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Abstract: This paper deals with the application of linear-quadratic optimal control (LQOC) system through an 

optimization principle formulated in term of a cost criterion and supported by an optimal control system that 

minimizes the cost criterion. In a linear control theory, if the cost criterion is quadratic and the optimization is 

over an infinite horizon, then the result of such optimal control is a linear feedback with many properties and 

satisfies closed loop stability the result which is intimately connected to the system in order to certify the 

stability properties of control theory. 
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I. Introduction 

Various theoretical results on the solvability of the linear –quadratic optimal control problem in 

(LQOCP) of an  inverse eigenvalue problem (IEP) for Hamilton matrices together with numerical examples are 

systematically reviewed  and discussed in respect of the inverse eigenvalue problems for certain singular and 

non-singular Hamilton matrices in[1],[2],[3] and as well as  [4] and [5]. This paper deal with the application of 

linear-quadratic optimal control system via optimization principle in formulating and minimizing the cost 

criterion which is quadratic in nature over an infinite time horizon to give linear feedback satisfying closed loop 

stability result which is intimately connected to the system in order to certify the stability properties of control 

theory. 

 

II. Theory of Linear system 
We let our linear system be of the form: 

iii ttxtxtButAxt
dt

dx
 ,)(),()()(                                                                                             (1) 

Where )(tx  is a vector whose entries functions are of  t  and a matrix-valued function )(tA  is a matrix whose 

entries are functions given as: 
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The calculus operation of taking the limits, differentiating and others are extended to the 

 vector –valued and matrix valued functions by performing the said operations entry wise. 

Thus, by definition: 
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The limit exists if and only if )(lim
0

txitt  exists  ni .....1 . 

Then the derivatives of a vector valued or matrix valued function is a function obtained by entry-wise 

differentiation. 

Thus:  
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Where )(' txi  is the derivative of )(txi  

So,
dt

dx
 is defined if and only if each of the component functions )(txi  is differentiable. 

The derivative can also be described in vector notation as: 

h

txhtx
t

dt

dx

h

)()(
lim)(

0





                                                                                                                      (5) 

Here )()( txhtx   is computed by the usual vector addition and the h  in the denominator represents scalar 

multiplication by
1h . The limit is obtained by evaluating the limit of each entry separately. The same is 

applicable in the case of matrix valued functions. 

 

III. Control Theory 
We let our differential equation be of the form: 

iii ttxtxtutxft
dt

dx
 ,)()),(),(()(                                                                                                   (6) 

Where   
mn tutx  )(,)(  and nff .......1  represent the components of f

.
u  is the free variable called 

the input and assumed to be piecewise continuous. 

We let the class of 
m -valued piecewise continuous function be denoted by


u .Under regularity condition on 

the function
mnf :    a unique solution to the differential equation (6) for any initial condition 

n

ix   and every piecewise contain input u . x  is called the state and equation (6) is called the state equation.  

A control system is an equation of the type (6), with input u  and state x . Once the input u  and the initial 

state ii xtx )(  are specified, then the state x  is determined.   

A characteristic of underdetermined equations is that one can choose the free variable in a way that some 

desirable effect is produced on the other dependent variable. The state variables x comprise the ‘to-be-

controlled ‘variables, which depend on the free variables u , i.e. the inputs.  

 

3.1 Linear Control and Controllability        

If the function f  is linear, that is, if BuAxuxf ),(  for some 
nnA  and 

mnB   

then the control system is said to be linear. Thus a linear control system is given by: 

      itttButAxtX 


),()()(
                                                                                                              (7) 

Equation (7) is said to be controllable if every pair of vectors 
if

nn

fi ttxx  ,,,   and a control 

  mfi ttCu ,  Such that the solution of x  in equation (7) with ii xtx )(  satisfies  
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ff xtx )( . Controllability means that any state can be driven to any other state using appropriate control. 

 

IV. Linear Quadratic Optimal Control Problem 
Here we consider a linear system of the form: 

BuAxX 


       00 xX                                                                                                                         (8) 

Where u  is the admissible control unit and be of the form: )(tu   

For u  to be the admissible control unit, it must satisfy the following conditions: 

(i)   must be a continuous function 

(ii)  The closed loop system must have a unique solution. 

(iii) The closed loop system results in 0)(lim 


tx
t

. 

Besides, the control objective is to find a control strategy that minimizes the cost functional. 

 



0

)()()()(),( dttRttQxtXxJ TT                                                                                             (9) 

 

Where 

Q  is a symmetric positive semi definite matrix. 

R  is a symmetric positive definite matrix. 

Then, this type of control problem is called Linear -quadratic control problem 

 Since Q  is positive semi definite, then 0)()( tQxtxT
; R  is positive definite 0)()( tRtT   unless 
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Which gives the quadratic form: 



n

i

ii

T txqtQxtx
1

2 )()()(  where )(sqi  is the magnitude of )(txi . 

For stability, we let ),( BA   be stable by introducing K  as feedback control such that the closed loop system. 

xBkAX )( 


                                                                                                                                           (10) 

Where Kxu   and clearly admissible.. 

The solution to the equation (10) gives; 0

)()( xetx tBkA                                                                            (11) 

 Which satisfy condition (ii) above. 

We let the cost function be: 0

)(

0

)(

00 )(),( xeRKKQexKxJ tBkATtBkAT

x

T 


                                  (12) 

This optimal control problem can be solved by dynamic programming in which we  

define the instantaneous cost as;  

RuuQxxuxL TT ),(                                                                                                                             (13) 

For the final state xx 0  and we define the optimal cost or value function as 

                                   
),(inf)( 


xJxV

u
                                                                                                    (14) 

Where inf is the greatest lower bound. We let rttu 0),(  be the control over  r,0  

Then,  
r

rxVdttutxLJ
0

))(()(),((                                                                                                     (15) 

Where )(tu  is an arbitrary and the optimal cost satisfies the equation 
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Expanding equation (16), as 0,0
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Where 
x

v




 is the gradient of v  with respect to ),1( vectorrownx   

Substituting into equation (16) we get the Hamilton-Jacobi Bellman (HJB) equation for 

V  Satisfies by )(xV . 
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                                                                                                  (18) 

Given that 0R , minimizing the element u  in the equation (18), we get the following square quadratic form 

of equation: 

 11 )(2   RRuuRuu TTT
  

 1)2min(  RuRuu TTT

u

                                                                                          (19) 

Minimizing u  by 1 Ru , and substituting it into equation (18) yields; 
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Solving equation (20), we apply trial solution pxxxV T)(  
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Substituting into equation (20) yields: 

 0)( 1   xQPBPBRPAPAx TTT
                                                                                                   (22) 

Since this is true for all x . P  Must satisfy the matrix quadratic equation of the form: 

01   QPBPBRPAPA TT
                                                                                                              (23) 

                                                                                                           

This is called the Algebraic Riccati Equation 

In term of iP , the minimizing u  would then be given as: 

 PxBRu T1                                                                                                                                              (24) 

 

V. Theorem on Riccati 

Assume ),( BA  is stabilizable and ),( AQ is detectable. Then, there exists a unique solution P  in the class 

of positive semi definite matrices to the algebraic Riccati equation (23) above and the closed loop system 

matrix PBBRA T1  is stable. 

Proof 

If  ),( BA  is stabilizable and ),( AQ is detectable, then equation (23) will be an admissible as it is 

stabilizing, we then verify that it is optimal by completing the square. 
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(i).For any admissible u  
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Since oPxx0 is constant and PxBRu T1  is admissible with 0R , then, the optimal control will be: 

)()( 1 tPxBRtu T  while the optimal cost is PxxxV T)(  

 

5.1 Linear System via the Riccati Equation 

Here we let 0:,,   Tnnmnnn QQQBA   and 0:   Tmm RRR  

We wish to find the linear quadratic- optimal control for the functional; 
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Subject to differential equation   
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Then the Hamiltonian equation is given by: 
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From the theorem, it then follows that any optimal input u  and the corresponding state x  Satisfies: 
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Equation (32) is a linear, time variant differential equation in   px ,  
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VI. Application of Optimal control to the double integrator 

We consider the system of the form: u
dx

td


2

2

 

With the cost criterion  



0

22 0)()( rdttrutyJ  

A state space representation of this system can be given as: 
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The cost criterion can be written as:  
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Q  and QCC T  .it is easy to verify that ),( AC  is detectable, and let ),( BA  is 

stabilizable.  

We proceed to solve the algebraic Riccati equation 

We let ,
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Hence, S is positive definite since 011 S  and 0det S  (which are the necessary and sufficient conditions 

for a nn 22   matrix to be 0 ) 

The optimal closed loop system is given by: 
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The poles of the closed loop system are given by the roots of the polynomial 2

1

4
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

 rsrs . This is the 

form of the standard second order system characteristic polynomial 
2
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 .The damping ratio of 
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1
 of the optimal closed loop system is often referred to as the best 

compromise between small overshoot and good speed response, and it is independent of r .Now for a fixed 

damping ratio, the larger the natural frequency 0 ,the faster the speed of response( where the peak time is 
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inversely proportional to 0 .Thus we can see that if r  decreases, the speed of response becomes faster. Since a 

small r  implies small control penalty and hence allowing large control inputs, this behavior give a good 

interpretation of the role of the quadratic weights in the cost criterion 

 

6.1 Application of optimal control in a servomotor 

We let the servomotor system given by the transfer function of the form: 
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The optimal closed loop system matrix is given by: 
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Then the characteristics polynomial of the closed loop system is given by: 

2

1

2

1

2 21


 rsrs   With the pole located at   
2

2121 2

1

2

1


 rr
 

 

VII. Conclusion 

Based on the reviewed of lots of theoretical results on the solvability of the linear-quadratic inverse 

eigenvalue problem for Hamilton matrices together with numerical examples, we have successfully investigate 

and established the application of linear-quadratic optimal control system via optimization principle in 

formulating  and minimizing the cost criterion which is quadratic in nature over an infinite time horizon to give 

linear feedback satisfying closed loop stability results connected to the system in order to certify the stability 

properties of control theory 
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