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Abstract: This work aimed at examining the mathematical modelling of the solutions of partial differential 

equation with physical implications. In particular, we looked at the consistency and well-posedness of the 

solution of homogeneous one-dimensional wave. The general solution of the wave equation was derived by the 

method of change of variable and finally the general solution derived leads us to the unique solution of the 

problem, called the d’Alembert’s formula. We then proof that the d’Alembert’s formula obtained exists, it is 

unique and stable. There after we used the solution obtained to analyze result and show the behaviour of our 

result in a table and conclude that the notion of a well-posed problem is important in applied mathematics. 
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I. Introduction 
Generally, finding the exact solution of problems in partial differential equation may be impossible or 

at least poses practical challenges to obtain it. The study of partial differential equations started as a tool to 

analyze the models of physical science. The PDE’s usually arise from the physical laws such as balancing forces 

(Newton’s law), momentum and conservation laws etc. (Strauss, 2008).                                                                                                                                                                    

In this work the equation of motion for the string under certain assumption has been derived which is in 

the form of second order partial differential equation. The governing partial differential equation represents 

transverse vibration of an elastic string which is known as one dimensional wave equation (King and 

Billingham, 2000). The analytical solution has been obtained using method of change of variable. 

The solution of wave equation was one of the major mathematical problems of the mid eighteenth 

century. The wave equation was first derived and studied by D’Alembert in 1746. He introduced the one 

dimensional wave equation  
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This also attracted the attention of Merwin, (2014), Marcel, (2014), Schiesser and Griffths, (2009), and Broman, 

(1989).   

The wave equation was then generalized to two and three dimensions, i.e. 
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The solution of wave equation was obtained in several different forms in series of works (Benzoni-

Gavage and Serre, 2007). Partial differential equations are often used to construct models of the most basic 

theories underlying physics and engineering (Lawrence, 2010). Unlike the theory of ordinary differential 

equations, which relies on the fundamental existence and uniqueness theorem, there is no single theorem which 

is central to the subject. Instead, there are separate theories used for each of the major types of partial differential 

equations that commonly arise. It is worth pointing out that the preponderance of differential equations arising in 

applications, in science, in engineering, and within mathematics itself, are of either first or second order, with 

the latter being by far the most prevalent.  

 Wave equation is a second-order linear hyperbolic PDE that describes the propagation of a variety of 

waves, such as sound or water waves. It arises in different fields such as acoustics, electromagnetics, or fluid 

dynamics (Sajjadi and Smith, 2008). 
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Partial differential equation (PDE) contains partial derivative of the independent variable, which is an unknown 

function in more than one variable. ,...,, tyx
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We can write the general first order PDE for  txu ,  as
 

  0),,,,(),(),,(),,(,,  tx uuutxFtxutxutxutxF
            (1.0) 

(Strauss, 2008).
 

Although one can study PDEs with many independent variables as one wish, but in this research work we will 

be primarily concerned with PDEs in two independent variables. 

So many methods have been used in solving partial differential equation for example: 

I. Method of separation of variable, 

II. Method of change of variable, 

III. Laplace Transform method, 

IV. Numerical method and  

V. Method of characteristics, etc. 

But in this paper, we obtain d’Alembert’s general solution by the method of change of variable.  

 

Statement of the problem 

 In these research work, we are mainly concerned with implications of a solution to a given partial 

differential equation, and the good properties of that solution. We are interested in the mathematical modelling 

of the consistency and well-posedness of solution(s) to certain PDEs, in particular the homogeneous one-

dimensional wave equation. Various physical quantities will be measured by some function u = u(x,y,z,t)  

This could depend on all spatial variables and time, or some subset (Guo and Zhang, 2009). The partial   

derivatives of u will be denoted with the following condensed notation: 
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Aim 

The aim of this work is to present the mathematical modelling of partial differential equations with implications. 

  

Objectives 
1. To obtain a solution, examine the consistency and well-posedness of the solution of the homogeneous one-

dimensional wave equation via the method of change of variable 

2. To present the result in a tabular form 

 

II. METHODS 
 We shall consider certain type of problem that is associated with linear hyperbolic partial differential 

equations. We shall consider this problem in connection with the homogeneous one-dimensional wave equation 

of the form 
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Where x and t are the independent variables and C is a constant.  

This equation, called the homogeneous one-dimensional wave equation, serve as the prototype for a 

class of hyperbolic differential equation. Hyperbolic equations arise in physical application as models of waves, 

such as acoustic, elastic, electromagnetic or gravitational waves. The qualitative properties of hyperbolic PDEs 

differ sharply from those of parabolic and elliptic PDEs . 

The wave equation is certainly one of the most important classical equations of mathematical physics. 

We look at the mathematical modelling of partial differential equations as applied to the homogeneous one-

dimensional wave equation. In particular, we examine the consistency and well-posedness of the solution (Guo 

and Zhang, 2007). The d’Alembert’s general solution is to be derived by the method of change of variable 

which will lead us finally to the d’Alembert’s formula for the solution of the wave equation. 

 

2.1  Mathematical Formulation 
The wave equation has many physical applications from sound waves in air to magnetic waves in the Sun's 

atmosphere. However, the simplest systems to visualize and describe are waves on a stretched elastic string. 
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Initially the string is horizontal with two fixed ends say a left end L  and a right end R : Then from end 

L  we shake the string and we notice a wave Propagate through the string. The aim is to try and determine the 

vertical Displacement from the axisx  of the string, ),( txu  as a function of position x  And time t : That is, 

),( txu is the displacement from the equilibrium at Position x  and time t : A displacement of a tiny piece of the 

string between Points P  and Q
 
is shown in; 

 

  

 

 

 

 

 

 

 

 

Where 

 ),( tx  is the angle between the string and a horizontal line at position x  and time t  

 
),( txT

 is the tension in the string at position x  and time t  ; 

 )(x   is the mass density of the string at position x : 

 

To derive the wave equation we need to make some simplifying assumptions: 

(1)  The density of the string,
 
 is constant so that the mass of the string between P  and Q   is simply 

 

times the length of the string between P  and Q  where the length of the string is s   given by 
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(2)  The displacement, ),( txu  and its derivatives are assumed small so that 

    xs   

and the mass of the portion of the string is 

    x  

(3)  The only forces acting on this portion of the string are the tensions ),( txT at P  and ),( txxT  at 

Q   (In physics, tension is the magnitude of the pulling force exerted by a string). The gravitational 

force is neglected. 

(4)  Our tiny string element moves only vertically. Then the net horizontal force on it must be zero.  Next, 

we consider the forces acting on the typical string portion shown above. These forces are: 

(i)  Tension pulling to the right, which has magnitude ),( txxT 
 
 and acts at an angle ),( txx   

above the horizontal. 

(ii)  Tension pulling to the left, which has magnitude ),,( txT  and acts at an angle ),,( tx  above the 

horizontal. 

Now we resolve the forces into their horizontal and vertical components.- 

 

Horizontal: The net horizontal force of the tiny string is 

).,(cos),(),(cos),( txtxTtxxtxxT    

Since there is no horizontal motion, we must have 

.),(cos),(),(cos),( TtxxtxxTtxtxT    

 Vertical:  At P the tension force is ),(sin),( txtxT   where as at Q  the 

Force is ),(sin),( txxtxxT    . Then Newton's Law of motion 

Mass acceleration Applied Forces   

Gives 
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Likewise,  
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Hence, we get  

),(),(),( txutxxutxxu
T

xxtt 


 

Dividing by 
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 and letting 
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We call c the wave speed.  (http://hyperphysics.phyastr.gsu.edu/hbase/waves/waveq.html) 

This is the partial differential equation giving the transverse vibration of the string. It is also called the one 

dimensional wave equation. 

 

2.2 Homogeneous one-dimensional wave equation 

 

We solve the wave equation on the whole real line −∞< x < +∞. Real physical situations are usually on finite 

intervals. We are justified in taking x on the whole real line for two reasons. Physically speaking, if you are 

sitting far away from the boundary, it will take a certain time for the boundary to have a substantial effect on 

you, and until that time the solutions we obtain in this chapter are valid. Mathematically speaking, the absence 

of a boundary is a big simplification. The most fundamental properties of the PDEs can be found most easily 

without the complications of boundary conditions.
 

utt = c2uxx for −∞ < x < ∞,t > 0  (1) 

u(x,0) = f(x) for  −∞ < x < ∞   (2) 

ut(x,0) = g(x) for −∞ < x < ∞   (3) 

 

2.3  Solution via change of variable 

Since the equation is hyperbolic we introduce the new variable  ,  defined by 
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From the coordinate equations above, we have
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Therefore, the wave equation (*) transforms into 

 
0 W

.  

OR 

0
2








w

                                                                                                                     
(4)

          
 

It is easy to find the general solution of the equation (4) by integrating it twice.
                                  

 

First suppose you integrate with respect to   and notice that the constant of integration must depend on   to 

get,  
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Now integrate with respect to   and notice that the constant of integration depends on  .
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So that
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Recall that we transformed  
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Therefore 
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                                                                                 (5) 

This is d’Alembert’s general solution of the wave equation, where f, g are arbitrary functions. 
 Along with the wave equation (1), we next consider some initial conditions, to single out a particular 

physical solution from the general solution (5). The equation is of second order in time t, so considering f(x) and 

g(x) which are specified both for the initial displacement u(x,0), and the initial velocity ut(x,0) respectively, 

where f and g are arbitrary functions of single variable, and together are called the initial data of the equation 

(1). Now we determine the function F and G so that the general equation (5) may satisfy equation (1) above.  

Given; 

u(x,0) = f(x) for  −∞ < x < ∞  

ut(x,0) = g(x) for −∞ < x < ∞      
 

First, setting t=0 in (5), we get 
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Then, using the chain rule, we differentiate (5) with respect to t and put t=0 to get 
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(The primes here mean differentiation with regard to the single variable the function depends on.) 
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Recall that  
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Therefore from (IV) 
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This is known as d’Alembert’s formula for the solution of the initial value problem above. Our derivation of 

d’Alembert’s formula shows that any solution of (1),(2) and (3) that is twice continuously differentiable must 

have the representation (13), hence the solution is uniquely determined by the initial data f and g. Thus 

d’Alembert’s formula represents the unique solution of (1), (2) and (3). 

 

2.3  Proof of the well-Posedness of the solution 

We prove the well-Posedness of the Cauchy problem (1), (2) and (3), above by proving  

(a)  The existence of the solution 

(b)  The uniqueness of the solution 

(c)  The stability of the solution 

 

2.3.1   Clearly the solution exist from (13), hence proved.  

3.3.2   Uniqueness of the Solution 

 In this section, we define an energy function E(t) for the wave equation, show that energy is conserved 

for the Cauchy problem (1), (2) and (3), and use this property to establish uniqueness of solutions of the Cauchy 

problem (1), (2) and (3), above.  

Let’s assume that  
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To be a smooth solution of the Cauchy problem and the derivatives 
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Therefore, we have conservation of total energy: E(t) = constant, from which we deduce 
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This identity is an important tool for existence and regularity of solutions, but also for uniqueness of solutions, 

as we now discusses. 

 

2.4  Proof of the uniqueness of Solution 

To prove uniqueness, we show 

21 uu  . 

Let define  

),().(),( 21 txutxutxu  .  

Then u satisfies the homogeneous wave equation, with zero initial data: 

0)0,(,0)0,(

2





xuxu

xucu

t

xxtt

                          

 

Since E(t) = E(0) = 0 for this problem, we have 
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Thus, u is constant in x and t. But  
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2.5  Proof of continuous dependence (stability) 
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φk, ψk, where  k = 1, 2,…,  

Those are bounded, and uniformly close in the sense of continuous functions 

;|)()(| 21   xx    ,)()( 21   xx       x  

Where  0  is small. From (5), 
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dyy
c

ctxctx

dyy
c

ctxctx

txutxu
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


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


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

 

It follows that if 

|φ1 −φ2| and |ψ1 −ψ2|  are uniformly small, then |u1(x,t)−u2(x,t)| is small at each x,t < ∞.  

Thus the small change in the initial data leads a small change in the solution at any positive time. One expects 

this, since the initial value problem is well-posed for the wave equation. Thus, the initial value problem (1), (2) 

and (3) is well posed. 

 

III. Result 
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Considering equation (5) obtained that is, 

dssg
c

ctxfctxftxU
ctx

ctx



 )(

2

1
)()(),(  

and the standard wave equation; 

utt = c2uxx for −∞ < x < ∞,t > 0     (1) 

u(x,0) = f(x)for  −∞ < x < ∞      (2) 

ut(x,0) = g(x) for −∞ < x < ∞      (3) 

Let solve some problems; 

 

3.1  Problem (1) 

025  xxtt UU `  , x  0t  

  )(0, xfxU 
                            

, x  

  xxU sin0,     , x  

  0, oxU t     x  

Solution 

Comparing with the standard wave equation 

02  xxtt UCU `  , x  0t  

  )(0, xfxU     , x  

  )(, xgoxU t     x  

Therefore from the above question  

252 C         5C  

xxf sin)(      

0)( xg   

Therefore, using 

       dsxg
c

ctxfctxftxU
ctx

ctx



 )(

2

1

2

1
,   

We have  

       ds
c

ctxctxtxU
ctx

ctx



 0

2

1
sinsin

2

1
,  

       0sinsin
2

1
,  ctxctxtxU  

      txtxtxU 5sin5sin
2

1
,        (1) 

Recall that  

    






 







 


2
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2
sin2sinsin

BABA
BABA               (2) 

Therefore, putting (2) into (1) yield 






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
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
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
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

 
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2
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cos

2

55
sin2

2

1
),(

txtxtxtx
txU  

Hence  

 

 

 

Table 1 showing the values of ),( txu  at varying x  and t  

S/N ),( txu  
x  t  

1 0872.0  
05  0  

  txtxU 5cossin, 
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2 1710.0  
010  2  

3 2432.0  
015  4  

4 2962.0  
020  6  

5 3237.0  
025  8  

6 3214.0  
030  10  

7 2868.0  
035  12  

8 2198.0  
040  14  

9 1228.0  
045  16  

10 000.0  
050  18  

 

Remark; At varying x and t as x increases u(x,t) also increase until maximum point is attain  u(x,t) then start 

decreasing. 

 

Table2 Showing result of u(x,t) at fixed x and varying t 
S/N ),( txu  Fixed x  Varying t  

1

  

0.0872 5 0 

2 0.0859  2 

3 0.0819  4 

4 0.0755  6 

5 0.0668  8 

 

Remark; From initial point at fixed x as t increases u(x,t) decrease.  

 

Table3 Showing result of u(x,t) at fixed t and varying x 
S/N ),( txu  Varying x  Fixed t  

1 0.0872 5 0 

2 0.1736 10  

3 0.2588 15  

4 0.3420 20  

5 0.4226 25  

6 0.5000 30  

7 0.5736 35  

 

Remark; At fixed t as x increases u(x,t)  also increases. 

 

3.2  Problem (2)          

 
09  xxtt UU `            , x  0t

 

  xxU sin0,     , x  

  xoxU t 3cos,     x  

Solution 

Comparing with the standard wave equation 

02  xxtt UCU `  , x  0t  

  )(0, xfxU     , x  

  )(, xgoxU t     x  

Where 

92 C         3C  

xxf sin)(      

xxg 3cos)(    

Therefore, using the formula 

       dsxg
c

ctxfctxftxU
ctx

ctx



 )(

2

1

2

1
,  
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We have  
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sdstxtxtxU 3cos

32

1
3sin3sin

2

1
,  

But  

      
2

3cossin2
3sin3sin

2

1
,

tx
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1
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 xttx cos3sin
18

1
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 Hence  

 

xttxtxU cos3sin
9

1
3cossin),( 

 
Table 4 showing the values of ),( txu  at varying x  and t  

 

 

Remark; At a point when x is at initial, u(x,t) attaint its highest point, but when x increase to 10, u(x,t) then 

decreases to its lowest point. Then both keep on increasing until maximum point is attain, then u(x,t) start  

decreasing again. 

 

Table 5 Showing result of u(x,t) at fixed t and varying x 
S/N ),( txu  Varying x  Fixed t  

1 0.0872 5 0 

2 0.1736 10  

3 0.2588 15  

4 0.3420 20  

5 0.4226 25  

6 0.5000 30  

7 0.5736 35  

Remark; At fixed t as x increases u(x,t)  also increases 

 

Table 6 showing result of u(x,t) at fixed x and varying t 

S/N ),( txu  
x  t  

1 6872.0  
05  0  

2 1840.0  
010  2  

3 2754.0  
015  4  

4 3576.0  
020  6  

5 4270.0  
025  8  

6 4811.0  
030  10  

7 6175.0  
035  12  

8 5346.0  
040  14  

9 5315.0  
045  16  

10 5081.0  
050  18  
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S/N ),( txu  Fixed x  Varying t  

1 0.0872 5 0 

2 0.0983  2 

3 0.1083  4 

4 0.1171  6 

5 0.1247  8 

6 0.1347  10 

7 0.0770  12 

 

Remark; At fixed x as t increases u(x,t)  also increases until, when t is 12 u(x,t)  drastically reduce to  0.0770. 

 

IV. Discussion 
 We have focused on obtaining solution, examining its consistency and its well-posedness of the wave 

equation via change of variable method.                                                              

 Using the method, the general solution of the wave equation was derived. Then, the general solution 

derived led us to the unique solution of the problem, called the d’Alembert’s formula, we then discussed the 

well-posedness of the solution and proved the uniqueness, existence and the dependency of the solution on the 

initial conditions which helped us to analyze and present result and showed the behaviour of our results in a 

tabular form. 

 

V. Conclusion 
 Finally, we conclude that the notion of a well-posed problem is important in applied mathematics.  

Though the classical theory of partial differential equations deals almost completely with the well-posed, ill-

posed problems can be mathematically and scientifically interesting.                                                               

 

VI. Recommendation 

It’s highly recommended that, other methods for solving partial differential equation such as 

a. Method of separation of variable, 

b. Laplace Transform method, 

c. Numerical method,   etc. 

Should be carried out, this will enable readers to compare any of the above method with the method used here. 
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