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Abstract: Rhotrices nP , nQ and nR  were considered with the binary operation of non-commutative method of 

rhotrix multiplication defined by Sani(2007) to study linear systems of the form n n nP Q R . This work 

identified conditions necessary for the solvability of the system and also presented procedure for computing the 

square root of a rhotrix.  
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I. Introduction 
 A mathematical arrays that is in some way between two-dimensional vectors and 2×2dimensional 

matrices were suggested by Atanassov and Shannon [3]. As an extension to thisidea, Ajibade [1] introduced an 

object that lies between 2×2 dimensional matrices and3×3 dimensional matrices called ‘rhotrix’. A rhotrix as 

given in [1] is of the form 

3
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e

 
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     (1) 

 wherea,b,d,e, c = h(R)∈   and h(R) is called the heart of a rhotrix R. A rhotrix of the form (1) 

is called based rhotrix, which is rhotrix of base three. It was also mentioned in [1] that a 

rhotrix can be extended to n-dimension. A rhotrix of size n denoted by ( )R n or nR , we mean a rhomboidal 

array having )1(
2

1 2 n  entries and of size 12  Zn . 

The algebra of rhotrices was presented in [1].  

The operation of addition ( ), scalar multiplication ( m ) and multiplication ( ) were also defined in [1] and is 

recorded as below: 
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a f ah(Q) fh(R)

b h(R) g h(Q) bh(Q) gh(R) h(R)h(Q) h(Q) ih(R) . (4)
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Sani (2007) extended the work of  Sani (2004) to rhotrices of size n and gave the following proposition: 

Let R( )n and S( )n be rhotrices of size n, then the product of R( )n and S( )n
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Thus, R( )n and S( )n can be expressed as in Equation (5) and (6)respectively. 
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The elements , ( , 1,2,..., )i ja i j t  and , ( , 1, 2,..., 1)k lc k l t   are called the major and minor entries of 

( )R n  respectively. Similarly, The elements ,
( , 1,2,..., )

i j
b i j t  and ,

( , 1,2,..., 1)
k l

d k l t   are the major and 

minor entries of ( )S n  respectively. 

Also Sani (2007), generalized the definition of the transpose, determinant, identity and inverse of rhotrix )(nR  

of size n, (provided )0)( nR . Sani (2007) further established some interesting relationships between invertible 

n-size rhotrices and invertible t t  dimensional matrices, where
1

( 1), 2 1
2

t n n Z     . 

 This paper shall adopt the row-column method of rhotrix multiplication proposed by Sani to present 

Linear systems and their conditions for solvability. 

2.0 Basic properties 
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This paper presents a summary of some basic properties of rhotrices. 

Let nP , nQ   and nR  be rhotrices of the same dimension n, let   and   be the usual addition and the row-

column method of rhotrix multiplication respectively, then the following is true for rhotrices over a field  and 

   

0 0n n nP P P     

n n n nP R R P    

( ) ( )n n n n n nP Q R P Q R      

( )n n n nP Q P Q      

( ) ( )n n n n n nP Q R P Q R     

 

II. Linear systems of Non-commutative rhotrices 
 Aminu, [2] presented a study of Linear systems over rhotrices, considering the heart-based method of 

rhotrix multiplication as the binary operation. This paper investigates linear  system under the binary operation 

defined by Sani (2004)  for n-dimensional rhotrices. 

Let us assume, without loss of generality that rhotrices nP , nQ   and nR are base rhotrices, that is,  rhotrices of 

dimension 3.  

Consider the linear system  

3 3 3P Q R  
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This is equivalent to   

1 1 3 2 1

2 1 4 2 2

1 3 3 4 3

2 3 4 4 4

(8)

h(P) h(Q)=h(R)

p q p q r

p q p q r

p q p q r

p q p q r

  


 


  
 


 

 

 

Solving (8) yields,  
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III. Proposition 

 Let nP , nQ   and nR  be rhotrices of the same dimension n  over  reals, then the system n n nP Q R

has a unique solution if and only if  det( ) 0 det( ) 0.n nP and R   

Proof: 

Suppose det( ) 0 det( ) 0,n nP and R  it follows from (7) that det( ) 0 det( ) 0.n nP and R   
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This completes the proof.  

 It can easily be deduced from proposition 3.1 above that the necessary and sufficient condition for  

obtaining an exact solution to the linear system  n n nP Q R  is that 

   , , , ,
det , 0 det , 0

i j k l i j k l
P p and R R  .

 
 

Proposition 3.2 

Let nP , nQ   and nR  be rhotrices of the same dimension n  over  reals, then the system n n nP Q R has no 

solution if and only if  det( ) 0 det( ) 0.n nP and R   

 

Proposition 3.3 

Let nP , nQ   and nR  be rhotrices of the same dimension n  over  reals, then the system n n nP Q R has a 

infinite solution if and only if  det( ) 0 det( ) 0.n nP and R   

 

IV. Concrete example 

Consider the linear system of rhotrices 3 3 3P Q R where 3

2

1 3 5

4

P   and 3

4

3 4 2

5

R    

Find the rhotrix 3Q  such that  3 3 3P Q R .  

Using (9), we find the rhotrix 3Q  
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Hence, the rhotrix
3

1

3

1 4 17
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Q
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 . 

 

V. Conclusion 
 In this paper the necessary and sufficient conditions for the solvability of 

linear system over rhotrices using rhotrix  multiplication method proposed in [4] was developed.  These 

conditions depend on the determinant of the respective rhotrices. A concrete example was given to verify the 

work. 
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