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Abstract: In this study, a certain Jacobsthal matrix J of order 3x3 is taken, and two complex functions are
defined with G(z)=2z",neZ, and G"?(z)=2"2, ged(n,2)=1. We obtain any integer n" power of the
Jacobsthal matrix J generated from the theory of functions of matrices. Also, the matrix functions of the
Jacobsthal matrix J are given by Gc"? (J)z J"? neZ—{0}. Since the square of these matrices is equal to

the Jacobsthal matrix J , for the Jacobsthal and Jacobsthal-Lucas numbers with integral or rational subscripts,
some fundamental properties are acquired by matrix methods.
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I. Introduction
The Jacobsthal number J, and Jacobsthal Lucas number j, are defined by the recurrence formulas

Jo=3,.+23.,, (J,=0J,=1) and j =j,.+2j,, (jo=2 j,=1) for all integers n [1-3]. The
recurrence relation gives us a rule for obtaining the number J_ from the numbers J,_, and J, _, or the number
j, from the numbers j,_, and j,_,. In other words, the ordered pair (J,,J, ;) have been obtained by the

previous ordered pair (J, ;,J,_,). These are phrased in terms of matrix arithmetic for all integer n. Also, the
numbers J, and j, are given with the Binet’s forms, J, = (2” —(—1)“)/3 and j, =2"+(-1)",neZ [1-5].

Several authors have considered the complex Jacobsthal J, and Jacobsthal Lucas numbers j, , where
the subscript x is an arbitrary real number, and showed that these numbers enjoy most of the properties of the
J, and j,, neZ numbers [6]. The modified Binet's forms of the numbers J, and j, yield
3= 22X —(-D)*

3

As the modified Binet's forms of the numbers J, and j, can be considered to generate the usual
Binet's forms, we generalized the Jacobsthal matrices given in [4], [5] from all integer n to special rational
numbers, such that n/2 and r/s, according to the modified Binet's forms and by finding of the square root
matrices for the Jacobsthal and Jacobsthal Lucas matrices [7]. The authors have given main result F"?

and j, =2"+(-D)*, xeR. 1)

(i=1-4) as the square roots of the Jacobsthal matrix F":

ni2 ‘](n+2)/2 2,2 e El j(n+2)/2 2]u2
Rz =% 2] Y Y '
n/2 (n-2)i2 31 e Jo-2y2
It is seen that entries of these matrices are either the Jacobsthal or the Jacobsthal Lucas numbers with
rational subscripts. The authors have investigated properties of the complex Jacobsthal and Jacobsthal Lucas

numbers. Now, let us consider a Jacobsthal matrix J" of order 3x3 for nonnegative integers n, such as

432, 43,3, 437
J" = 4‘]n—1‘]n 2(J§+Jn,1\]n+1) 4"Jn‘]n+l ! (2)
Jﬁ ‘]n‘]n+1 an‘*'l
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which is situation selected for p=1 and q=-2 in the matrix R" [8]. There are many equivalent ways of
defining the matrix J" for any values of all integer n, and one of these definitions is a complex scalar
functions. Now, we suppose a complex function G(z)= z", neZ, and note that the matrix function G(J)
gives all integer n powers of the Jacobsthal matrix J . It is seen that the J" is only given for the positive
values of n [8]. Since J, =0 and J, =1 and J_, =1, thereis valid: J°=1,, for n=0.

We think that these matrices are not given for negative. Now, since the eigenvalues of the matrix J are
nonzero, the eigenvalues —2, 1 and 4, there are matrices J™, neZ". The function G(J’l) is expressed using
the Langrange-Sylvester interpolation polynomial under the polynomial expressions [9], [10],

} —4;'l
o(5°) - 363 T

j=1

IT]

the matrices J ™", neZ" are obtained as

AL 43, 3., 437,
IM=43, 3, 2(3%+9,0,,) 4.0,
‘]—2 ‘]—n‘]—n+l —n+1

Also, last equation can be changed with J, =—(-2)"J_,, neZ" into positive indices.

n

Let us consider that the function G( ) z", neZ isanalytic in some simply connected region of the
complex plane that contains the eigenvalues 4 ={—2,1,4}, and there is an unique annihilating polynomial

q(4) of degree two. Then we define the matrix function G(J) of the matrix J to be q(J). The polynomial

q(4) gives;
Theorem 1. Let G(J ) =J" be the matrix function mentioned above for neZ , then
=313, 1J +23.3,,3-83, .3, 1. 3)

Proof Let q(4)=b,+bA+b,A* be an annihilating polynomial for G(1)=A". From G(4)=q(4),i=12,3
we have
G(-2)=(-2)" =b, ~2b +4b, = q(-2),
G(1)=1"=b,+b +b, =q(1),
G(4)=4" =h, +4b, +16b, = q(4).
If the system of linear equation is solved, then

o] [ 307327432 | [-a1, 0.,
b | = 3(-0)" +52" - 5(-2)" | =| 233, |,
Pl %275 (-)" 4 5(-2)" | L I

the desired result is obtained.

I1. Properties of Square Roots of the Jacobsthal Matrix
Let us consider the scalar complex function G"?(z) =z"? (-7 <arg(z)<z), n is an odd integer.
Now, it is clear that G(”'Z)(z)z z"? is defined on the spectrum of the matrix J since the J admits three
distinct eigenvalues, —2, 1 and 4, any square root matrices G™?(J)=J"? are computed by using the

Lagrange-Sylvester interpolation polynomial [9], [10]. The function G(”’Z)(z) is a double-valued function,
giving rise to 2 branches:

G"(z)=2" =g, (2). ke{01},

where g\ (z) < z["? exp[i(garg(z)Jrk;zn)} If we denote principal root by g"”(z)=2z"%, is called as
principal root, then we can write
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0" (2) = exp(ink)z"?, k €{0,1}. .

Therefore, there exist 2° matrix function J™? derived from the 2 branches, these matrix functions are
determined by the expression,
N S 3 J-Al 3
G(<k1,’2k>2’k3)(3)=zg<ki\)(%)H - _/i , (K ky k) €{0,1). (5)
i=1 j=1 i

i#]

Theorem 3. For every odd number ne 7,

43 %2_1 43, .3, 4] ;

G(((I;,VOZ,)O) (9)= _G((lrj’l,zl)) (9)= 4y, 2(‘]; + ‘]g—l‘]gﬂ) Hopdy |
‘]§ ‘]g‘]gﬂ ‘]g2+1
G 4y 4

Ol ()=l (=5 4hsady 2(3+igals) 4yl
J iy i

. 2(-2)2t . )2t o 2(-2)2
%[Jg-llg-ﬁ : ] %[JH;JH;JF( 3 J %(JngJr (3 J

. _(72)%*1 4 . _(72)%
233)y = j 3[3"51’"2“ _aj

4 C (22 g o (2"
E[J"ZAJ”;_T] 5[‘]g+1jg+1_ 3 )

Proof If matrix functions G((:l‘]ilkg) (), (ki ko k) e {0,1}3 are given with formula (5) for an odd integer n,
then

(n.2) - 33 -4l
G i) (1) =200 (W) [[5— ki {0, h=-24=1%4=4
11 K2, K3 ) jzlﬂ‘i ﬂ’j

i#]

~ 4 o7 (-2)[ 9% 53 +41]-gp? (U 92 -2 -81 J+g? (4) 32+ 3-21

The matrix functions G((El‘z) (J) are computed with

K k)
. 4 2 -8 4 -4 4 12 4
G((kn;,zk)z,kS)(J)zg (-2)"%e™m| 2 1 —4|4M2e™er| 4 4 4 |+4V2e™T 2 4 g (6)
2 -1 4 1 -1 1 12 4

by using the expression (4). We carry on the proof for the some special cases, such that (k;,kj,ks)e {0,1}3,
using the generalized Binet's formulas (1). Since the all cases have exactly the same computation ways, the
matrix functions G((El’i)zyka) (J) are obtained by doing similar calculation for the other cases. For simplicity, we
omit the details.
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Let k; =0,k, =0,k; =0, be in (6), the matrix form of the function G(((;'OZ)O) (J)= [aij ]st is given as

I e

ot ()= a =322 +2 2 DF 2] | == 4{2(2) (2 - |
8g3 = %[(zgﬂ)z -2(-2)"" +((—1)2+1)2j 2y, = 42y, = g((z

N n_g 2 %,1 ng % n
4 = 4[#} Qp =y = 4{2 7(371)2 J[Z *(3*1)2 j
7 2+ ’ 3 5 2 71 51 s 041
G((goz)o) (3)=1 agy-= (#] 8, = 2[[2 -1 J J{z 7(371)2 ]{2 7(371)2 H

n n 2 n n n n
22(-1)? 22(-1)2 || 22 ()2t

~ls

Nl
~———
()
|
N
—
|
N
~—
=
+
—_—
—
|
-
~—
=]
~—~———
)
N—e

2 2
432, 43, 3, 3
(n2) _
G(o,o,o)(‘])_ 4Jg—1‘]g 2(J§+Jg-1jg+1) 4Jg3g+1 -
2
Jg J%Jgﬂ J%‘Fl

It is seen that the G((l'jﬁ)) (3)= —G((g”é)o) (J) inthe case ky =1, ky =1, ky =1.
b :|3><3

o= 27 22 (0 | =i 2 2 {0
G (01 b =322 242 2 | b= (@ w227 )

secondly, let k, =0, k, =k; =1 be in (6), then the G((g"l?) (3)=[

2 71 ’ 1 !
bn=4{2 o J blz=b21=4[2 5 J( :
B ) Lt | (e ) 2
G((g,fl))(‘]): bssz[%J b22=2[[2 ) j +[2 (31) ][2 (31) H

n n 2 e % %+1+7 %A
Q3=4b31=4(#} b23=4bsz=4[2 (31) ]{2 (31) J

=Y
+
—
|
i
=
SE]
Ne—

Ypa Al 4i;
(n.2) N D o .
G(O,l,l)(‘])_ 9 4y ady Z(JgJr Jgfllgu) 4y lyig |-
J g i
It is seen that the G((fb?())) (J)= —G((Sﬂ) (J) inthe case k, =1, k, =k; =0.
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Thirdly, let k =1 k, =0, k; =1 be in (6), the G\, (3)=[c; ], , s obtained with
cn=%[—22 e e jclz:czf (— (27407 - J

G((fbi))(J): C22 :%[22221)2 (25+(—1)3)—(2§2J Cpg = 4Cy =§(u(22 +(-)F ) (?ZJ,

In the case k; =0, k, =1, k3 =0, itis the G((Ol()))(\])— G((loz)(‘])

Finally, let k; =0, k, =0, k3 =1 be in (6), then the G, n2

==
D
=
—~
(&
N—
Il
1
o
=
L1
w
X
w

n

0y LR " B n 0 . o
4 - %(#(22—1 rprt) 2 ] 0. 40, %(22-(3—1)2 (2 () 32)2]
s 2 2371 %477 %1 - o > 0y
Glyon (9)= dzz=§(22 0 (pF ) ] dlz:dﬂ:%(%(zz PN J

04 0a N oyt ot " N+l 2y
[—22 L (2§+l +(—1)5+1)+ A ?2 jdzs = 4d,, = %{—2 s (2 (=) 21)+( ?zj

o o2 . (-2 2(-2)2*
%[JQJQJF 3 J %(‘]"ZHJ"ZHJF 3 jé[ sadpa t T]

It is seen that G((no)) (J)= —G((g’ﬂ) (J) isinthe case k =1 k, =1 ks =0

Now, let us consider the scalar complex function
G(Po (2)= P - giﬁp"” (2),ke{01,...,9-1},

where (p,q)e(Z—{O}xN+) ,such that p and q are relatively prime. The G(P%(z) are g -valued functions:

gP P (z) o z [P exp{i[aparg(zhk;znﬂ,k €{01..,q-1},

9" (z)= exp{—mpkﬁjzp’q, and g$P (z)=z"9 4 z|" exp{i Earg(z)}.
a a

The matrix functions are given as follows:

3
(P a) (p. q)
Gl ko, k3 Zg

{0,1..q-1;.

|¢]

Hence, there is a unique matrix polynomial q(J) of degree 2 for every the matrix function J P/9 such that
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IPI8 — ol +¢d +c,d2 @)
Notice that the polynomial g(J) mentioned above is nothing else but the Lagrange-Sylvester
polynomial [9], [10] Therefore,

3
(kri Ez ks) 29“] I ki €{0.1..9-1},
j=1
|¢]
g(pq ( ) g(M) (l) g(pq (4)
—.J—I J—-41)——=(J +21)(J -4l J+21)[J -1
1 (I -1) ) 5 (J+21)( )+ 15 ( )Jd-1)
1 2ipkar 2|pk1;r 2ipkopm 2ipkar 2|pk17r 2ipkor

—18{4p’qe T (-2)Pe T —2e ¢ }J2+%[4p’qe = —5(-2)"e © +4e ¢ }J
(®)

2ipkgr Zgs  2ipor
—3[4"’% T —2(-2)"e © —ge ¢ }I

Therefore the scalars c;, ¢; and ¢, in (7) are determined by

P 2ipksz p  2ipkyz Zipkzn:|
1

coz—%[(4)”e ©—2(-2)1e * -8 °

cl=%{

p 2|pk3;r p 2ipky 2ipkpm
=334t (e T e |

P 2ipksr p ik zipkzﬂ:|
)

49 ¢ —3(-2)7e ¢ +2e °

N

The case k; =k, =k; =k values are rewritten in the equation (8), it follows that

(P (P
2ipkz P2 '”[572) Py '”[Hfl) 2ipkr
_ g 29 —e 29 —e _ q
cy, =—8e 3 3 =-8e J%ZJ%l
2ipkz 2%2 iﬂ[g*Z) 25 ir— 2ipkr
— q —€ —€ - q
c, =2e 3 3 =21 %—2‘] s
2ipkz Py '”[*‘1] Zap |;rg 2ipkz
— q —€ —€ - q
c,=¢ : 53— =¢ Jg_l\]Ep

Theorem 4. The matrix functions G((kp kq)k) (3)= [ fi ]m are again obtained matrix equations with

GPA ()= exp(z'pk”)(JlegJ2+2J 3,0-81, , plj

(
(k,k,k)

If we think about in the case p :=n and g =2 in (8), then we have the similar matrix equations
given in the Theorem 3

G((l:i)2k3) (J ) _ é[(%Lﬁenkyﬂ +%(_2)3 ezt _ gk, )J 2 +(%4%enk3;ri _%(_2)% ezt | ganky7i )J

_(4%enk3;ri _ 2(_2)% ezl _ gankori ) I :|
As a result, if some special cases for (k;,k;,ks) e {0,1}3 are evaluated, then

n,2 n_q n n n n
Glreh (3)= 9[(22 2!+ 4(-2) -1)92+ (547 -15(-2)' +2)9 (41 -2(-2)" -8 }
28 —(-1)f 272 —(-1)%? g 22 (—1)t 2870 (<1)F
3 3 3 3 3 3
and for k; =1k, =1,k; =1, this case is negative of the other case. The two cases can be examined with similar

way, and achieved as

+(3,3,,32+23,3, ,3-83, .3 |) It ki =0k; =0,k =0

(n2) AR 5V3-2 519320 ) if K =1k, =L ks =1 ©)]
G“(k1 Ko, Ks) (J): . . _ _
if k =0k, =1ks=1

inde 192 +2J0dn I —8in 1dn sl), 1.
<JEJE*1 JEJE*Z JE*1JE*2 ) {|f k; =1,k, =0,k; =0

©|+
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Also, by equating corresponding elements of matrices in equalities (9) and the Theorem 3, we can

obtain the following identities. Let us consider that equating of the matrix G((o 0)0) (J ) then

~3,3, -23, 3, :JH(JQ—Z\]H), i) J2,=9J,J, +23,J, ,—8J, J

F1g

n¥n_. n_. n¥n_o*
221 221 222

i) 9;=9,9,,+23,3 =JD(J 123 ) iv) J,J,,=33,J, ,+2J,J
)

or equating of the matrices G

A/—\
N
—_~
(]
~—
<Q
<
(1]
w

~2j,, ) W) 07, =9l s+ 200y, -8l

)3 =+ 20 0, = gy (320 ) W) ks =3 4200,
By definition, an alternative way to obtain a square root of the matrix J is to solve the matrix equation

G (3)xG™? (3)=3", that is, the square roots of the matrix J" are the matrices G (J) . Then, for each
G ., (3) ingiven Theorem 3 and the matrices in (9), this states G | (3)xGi3)  (3)=3".

(n,2)

Let J, denotes the complex Jacobsthal number in branches G,

(J),and j, denotes the complex
Jacobsthal Lucas number in branches G(011 (J). Therefore, by equating corresponding elements for matrix
equation G(g(fo (3)x G<g§0 (J)=J", we achieve some complex Jacobsthal identities, and from matrix equation

Gy (3)xGo7) (3)=1J", some complex Jacobsthal Lucas identities are achieved:

217041 551 55! 5-17 541 554!

i) J§+JMJM_2(J +3, . )+8J 32 423732 ||)JHJM:JﬂJj’+1+4J§Jﬂ_l+2(J§+J J )J J
2
i) Jn{l=J;+4J§J;1+4J;1=(J§+2J%{1) , iv) 8132, =4j; 4007+ if, = (17, +2:)

2

V) 81‘]an+1: 1%1%34_1—"_4]%]%,1—"_2(]%—"_J%,1J%+1)J%J%+1! VI)Jf—"—Jn—l‘]nH ( +J,,1J,+1) J%J%,l—i__] J,_,_l

I11. Conclusion
The matrix function G(J)=b,1 +bJ +b,J? is well known from the theory of functions of matrices

where | is the 3x3 identity matrix. Therefore, any power n™ of the Jacobsthal matrix J was generated by
solving the system G(4)=h, +bA4 +b,A*> i=12,3. This matrix contains the different multiplication and

squares of the n™ term of the Jacobsthal sequence, and also is obtained as matrix formula. Furthermore, the
functions G"(J)=J",neZ and G™¥(J)=J", ged(p,q)=1 were defined on the spectrum of the
Jacobsthal matrix J . Then, the matrix functions of the matrix J are defined by these complex functions, and
the technique mentioned above were applied to compute any square root of the Jacobsthal matrix J" .
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