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Abstract: This paper considers a fluid dynamic traffic flow model known as Lighthill, Whitham and Richards 

(LWR) model appended with a linear velocity-density function. The model reads as a quasi-linear first order 

hyperbolic partial differential equation (PDE) and in order to incorporate initial and boundary data treated as 

an initial boundary value problem (IBVP). We presents the exact solution of the PDE as a Cauchy problem and 

the derivation of a finite difference scheme of a traffic flow model which is second order Lax-Wendroff 

difference scheme and establish well-posed-ness and stability condition for the scheme. The traffic density 

( , )t x is computed by solving LWR traffic flow model using the scheme. Computer programs for the 

implementation of the numerical scheme and perform numerical experiments in order to verify stability 

condition in terms of time step selection. Some numerical simulation results are presented for various 

parameters and relative errors and verify convergence of errors. 
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I. Introduction 
Today, when cars are part of every day life and more families tend to own more than one car, the traffic 

congestion becomes a very important issue. Traffic problems on highways and in urban areas attract 

considerable attention. So traffic is very well known term to all and it is closely related to real life. As the 

number of vehicles is increasing rapidly, in recent years, traffic congestion has become especially an acute 

problem. Traffic jams are now a major problem in most of the cities. So at the core of traffic congestion, 

development of traffic management is the need of time. Therefore, an efficient traffic control and management 

is essential in order to grid of such huge traffic congestion. Modeling and computer simulation play an 

increasing role in the flow management. Many scientists have been working to develop various mathematical 

models ([2], [3]) in order to describe traffic flow. In this paper, we consider a fluid dynamic traffic flow model 

developed first by Lighthill and Whitham (1955) ([1], [9]) and Richard (1956) shortly called LWR model based 

on Habermann (1977) [4], Klar (1996) [2].  In [5], L. S. Andallah, S. Ali, M. O. Gani, M. K. Pandit and J. 

Akhter have used linear velocity-density function for the development of traffic flow model and they have 

presented explicit upwind difference scheme. Based on the study of the general finite difference method for the 

first order non-linear PDE ([6], [7]), we present a second order Lax-Wendroff difference scheme for our first 

order traffic flow model appended with a linear velocity-density relation. We establish the well-posed-ness and 

stability condition of the Lax-Wendroff difference scheme. The numerical scheme is implemented in order to 

perform the numerical results are compared in terms of accuracy by error estimation with respect to the exact 

solution of the traffic flow model and also, the features of the rate of convergence are presented graphically. The 

conditions of stability are also numerically verified. Some numerical simulation results are presented for various 

parameters. 

 

II. General Mathematical Model of Fluid Dynamic Traffic Flow 
In this section, the general mathematical model are shortly presented based on ([3], [5], [9]) and work out the 

qualitative behavior of the flux. The well-known LWR model is formulated by employing the conservation 

equation 

( )
0,where ( ) ( )

q
q v

t x

 
  

 
  

 
                                          (1) 
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In this paper, we will use a linear velocity-density relationship [5] (linear function) can be of the form 

  max

max

1v v





 
  

 
.                                

Therefore,    
2

max max

max max

. 1q v v v
 

    
 

   
       

   
. 

Now, we put flow (flux)-density function that is  q   into the general non-linear partial differential equation 

(1), we obtain the specific non-linear partial differential equation of traffic flow model in the form 

2

max

max

0v
t x

 




   
    

    
                                         (2) 

 

III. Exact Solution of Non-Linear PDE of Traffic Flow Model 
The traffic flow model appended with the initial condition reads as initial value problem (IVP) is 

                            

   

2

max

max

0 0

0

with ,

v
t x

t x x

 




 

   
    

    



                                                                  (3) 

The non-linear PDE (3) can be solved [6] if we know the traffic density at a given initial time, i.e. if we know 

the traffic density at a given time 0t we can predict the traffic density for all future time 0t t , in principle. 

Then we have to solve the IVP (3) can be solved by the method of characteristics. The exact solution [5] of the 

IVP (3) is given by  

  0 max

max

2
, 1t x x v t


 



  
    

  
                                                                  (4) 

which is non-linear implicit form and therefore very complicated to evaluate at each ( , )t x . However, in 

reality it is very difficult to approximate the initial density  0 x  of the Cauchy problem (3) as a function of t  

from given initial data. Therefore, there is a demand of some efficient numerical methods for solving the IVP 

(3). 

 

IV. Numerical Solution of Second Order Lax-Wendroff Difference Scheme By FTCS 

Techniques 

 

We consider our specific non-linear PDE of traffic flow model as an initial boundary value problem (IBVP): 

          

 

   

   

2

max

max

( ) 0, ,

with i.c. , ;

and b.c. , ; ,

where ( ) .

a

q t t T a x b
t x

t x x a x b

t a t t t T

q v




 

 


 



  
       


   


   



 
  

 

o

o o

o
                                                        (5) 

 

In order to develop the 2
nd

 order Lax-Wendroff method, named after P. Lax and B. Wendroff, can be derived in 

terms of the discretization of 
t




 is obtained by first order forward difference in time and the discretization of 

q

x




 is obtained by second order centered difference in space.  

Forward difference in time:  



Numerical Efficient for Second Order Lax-Wendroff Difference Scheme of A Fluid Dynamic Traffic Flow Model 

DOI: 10.9790/5728-1401030113                                      www.iosrjournals.org                                        3 | Page 

From the Taylor’s series expansion we can write 
2 2

2

2

1

( , ) ( , ) .......... ..... (6)
2!

( , ) ( , )
( )

( , ) ( , )

( , )
(7)

n n n

i i i

k
x t k x t k

t t

x t k x t
o k

t k

x t k x t

t k

t x

t t

 
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  

  

 
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 

  
  



  
 



 
 

 

 

Central difference in space: 

From the Taylor’s series expansion we can write 
2 2

2
( , ) ( , ) ...........

2!

q h q
q x h t q x t h

x x

 
    

 
 

2 2

2
( , ) ( , ) ...........

2!

q h q
q x h t q x t h

x x

 
    

 
 

Subtracting the above two series, we obtain 

 
   

1 1

1 1

( , ) ( , )

2

( , )

2

( )( , ) (8)
2

n n n

i i i

n n

i in

i

q q x h t q x h t

x h

q t x q q

x x

q q
q t x

x x

 


 

 

   
 



 
 

 


 
 

 

 

Now in equation (6), where the time derivatives can be replaced space derivatives 

using  ( ) 0 (9)t x
q     

This has been done by so called Cauchy-Kawalewski technique which implies 
( )

.
q

t x

  
 

 
 

2

2

( ) ( ) ( ) ( )
( ) ( ). ( ) ;

q q q q
q q q

t t x x t x t x x x x
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  

                   
                     

                   

( )
where ( ) .

q
q







 


 

Substitute the preceding expression of time derivatives (9) into the Taylor’s series of ( , )x t k  in equation 

(6) to obtain 
2

3( ) ( )
( , ) ( , ) ( ) ( ) (10)

2!

q k q
x t k x t k q o t

x x x

 
  

   
      

   
 

Using equation (8), we get  

 
         1 1 1 1

22 2

2

( )
( ) , ( )

( )

n n n n n n

i i i i
i i

n

i

q q q q q q
q

q t x o x
x x x
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



 
 

   
      

          
   

 

From equation (6) we get,  
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     
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 
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   

 



   
 
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      

         
  

       
              

        
  n

 
  
 

                                                                                                                                                (11) 

where 

 
 

1

1 max max 1

max max2

1
2.

121 1

n n

i i
n n n

i i
i

q v v
 

  
 






 
     

         
    

 

 

and  
 

 
 

 
 

2 2 2

1 1

1 max 1 max 1 max 1

max max max

, , .

n n n

i i in n n n n n

i i i i i iq v q v q v
  

     
  

 

   

     
          
     
     

 

 

IV-A Well-posed-ness and Stability Condition 

 

The implementation of LWDS is not straight forward. Since vehicles are moving in only one direction, so the 

characteristic speed 
dq

dt
must be positive. One needs to ensure the well-posed-ness condition 

  max

max

2
1 0.

n
n i
iq v






 
    

 
 

Since the maximum velocity max 0,v   

         

max

2
1 0;

n

i


    

    max

max

2
1

2 ; which is thecondition for well-posed-ness.

n

i

n

i





 

 

 

 

  max( )n

iq v                                                                      (12) 

 

Proposition IV-B: The well-posed-ness and stability condition of the Lax-Wendroff difference scheme (11) is 

guaranteed by the simultaneous conditions 

0

max

max

2max( )
0 1/ 1 it

v
x





  
    

   
 and 

0

max max( ) .ix v t x       

Proof: Rewriting the non-linear PDE in (5) as 

  ( ) 0q
t x

 


 
 

 
 



Numerical Efficient for Second Order Lax-Wendroff Difference Scheme of A Fluid Dynamic Traffic Flow Model 

DOI: 10.9790/5728-1401030113                                      www.iosrjournals.org                                        5 | Page 

The LWDS (11) takes the form  
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This equation (13) implies that if  
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then the new solution is a convex combination of the two previous solutions. That is the solution at new time-

step ( 1)n  at a spatial node is an average of the solutions at the previous time-step at the spatial nodes 

1, and 1.i i i   This means that the extreme value of the new solution is the average of the extreme values 

of the previous two solutions at the three consecutive nodes. Therefore, the new solution continuously depends 

on the initial value , 1,2,3,......., .o

i i M    

Since  
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Similarly, 

22

1 max

max

1 2 max ( )
1 .

2

o

it
r v

x





  
   

   
1 2. . .i e r r  

Equation (15) implies, 
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and equation (14) implies,  
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 
 

 

IV-C Numerical Simulation and Results Discussion 
 

 

We implement numerical finite difference scheme that is second order Lax-Wendroff difference scheme by 

computer programming and perform numerical simulation as described below. 

 

IV-C (I) Comparative Profile of Density in different time step 

 

In this section we present traffic density of exact solution and numerical simulation results based on second 

order Lax-Wendroff difference scheme (LWDS) for some specific cases of flow parameters like max max,v etc. 

Now we consider the initial density using sine function, (0, ) ( ) 15*sin 16
4

x
x x 

 
   

 
o and perform 

traffic density in different time step for exact solution and LWDS in the spatial domain [0, 10] in km. Here we 

use exact solution result as prescribe left boundary value and right boundary value as corresponding two sided 

boundary values for LWDS. For the above initial and boundary conditions 

with max 0.167(0.1km/sec) 60.12km/hour,v    satisfying the physical constraints condition (14) 

max 10max ( ) 550/kmi
i

x  o in the spatial domain [0km, 10km], we perform the numerical experiment 

for 6 minutes in 0.1t  time steps for a highway of 10 km in 101 spatial grid points with step size 

100 meters 0.25x   which guarantees the stability condition 

0

max

max

2max( )
0 1/ 1 it

v
x





  
    

   
 and 

0

max max( )ix v t x      respectively. 

Figure-1 shows density profile of exact solution in different time step when max 60km/hour.v   

Figure-2 shows comparison of density in initial time step between exact solution and LWDS. The figure shows 

that at initial stage the density of car in a 10 km highway is overlapping. Figure-3 shows comparison of density 

in different time step and Figure-4 shows comparison of density in 600
th

, 1200
th

 and 1800
th

 time step. From the 

above figure we see that the density profile of LWDS is close nearer to exact solution. In figure-5(a) solid line 

represents the exact solution and the red line represents LWDS of density profile in last time step. Here we see 

that density profile in right boundary red line has enough jigjag, it depends on the discretization parameters 

t=0.1 and =0.2x  respectively. In discretization parameters t=0.6 and =0.4x  figure-5(b) last time 

step jigjag is no more than figure 5(a). When discretization parameters t=0.9 and =0.2x in figure-5(c) 

right boundary has few jijjag. In figure-5(d) right boundary has only one jigjag. Finally, when discretization 

parameters t=0.01 and =0.04x figure-5(e) shows the density profile has no jigjag. From above 

discretization parameters satisfying the stability conditions of LWDS. 
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Figure-1: Density profile of exact solution in different time step when max 60km/hourv   
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Figure-2: Comparison density profile of exact solution and LWDS initial time step 
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Figure-3: Comparison density profile of exact solution and LWDS in different time step 
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Figure-4: Comparison density profile of exact solution and LWDS in 600

th
, 1200

th
, 1800

th
 time step 
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Figure-5(a): Comparison density profile of exact solution and LWDS in last time step when t=0.1 and 

=0.2x  
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Figure-5(b): Comparison density profile of exact solution and LWDS in last time step when t=0.6 and 

=0.4x  
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Figure-5(c): Comparison density profile of exact solution and LWDS in last time step when t=0.9 and 

=0.2x  
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Figure-5(d): Comparison density profile of exact solution and LWDS in last time step when t=0.05 and 

=0.04x  
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Figure-5(e): Comparison density profile of exact solution and LWDS in last time step when t=0.01 and 

=0.04x  

 

IV-C (II) Error Estimation 

 

In order to perform error estimation for density ( ) , we consider exact solution (4) with initial condition i.e. 

linear function 
1

( ) ,
2

x x o  we have  
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We compute the relative error in 1L -norm defined by 1

1

1

e n

e

e
 




 for all time e is the exact solution 

and n is the numerical solution computed by finite difference scheme. 

We prescribe the corresponding two sided boundary values for LWDS by the equations 
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Figure-6 below shows the relative error for density ( )  of Lax-Wendroff difference scheme, which remains 

0.0000008 which is quite acceptable. Figure-7 presents that the density ( ) error is decreasing with respect to 

the smaller descretization parameters t  and x which shows the convergence of Lax-Wendroff difference 

scheme. We observe that as we increase number of grid points the error is decreasing and also shows the rate of 

convergence of the numerical solutions. 
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Figure-6: Relative errors of Lax-Wendroff difference scheme 
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t=0.2, x=0.4

t=0.1, x=0.2

t=0.067, x=0.13

t=0.05, x=0.01

 
Figure-7: Convergence of errors of Lax-Wendroff difference scheme 
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V. Conclusion 
From the numerical results we observe that Lax-Wendroff difference scheme for the considered traffic flow 

model is adequate for traffic flow simulation. The time-step in the established stability condition and well-

posed-ness condition is not stiff and this resulted computational efficiency of the scheme. The computational 

results showed the accuracy up to six decimal places and a good rate of convergence. The scheme can be 

extended for multi-lane traffic flow simulations which we left for future work. 
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