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Abstract: A new concept of the c-distance in cone metric spaces has been introduced by Cho et al. [2] in 2011. 

Recently, Dubey, A.K. et al. [13] proved some fixed point results contractive conditions under c- distance in 

cone metric spaces. The purpose of this paper is to establish, extend and the generalization of fixed point 

theorems for contractive type mapping on complete cone metric spaces applying under c- distance.  Our results 

generalize and extend some well known results in the literature [8]. 
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I. Introduction 
The concept of cone metric spaces which is generalization of the classical metric space  was introduced 

by Huang and Zhang [1] replacing the set of real numbers by an order Banach space, and showed some fixed 

point theorems of different type of contractive mappings on cone metric spaces. Later, many authors generalized 

and studied fixed and common fixed point results in cone metric spaces for normal and non normal cones. 

Recently, Cho et al.[2] ,Wang and Guo [5]defined a concept of the c- distance in a cone metric space, which is a 

cone version of the w-distance Kada et al.[3] and proved some fixed point theorems in ordered cone metric 

spaces. Then Sintunavarat et al. [4] generalized the Banach contraction theorem on c- distance of Cho et al. [2]. 

After that, several authors studied the existence and uniqueness of the fixed point, common fixed point, coupled 

fixed point and common coupled fixed point problems using this distance in cone metric spaces and ordered 

cone metric spaces see for examples [6-14], [17].Quick recently, in 2017 Fadail et al. [16], studied some fixed 

point theorems of T-Reich contraction type mappings under the concept of c- distance in complete cone metric 

spaces depended on another function.  In the same year, Tiwari, S. K., et al. [3-4] proved, Generalized and 

extended unique fixed point theorems applying this distance in cone metric spaces. Our results generalize and 

extend the respective results [13]. 

 

II. Preliminary Notes 
First, we recall some standard notations and definitions in cone metric spaces with some of their properties [1]. 

Definition 2.1: Let 𝐸 be a real Banach space and 𝑃 be a subset of 𝐸and 𝜃denote to the zero element in 𝐸, then  

𝑃 is called a cone if and only if : 

(i)    𝑃 is a non-empty set closed and 𝑃 ≠ { 𝜃}, 

(ii If  𝑎, 𝑏 are non-negative real numbers and 𝑥, 𝑦 ∈ 𝑃,then 𝑎𝑥 + 𝑏𝑦 ∈ 𝑃, 
(iii)    𝑥 ∈ 𝑃 𝑎𝑛𝑑 − 𝑥 ∈ 𝑃 ⟹ 𝑥 = 𝜃 ⟺ 𝑃⋂ −𝑃 = {𝜃}. 

Given a cone P ⊂ E, we define a partial ordering ≤ on 𝐸 with respect to 𝑃 by 𝑥 ≤ 𝑦 if and only if 𝑦 − 𝑥 ∈  𝑃.We 

shall write 𝑥 ≪ 𝑦 if 𝑦 − 𝑥 ∈ 𝑖𝑛𝑡𝑃(where int 𝑃 denotes the interior of 𝑃). If 𝑖𝑛𝑡𝑃 ≠ ∅, then cone 𝑃 is solid. The 

cone 𝑃 called normal if there is a number 𝐾 >  0 such that for all 𝑥, 𝑦 ∈ 𝐸, 
  𝜃 ≤ 𝑥 ≤ 𝑦 => ∥ 𝑥 ∥≤ 𝑘 ∥ 𝑦 ∥. 
The least positive number k satisfying the above is called the normal constant of 𝑃. 

Definition: 2.2: Let 𝑥 be a non-empty set. Suppose the mapping 𝑑: 𝑋 × 𝑋 ⟶ 𝐸 satisfies 

(i)    𝜃 < 𝑑 𝑥, 𝑦 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝑋 𝑎𝑛𝑑  𝑥, 𝑦 = 𝜃if and only if 𝑥 = 𝑦, 
(ii)    𝑑 𝑥, 𝑦 = 𝑑 𝑦, 𝑥 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝑋, 

(iii)    𝑑 𝑥, 𝑦 ≤ 𝑑 𝑥, 𝑧 + 𝑑 𝑧, 𝑦 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

Then 𝑑 is called a cone metric on 𝑋, and (𝑋, 𝑑) is called a cone metric space .The concept of cone metric space 

is more general than that of a metric space. 
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Example2.3: Let 𝐸 = 𝑅2, 𝑃 = {(𝑥, 𝑦) ∈ 𝐸: 𝑥, 𝑦 ≥ 0}, 𝑋 = 𝑅  and 𝑑: 𝑋 × 𝑋 → 𝐸  defined by 𝑑 𝑥, 𝑦 = (│𝑥 −

𝑦│, 𝛼│𝑥 − 𝑦│),where α ≥ 0 is a constant. Then (𝑋, 𝑑) is a cone metric space. 

Definition: 2.4[1]: Let (𝑋, 𝑑) be a cone metric space, 𝑥 ∈  𝑋 and {𝑥𝑛 }𝑛≥1 be a sequence in 𝑋. then, 

(1) {𝑥𝑛 }𝑛≥1 Converges to 𝑥 whenever for every𝑐 ∈ 𝐸 with 𝜃 ≪ 𝑐,  if there is a natural   

             number 𝑁 such that𝑑 𝑥𝑛 , 𝑥 ≪ 𝑐 for all 𝑛 ≥ 𝑁. We denote this by 𝑙𝑖𝑚𝑛→∞𝑥𝑛 = 

             𝑥 𝑜𝑟 𝑥𝑛 →  𝑥, (𝑛 → ∞ 

(2) {𝑥𝑛 }𝑛≥1is said to be a Cauchy sequence if for every 𝑐 ∈  𝐸 with 𝜃<< c,if there is a  

             natural number 𝑁 such that 𝑑(𝑥𝑛 , 𝑥𝑚 ) ≪ 𝑐 for all 𝑛. 𝑚 ≥ 𝑁. 
(3) (𝑋, 𝑑) is called a complete cone metric space if every Cauchy sequence in 𝑋 is   

           Convergent. 

Lemma 2.5 ([4]). 

1. If 𝐸 is a real Banach space with cone 𝑃 and 𝑎 ≤ 𝜆𝑎 where 𝑎 ∈ 𝑃 and 𝜃 ≤ 𝜆 < 1, then  

            𝑎 = 𝜃 

2. If 𝑐 ∈ 𝑖𝑛𝑡𝑃, 𝜃 ≤ 𝑎𝑛  and 𝑎𝑛 → 𝜃 then there a positive integer N such that 𝑎𝑛 ≪ 𝑐 for all  

            𝑛 ≥ 𝑁.  
Next, we give the definition of c-distance on a cone metric space(𝑋, 𝑑) which is generalization of w- distance of 

Kada et al. [3] with some properties. 

Definition 2.6 ([2]): Let (𝑋, 𝑑) be a cone metric space. A function 𝑞: 𝑋 × 𝑋 → 𝐸 is called a c- distance on X if 

the following conditions hold: 

(q1).  𝜃 ≤ 𝑞(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋, 
(q2).  𝑞 𝑥, 𝑦 ≤ 𝑞 𝑥, 𝑦 + 𝑞(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, 
(q3). for each 𝑥 ∈ 𝑋 and 𝑛 ≥ 1, if 𝑞(𝑥, 𝑦𝑛) ≤ 𝑢 for some𝑢 = 𝑢𝑥 ∈ 𝑃, then 𝑞(𝑥, 𝑦) ≤ 𝑢  

       Whenever{𝑦𝑛 } is a sequence in 𝑋 converging to a point 𝑦 ∈ 𝑋, 
(q4).  foe all 𝑐 ∈ 𝐸with 𝜃 ≪ 𝑐, there exist 𝑒 ∈ 𝐸 with 𝜃 ∈ 𝑒 such that 𝑞 𝑧, 𝑥 ≪ 𝑒 and 𝑞 𝑧, 𝑦 ≪ 

          𝑒 imply 𝑑 𝑥, 𝑦 ≪ 𝑐. 
Example 2.7 ([2]): Let 𝐸 = 𝑅 and 𝑃 =  𝑥 ∈ 𝐸: 𝑥 ≥ 0 . Let 𝑋 = [0,∞)and define a mapping 𝑑: 𝑋 × 𝑋 → 𝐸 by 

𝑑 𝑥, 𝑦 =  𝑥 − 𝑦  for all 𝑥, 𝑦 ∈ 𝑋. Then  𝑋, 𝑑 is a cone metric space. Define by 𝑞: 𝑋 × 𝑋 → 𝐸 by 𝑞 𝑥, 𝑦 = 𝑦 

for all 𝑥, 𝑦 ∈ 𝑋. Then 𝑞is a c-distance on𝑋. 

Example 2.8([10, 11]): Let 𝐸 = 𝑅2  and 𝑃 =   𝑥, 𝑦 ∈ 𝐸: 𝑥, 𝑦 ≥ 0 .  Let 𝑋 = [0,1]  and define a mapping 

𝑑: 𝑋 × 𝑋 → 𝐸 by 𝑑 𝑥, 𝑦 =   𝑥 − 𝑦 ,  𝑥 − 𝑦   for all𝑥, 𝑦 ∈ 𝑋.  Then  𝑋, 𝑑  is a complete cone metric space. 

Define a mapping 𝑞: 𝑋 × 𝑋 → 𝐸 by 𝑞 𝑥, 𝑦 = (𝑦, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋. Then 𝑞 is a 𝑐 − distance. 

Example 2.9 ([16]): Let 𝑋 = 𝐶
1

𝑅
[0,1](the set of real valued functions on 𝑋  which also have continuous 

derivatives on 𝑋),𝑃 =  𝜑 ∈ 𝐸: 𝜑 𝑡 ≥ 0 . A cone metric d on X is defined by 𝑑 𝑥, 𝑦  𝑡 ≔  𝑥 − 𝑦 . 𝜑(𝑡) where 

∅ ∈ 𝑃 is an arbitrary function. This cone is non normal. Then  𝑋, 𝑑 is a complete cone metric space. Define a 

mapping 𝑞: 𝑋 × 𝑋 → 𝐸 by 𝑞 𝑥, 𝑦  𝑡 = 𝑦. 𝑒𝑡  for all 𝑥, 𝑦 ∈ 𝑋. It is easy to see that 𝑞 is a 𝑐 −distance. 

Lemma 2.10([2]): Let  𝑋, 𝑑  be a cone metric space and q is c- distance on X. Let {𝑥𝑛 } and {𝑦𝑛} be a sequences 

in X and 𝑥, 𝑦, 𝑧 ∈ 𝑋.Suppose that 𝑢𝑛  is sequence in P converging to 0. Then the following conditions hold: 

(1) If 𝑞(𝑥𝑛,𝑦) ≤ 𝑢𝑛  and 𝑞(𝑥𝑛,𝑧) ≤ 𝑢𝑛, then 𝑦 = 𝑧. 

(2) If 𝑞(𝑥𝑛,𝑦𝑛 ) ≤ 𝑢𝑛  and 𝑞(𝑥𝑛,𝑧) ≤ 𝑢𝑛, then {𝑦𝑛} converges to 𝑧. 

(3) If 𝑞(𝑥𝑛,𝑥𝑚 ) ≤ 𝑢𝑛  for 𝑚 > 𝑛 and {𝑥𝑛,} is a Cauchy sequence in 𝑋. 

(4) If 𝑞(𝑦, 𝑥𝑛,) ≤ 𝑢𝑛 then {𝑥𝑛,} is a Cauchy sequence in 𝑋. 
Remark 2.11([2]): 

(1) 𝑞 𝑥, 𝑦 = 𝑞(𝑦, 𝑥) does not necessarily for all  𝑥, 𝑦 ∈ 𝑋. 
(2) 𝑞 𝑥, 𝑦 = 𝜃 is not necessarily equivalent to 𝑥 − 𝑦 for all 𝑥, 𝑦 ∈ 𝑋. 
 

III. Main Results. 
The following results, which we will generalizes and extend the results of [13]. 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑. 𝟏: Let (𝑋, 𝑑)be cone metric spaces, 𝑃 be a solid cone and 𝑞 be a c-distance on𝑋. Suppose that   

𝑇: 𝑋 → 𝑋 be continuous and satisfies the contractive condition; 

               𝒒(𝑇𝑥, 𝑇𝑦) ≤ 𝑎1𝑞 𝑥, 𝑦 + 𝑎2𝑞 𝑥, 𝑇𝑥 + 𝑎3𝑞(𝑦, 𝑇𝑦)+ 𝑎4[(𝑞 𝑥, 𝑇𝑥 + 𝑞(𝑦, 𝑇𝑦)] 

         + 𝑎5[𝑞 𝑦, 𝑇𝑥 + 𝑞 𝑥, 𝑇𝑦 ] …………………………………….. (3.1.1) 

for all 𝑥, 𝑦 ∈ 𝑋, where 𝑎1 , 𝑎2 , 𝑎3 , 𝑎4 , 𝑎5 are non negative real numbers such that 𝑎1 + 𝑎2 + 𝑎3 + 2𝑎4 + 2𝑎5 < 1.  
Then 𝑇 has a fixed point 𝑥∗ ∈ 𝑋,  iterative sequence  𝑇𝑛𝑥  converges to the fixed point. If 𝑢 = 𝑇𝑢.  
Then  𝑢, 𝑢 = 𝜃. The fixed point is unique. 

Proof: Choose 𝑥0 ∈ 𝑋. Set 𝑥1 = 𝑇𝑥0,, 𝑥2 = 𝑇𝑥1 = 𝑇2 …… …… . 𝑥𝑛+1 = 𝑇𝑥𝑛 = 𝑇𝑛𝑥0 

Then we have, 

            𝑞(𝑥𝑛 , 𝑥𝑛+1) ≤ 𝑞(𝑇𝑥𝑛−1,𝑇𝑥𝑛 )    ……………………………………………… (3.1.2) 
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                               ≤ 𝑎1𝑞 𝑥𝑛−1, 𝑥𝑛 + 𝑎2𝑞 𝑥𝑛−1 , 𝑇𝑥𝑛−1 + 𝑎3𝑞 𝑥𝑛 , 𝑇𝑥𝑛  

                               +𝑎4[𝑞 𝑥𝑛−1 , 𝑇𝑥𝑛−1 + 𝑞 𝑥𝑛 , 𝑇𝑥𝑛 ]+ 𝑎5[𝑞 𝑥𝑛 , 𝑇𝑥𝑛−1 + 𝑞(𝑥𝑛−1, 𝑇𝑥𝑛 ) 

     = 𝑎1𝑞 𝑥𝑛−1, 𝑥𝑛 + 𝑎2𝑞 𝑥𝑛−1 , 𝑥𝑛 + 𝑎3𝑞 𝑥𝑛 , 𝑥𝑛+1  

                              +𝑎4[𝑞 𝑥𝑛−1, 𝑥𝑛 + 𝑞 𝑥𝑛 , 𝑥𝑛+1 ]+ 𝑎5[𝑞 𝑥𝑛 , 𝑥𝑛 + 𝑞(𝑥𝑛−1 , 𝑥𝑛+1) 

          𝑞(𝑥𝑛 , 𝑥𝑛+1)  ≤  (𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5)𝑞 𝑥𝑛−1, 𝑥𝑛  + (𝑎3 + 𝑎4 + 𝑎5)𝑞 𝑥𝑛 , 𝑥𝑛+1  

     So,𝑞(𝑥𝑛 , 𝑥𝑛+1)  ≤
 (𝑎1+𝑎2+𝑎3+𝑎4+𝑎5)

1−(𝑎3+𝑎4+𝑎5)
𝑞 𝑥𝑛−1, 𝑥𝑛  

                  = ℎ𝑞 𝑥𝑛−1, 𝑥𝑛  , where ℎ =  
 (𝑎1+𝑎2+𝑎3+𝑎4+𝑎5)

1−(𝑎3+𝑎4+𝑎5)
< 1.        …………...(3.1.3) 

Let 𝑚 > 𝑛 ≥ 1. Then it follows that 

            𝑞(𝑥𝑛, 𝑥𝑚 )  ≤ 𝑞 𝑥𝑛,𝑥𝑛+1 + 𝑞 𝑥𝑛+1,𝑥𝑛+2 +………..+𝑞(𝑥𝑛−1,𝑥𝑛) 

                ≤  ℎ𝑛 + ℎ𝑛+1 + ⋯ …… …… … + ℎ𝑛−1 𝑞(𝑥0,𝑥1) 

                              ≤ 
ℎ𝑛

1−ℎ
 𝑞 𝑥0,𝑥1 → ∞, ℎ → ∞.    ……………………………………    .(3.1.4) 

Thus, Lemma 2.10 shows that  𝑥𝑛  is a Cauchy sequence in 𝑋. Since 𝑋 is complete, there exists 𝑥∗ ∈ 𝑋  such 

that 𝑥𝑛 → 𝑥∗. Since 𝑇  is continuous, then 𝑥∗ = lim𝑥𝑛 +1
= 𝑙𝑖𝑚𝑇 𝑥𝑛 = 𝑇(𝑙𝑖𝑚𝑥𝑛) = 𝑇(𝑥∗ ). Therefore, 𝑥∗  is a 

fixed point of 𝑇.Suppose that 𝑢 = 𝑇𝑢.  
Then we have  

   𝑞(𝑢, 𝑢) ≤ 𝑞(𝑇𝑢, 𝑇𝑢) 

                            ≤ 𝑎1𝑞 𝑢, 𝑢 + 𝑎2𝑞 𝑢, 𝑇𝑢 + 𝑎3𝑞 𝑢, 𝑇𝑢 +𝑎4 𝑞 𝑢, 𝑇𝑢 + 𝑞 𝑢, 𝑇𝑢   
                            + 𝑎5[𝑞 𝑢, 𝑇𝑢 + 𝑞(𝑢, 𝑇𝑢) 

                 = (𝑎1 + 𝑎2 + 𝑎3 + 2𝑎4 + 2𝑎5)𝑞(𝑢, 𝑢).   ……………………………… (3.1.5) 

Since  𝑎1 + 𝑎2 + 𝑎3 + 2𝑎4 + 2𝑎5 < 1, Lemma 2.5 shows that 𝑞 𝑢, 𝑢 = 𝜃. Next we prove that the uniqueness 

of the fixed point. Suppose that, there is another fixed point of𝑦∗ of 𝑇, then we have  

              𝑞(𝑥∗ 𝑦∗) ≤ 𝑞(𝑇𝑥∗ , 𝑇𝑦∗ ) 

                            ≤ 𝑎1𝑞 𝑥∗ , 𝑦∗ + 𝑎2𝑞 𝑥∗, 𝑇𝑥∗ + 𝑎3𝑞 𝑦∗, 𝑇𝑦∗ +𝑎4 𝑞 𝑥∗, 𝑇𝑥∗ + 𝑞 𝑦∗, 𝑇𝑦∗   
                            + 𝑎5[𝑞 𝑦∗, 𝑇𝑥∗ + 𝑞(𝑥∗, 𝑇𝑦∗) 

                 = (𝑎1 + 2𝑎5)𝑞(𝑥∗, 𝑦∗). 

               ≤  (𝑎1 + 𝑎2 + 𝑎3 + 2𝑎4 + 2𝑎5) 𝑞(𝑥∗, 𝑦∗). ………………………… (3.1.6) 

Since  (𝑎1 + 𝑎2 + 𝑎3 + 2𝑎4 + 2𝑎5) < 1, then by Lemma 2.5 we have𝑞(𝑥∗, 𝑦∗) = 𝜃and also we have 𝑥∗, 𝑥∗ =
 𝜃. Hence by Lemma 2.10(1), 𝑥∗ = 𝑦∗.Therefore the fixed point is unique. 

Remark3.2  

(1). Put 𝑎4 = 0 and 𝑎4 = 𝑎5 in theorem 3.1, we get the result of theorem 2.1 of Dubey, A. K.et  

       al.[13]. 

(2). If we put 𝑎4 = 0 and 𝑎5 = 0 in theorem 3.1, we get the result of theorem 3.3 of Fadail,et  

      al. [9]. 

(3). If we put 𝑎1 = 𝑎2 =  𝑎3 = 𝑎5 = 0 and 𝑎2 = 𝑎4in theorem 3.1, we get the result of  

       Corollory3.4 of Fadail, et al. [9]. 

 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑. 𝟑: Let (𝑋, 𝑑)be cone metric spaces, 𝑃 be a solid cone and 𝑞 be a c-distance on𝑋. Suppose that   

𝑇: 𝑋 → 𝑋 be continuous and satisfies the contractive condition; 

               𝒒(𝑇𝑥, 𝑇𝑦) ≤ 𝑎1𝑞 𝑥, 𝑦 + 𝑎2[𝑞 𝑥, 𝑇𝑥 + 𝑞 𝑦, 𝑇𝑦 ]+ 𝑎3[𝑞 𝑥, 𝑇𝑦 + 𝑞(𝑦, 𝑇𝑥)] 

         + 𝑎4 𝑞 𝑥, 𝑇𝑥 + 𝑞 𝑥, 𝑦  + 𝑎5 𝑞 𝑦, 𝑇𝑦 + 𝑞 𝑥, 𝑦  ……………… (3.3.1) 

for all 𝑥, 𝑦 ∈ 𝑋, where 𝑎1 , 𝑎2 , 𝑎3 , 𝑎4 , 𝑎5 are non negative real numbers such that 𝑎1 + 2𝑎2 + 2𝑎3 + 2𝑎4 + 2𝑎5 <
1.   Then 𝑇 has a fixed point 𝑥∗ ∈ 𝑋,  iterative sequence  𝑇𝑛𝑥  converges to the fixed point. If 𝑢 = 𝑇𝑢.  
Then  𝑢, 𝑢 = 𝜃. The fixed point is unique. 

Proof: Choose 𝑥0 ∈ 𝑋. Set 𝑥1 = 𝑇𝑥0,, 𝑥2 = 𝑇𝑥1 = 𝑇2 …… …… . 𝑥𝑛+1 = 𝑇𝑥𝑛 = 𝑇𝑛𝑥0 

Then we have, 

             𝑞(𝑥𝑛 , 𝑥𝑛+1) ≤ 𝑞(𝑇𝑥𝑛−1,𝑇𝑥𝑛 )    ……………………………………………… (3.3.2) 

                                ≤ 𝑎1𝑞 𝑥𝑛−1, 𝑥𝑛 + 𝑎2[𝑞 𝑥𝑛−1 , 𝑇𝑥𝑛−1 + 𝑞 𝑥𝑛 , 𝑇𝑥𝑛 ] 
                                +𝑎3[𝑞 𝑥𝑛−1 , 𝑇𝑥𝑛 + 𝑞 𝑥𝑛 , 𝑇𝑥𝑛−1 ]+ 𝑎4[𝑞 𝑥𝑛−1 , 𝑇𝑥𝑛−1 + 𝑞 𝑥𝑛−1, 𝑥𝑛 ] 
     + 𝑎5[𝑞 𝑥𝑛 , 𝑇𝑥𝑛 + 𝑞(𝑥𝑛 , 𝑥𝑛 )] 

                   = 𝑎1𝑞 𝑥𝑛−1 , 𝑥𝑛 + 𝑎2[𝑞 𝑥𝑛−1, 𝑥𝑛 + 𝑞 𝑥𝑛 , 𝑥𝑛+1 ] 
                                +𝑎3[𝑞 𝑥𝑛−1 , 𝑥𝑛+1 + 𝑞 𝑥𝑛 , 𝑥𝑛 ]+ 𝑎4[𝑞 𝑥𝑛−1 , 𝑥𝑛 + 𝑞 𝑥𝑛−1 , 𝑥𝑛 ] 
        + 𝑎5[𝑞 𝑥𝑛 , 𝑥𝑛+1 + 𝑞 𝑥𝑛−1 , 𝑥𝑛 ]  
         𝑞(𝑥𝑛 , 𝑥𝑛+1)  ≤  (𝑎1 + 𝑎2 + 𝑎3 + 2𝑎4 + 𝑎5)𝑞 𝑥𝑛−1 , 𝑥𝑛  + (𝑎2 + 𝑎3 + 𝑎5)𝑞 𝑥𝑛 , 𝑥𝑛+1  

    So,𝑞(𝑥𝑛 , 𝑥𝑛+1)  ≤
 (𝑎1+𝑎2+𝑎3+2𝑎4+𝑎5)

1−(𝑎3+𝑎4+𝑎5)
𝑞 𝑥𝑛−1, 𝑥𝑛  

                 = ℎ𝑞 𝑥𝑛−1, 𝑥𝑛  , where ℎ =  
 (𝑎1+𝑎2+𝑎3+𝑎4+𝑎5)

1−(𝑎3+𝑎4+𝑎5)
< 1.        …………...(3.3.3) 
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Let 𝑚 > 𝑛 ≥ 1. Then it follows that 

           𝑞(𝑥𝑛, 𝑥𝑚 )  ≤ 𝑞 𝑥𝑛,𝑥𝑛+1 + 𝑞 𝑥𝑛+1,𝑥𝑛+2 +………..+𝑞(𝑥𝑛−1,𝑥𝑛 ) 

   ≤  ℎ𝑛 + ℎ𝑛+1 + ⋯… …… …… + ℎ𝑛−1 𝑞(𝑥0,𝑥1) 

                            ≤ 
ℎ𝑛

1−ℎ
 𝑞 𝑥0,𝑥1 → ∞, ℎ → ∞.    ……………………………………    .(3.3.4) 

Thus, Lemma 2.10 shows that  𝑥𝑛  is a Cauchy sequence in 𝑋. Since 𝑋 is complete, there exists 𝑥∗ ∈ 𝑋  such 

that 𝑥𝑛 → 𝑥∗. Since 𝑇  is continuous, then 𝑥∗ = lim𝑥𝑛 +1
= 𝑙𝑖𝑚𝑇 𝑥𝑛 = 𝑇(𝑙𝑖𝑚𝑥𝑛) = 𝑇(𝑥∗ ). Therefore, 𝑥∗  is a 

fixed point of 𝑇.Suppose that 𝑢 = 𝑇𝑢.  
Then we have  

   𝑞(𝑢, 𝑢) ≤ 𝑞(𝑇𝑢, 𝑇𝑢) 

                           ≤ 𝑎1𝑞 𝑢, 𝑢 + 𝑎2[𝑞 𝑢, 𝑇𝑢 + 𝑞 𝑢, 𝑇𝑢 ]+𝑎3 𝑞 𝑢, 𝑇𝑢 + 𝑞 𝑢, 𝑇𝑢   
                           + 𝑎4 𝑞 𝑢, 𝑇𝑢 + 𝑞 𝑢, 𝑢  + 𝑎5[𝑞 𝑢, 𝑇𝑢 + 𝑞 𝑢, 𝑢 ] 
                = [(𝑎1 + 2𝑎2 + 2𝑎3 + 2𝑎4 + 2𝑎5)]𝑞(𝑢, 𝑢)   …………………… (3.3.5) 

Since  𝑎1 + 2𝑎2 + 2𝑎3 + 2𝑎4 + 2𝑎5 < 1,  Lemma 2.5 shows that 𝑞 𝑢, 𝑢 = 𝜃 . Next we prove that the 

uniqueness of the fixed point. Suppose that, there is another fixed point of𝑦∗ of 𝑇, then we have  

             𝑞(𝑥∗ 𝑦∗) ≤ 𝑞(𝑇𝑥∗ , 𝑇𝑦∗ ) 

                           ≤ 𝑎1𝑞 𝑥∗ , 𝑦∗ + 𝑎2[𝑞 𝑥∗, 𝑇𝑥∗ + 𝑞 𝑦∗, 𝑇𝑦∗ ]+𝑎3 𝑞 𝑥∗, 𝑇𝑦∗ + 𝑞 𝑦∗, 𝑇𝑥∗   
                           + 𝑎4[𝑞 𝑥∗, 𝑇𝑥∗ + 𝑞(𝑥∗, 𝑦∗)]+ 𝑎5[𝑞 𝑦∗, 𝑇𝑦∗ + 𝑞(𝑥∗, 𝑦∗)] 

                            = (𝑎1 + 2𝑎3 + 𝑎4 + 𝑎5)𝑞(𝑥∗, 𝑦∗). 

                           ≤  (𝑎1 + 𝑎2 + 𝑎3 + 2𝑎4 + 2𝑎5) 𝑞(𝑥∗, 𝑦∗). ………………………… (3.3.6) 

Since  (𝑎1 + 𝑎2 + 𝑎3 + 2𝑎4 + 2𝑎5) < 1, then by Lemma 2.5 we have𝑞(𝑥∗, 𝑦∗) = 𝜃and also we have 𝑥∗, 𝑥∗ =
 𝜃. Hence by Lemma 2.10(1), 𝑥∗ = 𝑦∗.Therefore the fixed point is unique. 

Remark3.2  

(1). Put 𝑎4 = 0 and 𝑎4 = 𝑎5 in theorem 3.2, we get the result of theorem 2.2of Dubey, A. K.et  

       al.[13]. 

 

IV. Conclusion. 
In this attempt, we prove unique  fixed point results in cone metric spaces with corollaries. These 

results generalizes and improves the recent results of Dubey, A.K. et al. [13] in the sense that employing c-

distances and in contractive conditions, which extends the further scope of our results. 
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