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 Abstract : Hyper-complex numbers forming four-dimensional quaternion-scalar space are considered. 

Corresponding complementary algebra is introduced as an additional non-vector extension over the field of 

complex numbers. Similarly to conventional complex numbers this commutative 4th-rank algebra possesses 

division, conjugation, rooting and factorization along with direct analog of Euler’s formula. Rotations can be 

represented consistently within this algebra as well. Some of direct applications include electromagnetic wave 

theory, beam and accelerator physics. 
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I. Introduction 
Conventional quaternion was introduced as a four-vector extension over the field of complex numbers 

[1,2]. Its vector part is a generalization of the imaginary part and forms three-dimensional quaternion-vector 

space. Although quaternions do not belong to the standard mathematical apparatus, they found numerous 

applications in computational mathematics and many branches of physics including special relativity and optics, 

elementary particle theories and astrophysics, theory of fields and mechanics.  For example, in the physics of 

charged particle beams the quaternions are very efficient to address the problem of spin transport [3,4].  

In a number of analytical studies we deal with complex numbers or functions mixed with 22 matrixes 

on some intermediate stage.  Matrix representation may have alternatives in some cases.  For example, quantum 

mechanics can be elegantly formulated with geometric algebra. In other situations it is more convenient to 

proceed with completely scalar expressions rather than vector-like quaternions. Those situations may contain 

functions of complex variables as well. Corresponding practical cases include, e.g., eigenmode analysis of some 

boundary problems [5,6], charged particle beam transport and dynamics in accelerators [7]; and vacuum 

electron devices [8,9] as well. Scalar quaternions are designed originally to encapsulate the matrix 

transformations into a new space of pseudoscalar numbers extending conventional independent spaces of 

complex numbers (associated, e.g., with the time and space domains correspondingly).  

Lewin [6] was one of the first who applied in fact scalar hyper-complex values to analyze 

electromagnetic waves propagating in various waveguide structures: dielectric-loaded, with magnetized ferrite, 

surface anisotropy and corrugations.  He introduced phenomenologically an additional imaginary unit (see (1.1)) 

to distinguish complex numbers reflecting behavioral difference of time (or/and longitudinal) variable - from 

one hand, and the space (or transversal/angular) variables – on the other hand. Corresponding imaginary units 

form a commutative group: 

11,1,1 22  orjiijji
.       (1.1) 

This approach led Lewin to a compact scalar dispersion equation for normal modes with four-

component complex numbers. Further development and application of this approach in [10,11] allowed to 

characterize rigorously a self-consistent system composed by beam interacting with slow-wave structure and 

solenoidal field. It was shown [10] that conventional matrix approach gives equivalent solution of dispersion 

system of equations resulted finally in exactly the same increments and threshold currents of the regenerative 

Beam Break-Up (BBU) instability. However, scalar-quaternion representation is much more compact and 

produces very transparent physical solution. For example, the collective frequency ~  found from a single 

hyper-complex dispersion equation has the following meaningful components: ~ReRe ji  is the detuning of 

the collective frequency with respect to modal eigen-frequency, ~ImIm ji  is the angular velocity of rotation 

of the self-consistent degenerated dipole mode coupled with the propagating beam, and 

 ~ReIm~ReIm ijji   are the “left-hand” and “right-hand” increments of the gyromagnetic BBU effect.  
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In the preceding work [7] the lack of an additional imaginary unit introduced correctly gave improper 

mixing between different degrees of freedom and leaded to erroneous result of the threshold current in the 

presence of transverse motion.  

Originally the commutative algebra of corresponding hyper-complex numbers was introduced in [10] 

for accelerator and beam physics applications. It was defined as a closed generalization over two different fields 

of complex numbers i  and j  which forms a commutative 4th-rank linear algebra with division and main 

attributes of conventional complex numbers. In this paper we present basic properties and the simplest analytical 

continuation. Such terms as “four-component number”, “hyper-complex number” and “scalar quaternion” we 

use here as being equivalent. 

 

II. Basics of commutative algebra of four-component complex numbers 
 We start from writing the four-component complex number that looks like a conventional quaternion: 

3210
~  ijjia  ,         (2.1) 

where the components 3210 ,,,   are real numbers; ji,  are the independent imaginary units, and ij  is 

the composite imaginary unit.  

We consider here commutative algebra of hyper-complex numbers (1.1, 2.1) as being additive, associative, 

distributive, and closed with respect to addition, multiplication, division.  

Particularly, a product of any two complex numbers from different i - and j - spaces forms a scalar quaternion:  

    ,3210  ijjijdciba   where .,,, 3210 bdadbcac    (2.2) 

 So we treat here independent spaces of regular complex numbers as projections of hyper-complex 

space. Therefore we can smoothly redefine operators of real and imaginary parts:   

3120
~Im,~Re  jaja ii  ,       (2.3) 

where the indexes denote that corresponding operation to be made only in the space-projection of complex 

numbers associated with i  or j  correspondingly. 

Let us assume the Pauli matrixes 









01

10
ˆ

1 , 






 


0

0
ˆ

2
j

j
 , 












10

01
ˆ

3  as operators 

assigned, for example, to the 
j

- space only. Then, considering a~  as a column matrix 













a

a

j

j

~Im

~Re
, we can use 

the following substitutions in transition to our pseudo-scalar space: 
jaja  ~~ˆ

1 ,   aa ~~ˆ
2  ,   and   

jaa  ~~ˆ
3 ,       (2.4) 

i.e. the matrix operators can be represented formally as 
jj  ()ˆ

1 , 1ˆ
2  , and 

j ()ˆ
3 . 

Similarly to the algebra of Pauli spin matrixes we have from (2.4): 

ajaajaajaa ~ˆ~ˆˆ;~ˆ~ˆˆ;~ˆ~ˆˆ~ˆˆˆˆ
2131323213321   . 

However, unlike the geometric algebra the operators (2.4) are commutative in the pseudo-scalar space. So, an 

arbitrary 22 matrix operator Û  belonging to the j - space can be represented, for example, as: 

    JjjjEU  ()ˆˆˆˆˆ
321  ,  

where Ê  is the 22 unit matrix, Ûdet2222   , and  ,,,  are the real numbers 

describing the operator Û  associated with the j - space.  

To generalize of the 22 matrix operator and rotation representation in the i , j - hyperspace we can, e.g., 

replace formally the complex unit j  by i  in Û  and 2̂  (i.e. ij2̂ ) representations as follows: 

    JiijjiEU  ()ˆˆˆˆˆ
321  ,     (2.5) 

where Û  belongs to both  i - and j - spaces simultaneously.  

If Û  is the unimodular matrix and 12222   , Eqn. (2.5) represents rotations in 4D i , j - space.   

Before considering the full length in the 4D space let us define partial determinant in each of these 

spaces-projections: 
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     3120

2

3

2

2

2

1

2

0

2*22
2~~~~Im~Re~det   jaaaaaa

i

i

iii . (2.6) 

The commutation law (1.1) and definitions (2.1, 2.3, 2.6) give the following obvious identities:  

   

.~detdet~~~detdet

,~Re4~ReRe4..~~..~~

,~ReImRe2~ReIm2~~,~Re2~~

,)~(~~)~(

,~Im~Im~Im~ImIm~ImIm

,~ImRe~ReIm

,~Re~Re~Re~ReRe~ReRe

,~~~~

2
2

2
2

****

**

3210

********

3

1

0

aaaa

aaCCaaCCaa

ajaiaaaaa

ijjiaaaa

aaaaa

aa

aaaaa

abba

ij
j

i
i

jji

jij

ji

i

ji

ijiji

i

i

i

ijijjiji

ijjiijji

ijji

ijjiijji

























    (2.7) 

 The rules above describe a plain scalar unification of two superposed fields of regular complex 

numbers.  They can be used to simplify some typical problems by reducing to convenient algebraic form (e.g. in 

waveguide [6] and wake function [5] theories, polarimetry, and analytical description of periodic magnetostatic 

fields [12]).  However, to form a complete hyper-complex field this linear algebra needs to be closed with 

respect to operations of multiplication and division, raising to powers and rooting.  

To make this next step we postulate additional to (1.1) rules: 

  1,,,1
222  ijjiijjijijijiij .      (2.8) 

Other properties of scalar quaternion numbers and corresponding functional analytical continuations can be 

derived from (1.1, 2.8) similarly to known properties of conventional complex numbers. Fore example:  

ijijij  ,11;1 ;    2/)(exp jiij  .      (2.9) 

Evidently, a square root to be a four-valued in this 4-th rank algebra.  

Another example rules the multiplication of hyper-complex numbers a~  and 
3210

~
 ijjib  : 

 

   3021120331132002

3233100122113300

~~









ijj

iba
   

 

III. Conjugation and absolute value, hyper-poles and division 
One can define a full conjugate as an extension of partial conjugates: 

jiji aaaa **** ~~~~ 
.          (3.1) 

A few additional identities and inequalities for conjugation may be useful: 

aaaaa ji

jiji ~ReRe4~~~~ ****  ,  

)(2~~
2133

2

2

2

1

2

0

**   ijaa ji
,       (3.2) 

.~Re2~~,~Re2~~ ** aaaaaa ji  
 

A natural way to define the full determinant is to use the partial determinants (2.6): 

   23120

22

3

2

2

2

1

2

0

****
2

2
4~~~~~~~~detdet~det   aaaaaaaaa jiji

i
jji . 

            (3.3) 

One can see from (3.3), that for some non-zero components n  the determinant turns to zero. We will call such 

numbers as polar numbers, hyper-poles, or hyper-zeros.  We have such poles, e.g., when 030    at 

021   or when 021    at 030  .  

Unlike partial determinants the full determinant is a real non-negative number. Therefore we define an absolute 

value (or scalar quaternion norm) using a 4th order arithmetic root: 

.~~~~~~det)~(~ 4

2
24 ****4

i
j

jiji aaaaaaaNa        (3.4) 
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Note polar numbers ijji  1,  have zero norm (i.e. absolute value or hyper-length). As we shall see below, 

the numbers )(2 ji   and )( ji   are the hyper-periods for the hyperbolic functions )sinh(),cosh( xx  

and )(anhcot),tanh( xx  as well as the numbers )1(2 ij  and )1( ij  are the hyper-periods of the 

trigonometric functions )sin(),cos( xx  and )(ancot),tan( xx  respectively. 

The full determinant and conjugation defined above can be used directly to find the inversed number 

provided the determinant is not zero: 

a

a

a
a ~det

~

~
1~ 1


  .          (3.5) 

One can obtain (3.5) using partial transformations in the spaces-projections applying successively corresponding 

rules for regular complex numbers: 

 
 

.
~

~

~~~~

~~~

~~~~

~~~

~~

~

~

~

~

~

~
1

4****

****

***

***

*

*

2

*

2

*

a

a

aaaa

aaa

aaaa

aaa

aa

a

a

a

a

a

a jiji

jiji

jii

jii

i

i

i

i

j

j 








 . 

Inverted hyper-zeros can be interpreted as hyper-infinities within this ij -algebra.  

 

IV. Euler’s formula, factorization and rooting 
 Before defining rooting for general scalar quaternion let us consider two partial cases.  

The first case is a scalar quaternion (2.2) represented by a product of two complex numbers iba   and 

jdc   belonging to i - and j - spaces correspondingly. It means that 2130   , i.e. corresponding 22 

matrix composed by its components 3210 ,,,   is degenerated.  

Interesting to note, this trivial case corresponds to a 22 matrix operator (or rotation) applied to a “flat” 

vector (a conventional complex number) belonging to the i - space ( 0Im j ). Indeed, from (3.3, 2.2) we have 

222222222

3

2

2

2

1

2

0
~ dbdacbcaa    and from (2.5) 

 ijjiU ˆ  assuming the quaternion  3210 ,,,   is proportional to    ,,, .  

Thus in this particular case the root of the n -th -order yields: 

      nljkicdjabiajdcibaa nnn )(2/arctan/arctanexp~~   ,  (4.1) 

where  1...,1,0,  nlk  are the integers.  

So the period of the exponential function is )(2 ljki  in our hyperspace. It gives in general 
2n  

values for 
n a~ .  

Another case of interest is a hyper-complex number having only two components: ijdaA 
~

.  

From (2.8) and Taylor’s expansion we can write the basic formula of exponential representation for this simplest 

hyper-complex number: 

 sinhcosh)exp( ijij  .         (4.2) 

Then the following representation takes place at 1ad : 











a

d
ijdaijdaA arctanhexp

~ 22
.       (4.3) 

Note adarctanh  is a real number at 1ad , otherwise it turns into a complex number in either 

i - or j - space. However, at 1ad  an additional, “symmetric”, representation is possible in the ji, -space:  

    


















d

a
ijjida

d

a
ijdaijijadijA arctanh

2
exparctanhexp

~ 2222 
. (4.4) 

We used the following formal substitution made in (4.4):  

 
x

jix
x

1
arctanh

2
arctanh

1





.       (4.5) 
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It gives a hyper-extension of corresponding trigonometric formula 
x

xx
1

arctansgn
2

arctan 


.  

Thus the inverse hyperbolic tangent is extended into the space of scalar quaternions.  

Using (4.3) we can write the rooting formula for the simple two-component scalar quaternion 

ijcbAB  2~~
: 






















b

c
ij

nn

ljki
BB n

n
arctanh

1)(2
exp

~~ 
,      (4.6) 

 

where 1/ bc , and, again,  1...,1,0,  nlk . 

Now suppose 
2~~

AB   just to compare ijdaA 
~

 and B
~

. Substituting in (4.6) 
22 dab   

and adc 2  we have:  











2
sinh

2
cosh

~ 22 
ijdaB ,      where 












22

2
arctanh

da

ad
 .                        (4.7) 

Simple transformations of hyperbolic functions in (4.7) give the following: 















ijad

ijda
ijda 2)( ,         (4.8) 

where the sign alternations are not correlated leading to eight values of the square root B
~

. However, only 

four of them are linearly independent (see (2.9)), whereas the other four can be produced with multiplication by 

ij .  

In general case at 0
~
A  we can generalize the Euler’s formula as follows: 

  )~exp(exp
~

3210 aijjiijdjcibaA   ,    (4.9) 

where the relationship between A
~

 and a~  can be found from the system: 

















321

321321

321321

0

coshsinsin

sinhcossincoshsincos

sinhsincoscoshcossin

and,
~

ln









N

N

N

d

c

b

A

      (4.10) 

where AbbN

~
 , AccN

~
 , and Add N

~
  are the normalized components.  

Similar to 3D rotation represented by a conventional quaternion [1], (4.9-4.10) represent rotation 

321 ,,   in pseudo-scalar hyperspace.  The degenerate case (2.2, 4.1) can be interpreted as analog of 

Cardano’ case (when 03   in (4.9)).  

Note, unlike conventional complex numbers and the cases (2.2), (2.5), (4.1), the normalized real 

components NNN dcb ,, can vary from   to   in general case. 

One can reduce (4.10) to an algebraic system of two unknowns 1tan  and 2tan :  

   
 









2

2

1

2

2

2

121

2

2

2

1

222

2

2

1

2

tantantantantantan

tan1tan1tantan





NNN

NN

dcb

cb
    (4.11) 

and  

    NN bc  213 sinln  .        (4.12) 

The system (4.11) can be solved explicitly, but the expressions we obtained with symbolic methods are 

too lengthy for analysis in this paper.  
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To provide     0sin 21  NN bc  in (4.12) one can always choose suitable solutions of 

(4.11) in the form of m 2,1  due to periodicity of tangent.  At cb   formally we have a singularity in 

(4.12). However, this singularity is avoidable by performing representation (4.9-4.12) for conjugate complex 

number (in i - or j - space) and applying conjugation again (in the same space) to the result in the right part.  

Another way to factorize a scalar quaternion for rooting is to generalize (2.2) as a product of the three 

principal multiplicands: 

     ijfejdcibaijji  3210  .      (4.13) 

Let us assume for simplicity eca 10 . Then (4.13) reduces to the following conventional 

algebraic system: 















dfbdfb

bfbdfd

fbdfbd

)1(

)1(

)1(

1

2

3







         (4.14) 

The solutions },,{ fdb of the system (4.14) have much more compact explicit form compared to 

(4.11). One can show easily that the solutions are always real.  Similar to (4.12) for one of the solutions one can 

find a singularity (e.g. at 0312   ) that is removable.  

Thus scalar non-zero ( 0
~
A ) quaternion allows to perform factorization and rooting using (4.19), 

(4.13) or (4.1), (4.6). 

 

V. Discussion 
 Next considerations of scalar quaternions may include hyper-complex functions, differentiation and 

integration, conformal mapping and analytical extensions of complex functions with complex variables 

extended into the algebraic hyperspace introduced here. This pseudo-scalar space allows to represent 22 

matrixes with the hyper-complex numbers and to combine the properties of conventional complex numbers. One 

can anticipate further developments and new implications of the ij -algebra, especially in beam, laser, plasma, 

particle physics and cosmology as well. The possibility of multidimensional hyper-complex numbers of 6th rank 

and higher remains open. 
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