+𝐵
+ 𝑟𝐼 − 𝜇𝐼 − 𝛼𝐼                                                                                                                                                  3.3.2   

𝑓3 = 𝛾𝐵 + 𝑒𝐼                                                                                                                                                                        3.3.3   

 

Theorem 3.2 

Given 𝛾 , 𝑒 , 𝑟 , 𝜇, 𝛼  , 𝑎 , 𝐾 , 𝜔 , > 0.  If 𝛾 <  𝑟 + 𝜇 + 𝛼  and  𝜔 = 𝜇 , then the disease-free equilibrium state is 

locally asymptotically stable. 

Proof: 

Differentiating   3.3.1  ,  3.3.2  𝑎𝑛𝑑 (3.3.3)  partially with respect to S, I and B. 

gives the following 

from (3.3.1) we have 
𝜕𝑓1

𝜕𝑆
= 𝜔 − (𝜇 +

𝑎𝐵  

𝐾+𝐵
) , 

𝜕𝑓1

𝜕𝐼
=  𝜔 + 𝑟  , 

𝜕𝑓1

𝜕𝐵
= −

𝑎𝑆𝐾(1+𝐵)

(𝑘+𝐵)2  

From  3.3.2  we have, 
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𝜕𝑓2

𝜕𝑆
=

𝑎𝐵

𝐾+𝐵
   , 

𝜕𝑓2

𝜕𝐼
= −𝑟 − 𝜇 − 𝛼 = − 𝑟 + 𝜇 + 𝛼   ,  

𝜕𝑓2

𝜕𝐵
=

𝑎𝑆𝐾 (1+𝐵)

(𝐾+𝐵)2  

 

From  3.3.3  we have, 
𝜕𝑓3

𝜕𝑆
= 0  , 

𝜕𝑓3

𝜕𝐼
= 𝑒     ,  

𝜕𝑓3

𝜕𝐵
= 𝛾  

 

therefore the Jacobian matrix is  

𝐽 𝑆,𝐼,𝐵 =

 

 
 
 
 
 
 

𝜔 − (𝜇 +
𝑎𝐵

𝐾+𝐵
) 𝜔 + 𝑟 −

𝑎𝑆𝐾 (1+𝐵)

(𝐾+𝐵)2

𝑎𝐵

𝐾+𝐵
  −(𝑟 + 𝜇 + 𝛼)

𝑎𝑆𝐾 (1+𝐵)

(𝐾+𝐵)2

0 𝑒 𝛾  

 
 
 
 
 
 

                                                                    (3.3.4) 

 

 The Jacobian matrix 𝐽0 at the disease-free equilibrium state (S , I , B ) = (𝑆∗, 0 ,0) is given as  

 

𝐽0 =

 

 
 
 
 
 
 

𝜔 − 𝜇 𝜔 + 𝑟 −
𝑎𝑆∗

𝐾

0 −(𝑟 + 𝜇 + 𝛼)
𝑎𝑆∗

𝐾

0 𝑒 𝛾  

 
 
 
 
 
 

   

The corresponding characteristic equation at the D F E S is  

 

 

 

(𝜔 − 𝜇) − 𝜆 𝜔 + 𝑟 −
𝑎𝑆∗

𝐾

0 − 𝑟 + 𝜇 + 𝛼 + 𝜆 
𝑎𝑆∗

𝐾

0 𝑒 𝛾 − 𝜆

 

 

 

= 0  

Ф0 𝜆 =   𝜔 − 𝜇 − 𝜆  − 𝑟 + 𝜇 + 𝛼 + 𝜆   𝛾 − 𝜆 −
𝑎𝑒𝑆∗

𝐾
= 0  

The first roots of Ф0(𝜆)  is given as  

 𝜆1 = 𝜔 − 𝜇                                         (3.3.5) 

or    

Ф0 𝜆 = 𝜆2 + 𝜆 𝑟 + 𝜇 + 𝛼 − 𝛾 − 𝛾(𝑟 + 𝜇 + 𝛼) −
𝑎𝑒𝑆∗

𝐾
= 0                                                             (3.3.6) 

From (3.3.5)  by theorem 3.2, 

  𝜆1 = 0  

The remaining two roots are obtained from  3.3.6  as follows 

𝐿𝑒𝑡 𝐵 = (𝑟 + 𝜇 + 𝛼 − 𝛾),   𝐶 = −𝛾(𝑟 + 𝜇 + 𝛼) −
𝑎𝑒𝑆∗

𝐾
 

then, 

𝜆2 + 𝐵𝜆 − 𝐶 = 0                                                                    ( 3.3.7) 

Using the quadratic formula, 

Ф0 𝜆 =
−𝐵±  𝐵 2−4𝐶 

2
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we get 

  −
𝐵

2
 ±

  𝐵 2−4𝐶 

2
   ≤

−𝐵

2
 ±

 𝐵2

2
    ( 𝐶 > 0)     

    Ф0 𝜆   ≤
−𝐵

2
 ±

𝐵

 2
    

𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 , 

  𝜆  2
≤  0  

or 

        𝜆  3
≤ −𝐵 . 

that is  

        𝜆  3
≤  −(𝑟 + 𝜇 + 𝛼 − 𝛾)    

        𝜆  3
≤  𝛾 − 𝑟 − 𝜇 − 𝛼  

      From the hypothesis of Theorem.3.2  

        𝜆  3
< 0    

 

IV. Numerical Experiments 
We solve the system ( 2.3.1)-(2.3-3) with a view of studying five distinct situations. The simulation will run for 

a period of 20 years. The five situations will be as follow 

(i) A disease- free state (cholera) 

(ii) Very high contribution (infected people urinating or defecating in the source of drinking water) of 

infected people in the  aquatic environment and very high rate of exposure to contaminated water. 

(iii) High contribution (infected people urinating or defecating in the source of drinking water) of infected 

people in the aquatic environment and high rate of exposure to contaminated water 

(iv) Low rate of exposure to contaminated water and low contribution of infected people in the aquatic 

environment  

(V).        Very low rate of exposure to contaminated water and very low contribution of infected people in the 

aquatic environment. 

In all the numerical experiments we use the values in the table 4.2. 

 

Table 4.2: Table of Parameter Values For The Numerical Experiments. 

        1  2  3    4  5     6 

             S(0) 1000 1000 1000 1000 1000 1000 

            I(0) 0.000 100.0 100.0 100.0 100.0 100.0 

             B(0) 0.000 0.002 0.002 0.002 0.002 0.002 

𝜔 0.500 0.500 0.500 0.500 0.500 0.500 

𝑁𝐻  1100 1100 1100 1100 1100 1100 

𝑎 0.000 1.000 0.500 0.003 0.0025. 0.0001 

𝐾 0.0001 100.0 100.0 100.0 100.0 100.0 

𝑟 0.000 0.020 0.020 0.020 0.020 0.020 

𝜇 0.021 0.021 0.021 0.021 0.021 0.021 

               𝛼 0.000 0.048 0.048 0.048 0.048 0.048 

𝛾 0.000 0.033 0.033 0.033 0.033 0.033 

Parameter 
 values 

Experiments 
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𝑒 0.000 100.0 50.00 25.00 3-000 1.000 

 

4.1.1 A disease- free state (cholera) 

First we will look at a case where there is no disease ( 𝑒 = 0.000 𝑎𝑛𝑑 𝑎 = 0.000). The result shown in figure 2 

shows that the population will grow normally 

 

 
Figure 2: Graph of the susceptible population against time in a disease-free Population. 

 

4.1.2  Very high Contribution (infected people urinating, defecating or vomiting in the source of 

drinking water) of infected people in the aquatic environment and very high rate of Exposure to 

Contaminated water. 

Secondly, we look at a case where there is very high contributions of infected people in aquatic envorinment 

(𝑒 = 100.0) and very high rate of exposure to contaminated water(𝑎 = 1.000). The result shown on figure 3 

shows that the disease will ravege the community 

 

 
Fig 3: Graph of the infected population against time in a case of very high contributions of infected people in 

aquatic envorinment and very high rate of exposure to contaminated water. 

 

4.1.3 High contribution (infected people urinating, defecating or vomiting in the source of drinking 

water) of infected people in the aquatic environment and high rate of Exposure to Contaminated water 

Next we look at the case where there is high contribution of infected people in the aquatic environment(𝑒 =
50.00) and high rate of exposure to contaminated water (a = 0.500).  Result shown on figure 4 shows that 
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the rate of infection is not much as when we had very high contributions of infected people in aquatic 

envorinment and very high rate of exposure to contaminated water. 

 

 
Fig 4: Graph of the infected population against time in a case of high contribution of  infected people and high 

rate of exposure to contaminated water. 
 

4.1.4 Low rate of Exposure to Contaminated water and low contribution of infected people in the 

aquatic environment  

 

Next we considered a situation where a and e are further reduced (𝑎 = 0.003 𝑎𝑛𝑑 𝑒 = 25.00). The result 

shown on figure 5 shows that the rate of infection will slow down. 

 

 
  Fig 5:  Graph of the  infected  population against time in a case of low rate of exposure to contaminated water 

and low contribution of the infected people in the aquatic enviroment. 

 

4.5 Very low rate of Exposure to Contaminated water and very low Contribution of infected people 

in the aquatic environment. 

Finally , we examine a situation where a and e are very low  (𝑒 = 1.000 𝑎𝑛𝑑 𝑎 = 0.0001). the result shown on 

figure 7 shows that cholera will disapear  from the community in a finite time. 
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Fig 6:  Graph of the  infected  population against time in a case of very low rate of exposure to contaminated 

water and   very low  contribution of the infected people in the aquatic environment. 

 

 

V. Conclusion 

In this research work we extended the model of Codeco (2000) by varying the net reproduction rate of 

humans and allowing for susceptibility of recovered individuals. It is proved that the disease-free equilibrium 

state of the extended model exists which is locally asymptotically stable under prescribed threshold conditions. 

Numerical experiments using published data indicated that the disease could be controlled or eradicated, 

provided that the rate of exposure of individuals to contaminated water and that of pollution of aquatic 

environment by infected people is sufficiently reduced. This is consistent with results obtained from the stability 

analysis of the disease-free state of the extended model.  
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