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Abstract:  A conservation law states that a particular measurable property of an isolated physical system does 

not change as the system evolves. In particular, any change in such a conserved quantity can only occur as a 

result of an "influx" or an "outflow" of this quantity into or out of the system. In this paper, we study a class of 

first order PDEs that may serve as mathematical descriptions of physical conservation laws, such as the laws of 

gas dynamics and the laws of electromagnetism. We show how the viscosity method, known as the vanishing 

viscosity method, can be used to construct the entropy solution of the scalar conservation law as the limit of 

solutions of the parabolic equations with viscous term.  
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I. Introduction 
The mathematical models for real-world problems occurring in Physics, Chemistry, Economics, 

Engineering and Biology are usually expressed in the form of partial differential equations (PDEs). However, it 

is well known that an initial value problem for a nonlinear PDE may fail to have a classical solution on the 

whole domain of definition of the equation. In fact, even a linear equation without initial conditions may fail to 

have a solution, as shown by the following example due to Lewy [68]. Lewy showed that there are C
-smooth 

functions f for which the equation  

( ) =A u f  

Where 
3( ) = 2 ( ) ( , , )x y tA u u iu i x iy u x y t   R  

has no solution in 'D -distributions in any neighborhood of any point.  

In this paper, we study a class of first order PDEs that may serve as mathematical descriptions of 

physical conservation laws, such as the laws of gas dynamics and the laws of electromagnetism. A conservation 

law states that a particular measurable property of an isolated physical system does not change as the system 

evolves. In particular, any change in such a conserved quantity can only occur as a result of an "influx" or an 

"outflow" of this quantity into or out of the system. 

The exact mathematical model for a single conservation law in one spatial dimension is given by the first order 

PDE  

                             ( ( )) = 0.t xu f u   (1) 

 Here u  is the conserved quantity while f  is the flux. Integrating equation (1) over some interval [ , ]a b  leads 

to  

( , ) = ( , )
b b

t
a a

d
u x t dx u x t dx

dt   = ( ( , ))
b

x
a

f u x t dx = ( ( , )) ( ( , ))f u x a f u x b  

             = [ ] [ ]in flow at a out flow at b  

 In other word, the quantity u is neither created nor destroyed. In particular, the total amount of u contained in 

the interval[ , ]a b can only change due to the flow of u across the two endpoints. In general, if 1= ( , )ku u u  

is a vector of conserved quantities, depending on time t  and n  independent variables 1, , ,nx x  then the flux 

of u  out of any bounded region 
n R  is given by  
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 ( ) .F u ndS


  

 Here : n n kF R M  is the flux, n  denotes the outward unit normal to   and dS  the surface element on 

.  Since any change in u  in such a domain   over time can only be due to the 'in flow' or 'out flow' of u  

into or out of ,  it follows that  

  = ( ) .
d

udx F u ndS
dt  

                                                         (2) 

 Note that the integral on the right of (2) measures the flow out of ,  hence the minus sign. Assuming that F , 

u  and   are sufficiently smooth, we may apply the Divergence Theorem to equation (2) so that  

 = ( ) .
d

udx F u dx
dt  

    (3) 

 Taking the derivatives with respect to t  under the integral sign we obtain  

 [ ( )] = 0.tu F u dx


  (4) 

 Assuming that u  and F  are sufficiently smooth, the Mean Value Theorem implies the differential form of 

conservation laws, which is given by  

 ( ) = 0.tu F u  (5) 

This report is a survey of the extensive literature on conservation laws. We shall be concerned mainly with the 

Cauchy problems for strictly hyperbolic systems in one spatial dimension. That is,  

 ( ( )) = 0 i (0, )t xu F u n  R  (6) 

 0( ,0) = ( ) ,u x u x xR  (7) 

1

0 0 0= ( , , )ku u u  is the initial value of .u  If ( ) = ( )uA u F uJ is the n n Jacobian matrix of the function F  

at the point ,u  the system (6) can be written in the form  

 ( ) = 0.t xu A u u  (8) 

   We say that a system of conservation laws is strictly hyperbolic if the matrix ( )A u  has n  real, distinct 

eigenvalues, say  

 1( ) < < ( ).nu u   (9) 

 for every .u  

 

1.1  Examples of Conservation laws 

As mentioned, equation of conservation laws such as (6) may appear as mathematical models for 

certain real-world phenomena. In particular, such equations appears as precise mathematical description of 

physical conservation laws. In this section we mention a few examples of conservation laws that arise in 

applications.  

 

Example 1.1: [Traffic Flow]  Let ( , )u x t  denote the density of cars on a highway at point x  at time .t  For 

example, u  may be the number of cars per kilometre. Assume that u  is continuous and that the speed s  of 

cars depend only on their density, that is, = ( ).s s u  We also assume that the speed s  of the cars decreases as 

the density u  increases that is < 0.
ds

du
 Given any two points a  and b  on the highway, the number of cars 

between a  and b  therefore varies according to the law  

 ( , ) = [ ( ) ] .
b b

x
a a

d
u x t dx s u u dx

dt
   (10) 

 Since (10) holds for all ,a bR  this leads to the conservation law  

 [ ( ) ] = 0t xu s u u  (11) 

 Here the flux is given by ( ) = ( ) .f u s u u  In practice the flux f  is often taken to be  



Vanishing Viscosity Method And Nonlinear Hyperbolic Conservation Laws 

DOI: 10.9790/5728-1403036082                                 www.iosrjournals.org                                            62 | Page 

 2
1 2( ) = (ln( )) , 0 < < ,

a
f u a u u a

u
 

for suitable constants 1a  and 2.a   

Example 1.2 [The p -system]  The p  - system is a simple model for isentropic (constant entropy) gas 

dynamics. If v  is the specific volume and u  the velocity of the gas, then the equations are given as  

 = 0t xv u  (12) 

 ( ( )) = 0t xu p v  (13) 

 The flux p  is is given as  

 ( ) = , 0, 1p v kv k     (14) 

 where k  and   are constants. In applications   is chosen such that [1,3]  for most gases; in particular 

7
=

5
  for air. In the region > 0,v  the system is strictly hyperbolic. Indeed  

 
0 1

= =
( ) 0

A F
p v

 
  

J  

 has real distinct eigenvalues = ( ).p v    

Differentiating equation (12) with respect to t  and equation (13) with respect to x  gives  

 ( ) .tt xxv p v  (15) 

 Approximating p  by a linear function 
2

0 0( ) ( ) ( )p v p v c v v    in a neighborhood of a given state 0 ,v  

equation (15) reduces to the wave equation  

 
2 ,tt xxv c v  

where c  is a constant.   

Example 1.3: [Gas dynamics]  The Euler equations for the dynamics of a compressible, non-viscous gas is 

given by  

 = 0 ( )t xv u conservation of mass  

 = 0 ( )t xu p conservation of momentum  

 

2

( ) ( ) = 0 ( ).
2

t x

u
pu conservation of energy    

 Here 
1= ,v  

 where   is the density and v  is the specific volume. The velocity in the gas is ,u  while   is 

the internal energy and p  the pressure. The system is closed by an additional equation = ( , )p p v  called the 

equation of state, which depend on the particular gas under consideration.  

 

II. Scalar Conservation Laws 
In this section we consider the initial value problem for scalar conservation laws in one spatial dimension  

 ( ( )) = 0 i (0, )t xu F u n  R  (16) 

 0( ,0) = ( ) .u x u x xR  (17) 

 Here : [0, )u   R R  is the unknown conserved quantity, ( )F C R  is the flux and 0 :u R R  is 

the initial condition. 

When solving the Cauchy problem (16) - (17), one is typically confronted with the following difficulties: Even 

in the case of a C
 - smooth initial condition 0u , the initial value problem (16) - (17) may not have a classical 

solution on the whole domain of definition of the equation (16). Indeed solutions of (16) - (17) may develop 

discontinuities after a finite time.  

 

2.1  Classical Solutions 

 A classical solution of the Cauchy problem (16) - (17) is a continuously differentiable function satisfying 

equation (16) - (17). One can obtain the classical solution of equation (16) - (17) by the method of 
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characteristics. To do this, let the flux function ( )F C R  be given, and assume that equation (16) - (17) is 

genuinely nonlinear. That is  

 ( ) > 0 f .F u or all u  (18) 

 If 
1( [0, ))u C  R  is a solution of the Cauchy problem, then we define the characteristic curves in 

[0, ) R  as the level curves of .u  That is, for any yR  the characteristic curve through the point ( ,0)y  

consists of the set of points where 0( , ) = ( ,0) = ( ).u x t u y u y  At every point ( , )x t  on the characteristic 

curve through ( ,0),y  (16) and (17) imply that  

 0( , ) ( ( )),1 = 0.u x t F u y     

Therefore  

 01, ( ( ))F u y    

is tangent to the curve at every point. So that, the characteristic through ( ,0)y  is a straight line with equation  

 0( ) = ( ( )).x t y tF u y  

Since  

 0( , ) = ( )u x t u y  

for every point ( , )x t  on the curve, we may express the solution of (16) to (17)  implicitly  as  

 0= ( ( )).u u x tF u  

The Implicit Function Theorem may now be used to solve for .u  The classical solution of (16) - (17) found 

above is unique, but may fail to exist for all > 0t  as the following theorem shows. 

 

 

Theorem 2.1[90, Proposition 2.1.1]. Assume that 
1

0 ( ),u C R  together with its derivative is bounded in .R  

Set  

 

0
*

1

0

, i ( )

=
(inf ( )) , .

f F u is an increasing function

T d
F u otherwise

dx










 (19) 

 Then (16) - (17) has a unique solution 
1 *( (0, )).u C T R  For 

*> ,T T  (16) - (17) has no classical 

solutions on [0, ).TR      

Example 2.1: Consider the initial value problem for Burger's equation  

 

2

( ) = 0 i (0, )
2

t x

u
u n  R  (20) 

 0( ,0) = ( ) .u x u x xR  (21) 

 Using the method of characteristics discussed above we see that for a 
1C -smooth function 0 ,u  a classical 

solution u  is given by the implicit equation  

 0( , ) = ( ( , )), 0, .u x t u x tu x t t x  R  (22) 

 By the Implicit Function Theorem, we can obtain ( , )u y s  from (22) for y  and s  in suitable neighborhoods 

of x  and t  respectively, whenever  

 01 ( ( , )) 0.tu x tu x t    (23) 

 If 0 ( ) 0u x   for all ,xR  then condition (23) is clearly satisfied for all ( , ),x t  so that the Cauchy problem 

(20) - (21) has a unique solution on (0, ). R  However, if for some point 0x R   

 0 0( ) < 0,u x  

then for certain values of > 0,t  the condition (23) may fail, irrespective of the domain or degree of smoothness 

of 0 .u  This violation of condition (23) implies that the classical solution u  fails to exists for the respective 

values of t  and .x  Thus, for certain xR  the solution ( , )u x t  does not exits for sufficiently large > 0.t  
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If we take  

 0

1 i 0

( ) = 1 i 0 1

0 i 1.

f x

u x x f x

f x



  

 

 (24) 

then the unique classical solution of (20) - (21) is given by  

 

1 i <

1
( , ) = i 1, < 1

1

0 i 1.

f x t

x
u x t f t x t

t

f x





 




 

Thus the classical solution of (20) - (21), with 0u  as in (24), breaks down at =1.t  W  

It should be noted that the breakdown of the solution ( , )u x t  at =1t  for initial data 0u  given in (24) is not 

due to the lack of smoothness of 0 ,u  but to the fact that 0 = 1 < 0u   for [0,1].x  In view of the 

nonexistence of global classical solutions, one is forced to consider suitable generalized solutions of (16) - (17). 

  

2.2   Weak solutions and non-uniqueness 

One well known and much studied generalized formulation of (16) - (17) is the weak form of (16) - (17). Let us 

assume temporarily that u  is a smooth solution of (16) - (17). The idea is to multiply equation (16) with a 

smooth function   and integrate by parts. More precisely, let   be a test function, that is,  

 : [0, )   R R  (25) 

 has compact support and is C
 - smooth. We denote the set of all such test functions by 0 ( [0, )).C  R  

Multiply equation (16) by   and integrate by parts to get  

0
0 = ( ( ( )) )t xu F u dxdt

 


  =0

0 0
= ( ) | .t x tu dxdt F u dxdt u  

    

  
        

 In view of the initial condition 0 ,u we obtain  

 0 =0
0

( ) | = 0.t x tu F u dxdt u dx  
  

 
     (26) 

 In contradistinction with equations (16) - (17), equation (26) does not involve any derivative of ,u  thus 

equation (26) make sense not only for smooth functions, but also for bounded and measurable functions u  and 

0 .u  We thus have the following definition of a weak solution of (16) -(17).  

Definition 2.2: We say that ( (0, ))u L  R  is a  weak solution of (16)-(17) if the equation (26) holds for 

each test function 0 ( [0, )).C   R   

If u  is a weak solution and 
1( (0, ))u C  R  then u satisfies (16) - (17). That is, a regular weak solution is 

also a classical solution of equation (16) - (17). Thus the concept of weak solution of (16) - (17) is a 

generalization of the classical notion of solution. 

Remark: Equation (16) can also be written in the form:  

 ( ) = 0, w ( ) = ( ).t xu a u u ith a u F u  (27) 

 At the level of classical solutions, equations (16) and (27) are equivalent. That is, 
1( [0, ))u C  R  is a 

solution of (16) if and only if u  is a solution of (27). However, if u  has a discontinuity, then the left hand side 

of equation (27) may contain a product of a discontinuous function ( )a u  with the distributional derivative .xu  

Such a product is typically not well defined, see for instance  [88]. Working with the equation in the form of 

(16) allows for the consideration of weak solutions as defined in Definition 2.2. 

One difficulty that arises in the study of weak solutions of (16) - (17) is related to the uniqueness of such 

solutions. In contradistinction with classical solution of (16) - (17), weak solutions are not unique as shown in 

the following example:     

Example 2.3 Consider the Burgers equation (20) with the initial data  
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0

0 i < 0
( ) =

1 i > 0.

f x
u x

f x





 (28) 

 For every [0,1]   the function  

 

0 i <
2

i
( , ) = 2

i

1 i >

f x t

f t x t
u x t

x
f t x t

t

f x t






 






  



 



 (29) 

 is a weak solution of (20) - (21) with 0u  as in (28). 

The underlying physical laws that are modeled as mathematical conservation laws are deterministic in 

nature. That is, the future state of a system that evolves according to (16) is completely determined by the initial 

condition (17). From this point of view, the non uniqueness of weak solutions of (16) - (17), as demonstrated in 

Example 2.2, is unacceptable. In particular, in the context of physical systems that may be modeled through (16) 

- (17), the non uniqueness of weak solutions of the Cauchy problem may be interpreted as follows: The state of 

the system at time > 0t  is not completely determined by the weak formulation of (16) - (17) alone. Therefore 

further additional condition, motivated by physical consideration, must be imposed on the weak solutions of 

(16) - (17) in order to obtain the unique solution that describes the evolution of the underlying physical system. 

 

 
Figure  1: 

  

In this regard, let u  be a weak solution of (16) - (17). Assume that u  has continuous first order partial 

derivatives everywhere in the open set [0, )  R  except on a smooth curve C  in   with equation 

= ( ).x x t  That is u  has a jump discontinuity across .C  Let l  and r  be the parts of   on the left and on 

the right of curve C  respectively, see Figure 1. 

Furthermore, since u  is smooth on either side of the curve ,C  it is smooth in l  and .r  u  is a weak 

solution of (16) - (17), we have  

 ( ( )) = 0,t xu F u dxdt 


   (30) 

 for all 0 ( ).C    Thus, if s ,rupp    then  

 0 = ( ( )) = [ ( ( )) ] .t x t x

r

u F u dxdt u F u dxdt  
 

       (31) 

 which implies  

 ( ( )) = 0 i .t x ru F u n   (32) 

 Similarly,  

 ( ( )) = 0 i .t x lu F u n   (33) 

 From (30) we get  
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 0 = ( ) = ( ) ( ) .t x t x t x

l r

u F u dxdt u F u dxdt u F u dxdt     
  

          (34) 

Now using the fact that u  is 
1C  in r  and Green's Theorem we find that  

( ( ) ) = [( ) ( ( ) ) ]t x t x

r r

u F u dxdt u F u dxdt   
 

     = ( ) ( ( ) )

r

u dx F u dt 


   

              = ( ) ( ( ) ) ( ) ( ( ) )u dx F u dt u dx F u dt   


     
C

 

 Since = 0  on ,  then denoting by ru  the right limit of u  on the curve ,C  we have  

 ( ( ) ) = ( ) ( ( ) ) .t x r r

r

u F u dxdt u dx F u dt   


    
C

 (35) 

 Similarly,  

 ( ( ) ) = ( ) ( ( ) ) .t x l l

l

u F u dxdt u dx F u dt   


     
C

 (36) 

 Here, lu  is the left limit of u  on the curve .C  Substituting equations (35) and (36) into equation (34) we have  

0 = ( ) ( ( ) ( ))l r l ru u dx F u F u dt    
C

= [ ( ) ( ( ) ( )) ]l r l ru u dx F u F u dt    
C

 (37) 

 which further implies  

 [ ( ) ( ( ) ( )) ] = 0.l r l ru u dx F u F u dt     

This implies  

 ( ) = ( ( ) ( ))l r l r

dx
u u F u F u

dt
   

in   along the curve ,C  which may be expressed as  

 ( ( ) ( )) = ( ).l r l rF u F u x u u   

We write this as  

 [[ ]] = [[ ( )]],u F u  (38) 

 where [[ ]] = l ru u u  is the jump in u  across the curve ,C  [[ ( )]] = ( ) ( )l rF u F u F u  is the jump in 

( )F u  and =
dx

dt
  is the speed of curve .C  Relation (38) is known as the  jump condition.   

Example 2.4  Applying the jump condition to the Burgers' equation (20) where 
21

( ) = ,
2

F u u  we find that the 

speed of propagation of the discontinuities is 
1

= = ( ).
2

l r

dx
u u

dt
   Again, applying the jump condition to 

the solutions u  of Example 2.2, we see that only the solution for which 
1

=
2

  satisfies the jump condition. 

A natural question is whether this is the unique solution of equation (27) with initial condition (28) that satisfies 

equation (38). More generally, can there be more than one weak solution of the Cauchy problem (16) - (17) 

satisfying the jump condition (38)? To give an answer to this question we consider the following example.    

Example 2.5: Consider the initial value problem of the Burgers equation (20) - (21) with initial condition  

 
0

0 i < 0
( ) =

1 i 0.

f x
u x

f x





 (39) 

 For every (0,1),  the function u  defined as  
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0 i < ,
2

(1 )
( , ) = i <

2 2

(1 )
1 i ,

2

t
f x

t t
u x t f x

t
f x





 

















 

 is a weak solution of the initial value problem. By the jump condition, =
2


  and 

(1 )
=

2





 along the 

lines of discontinuity =
2

t
x


 and 

(1 )
=

2

t
x


 respectively for each (0,1).  Thus, the jump condition 

alone is not sufficient to determine the unique, physically relevant solution of the Cauchy problem (16) - (17). 

 

2.3   Admissibility conditions and the Entropy Condition 
 From Example 1, it is clear that the class of weak solutions may include various solutions which we are not 

physically relevant or desirable. In order to single out a  unique solution that is of physical and/or mathematical 

relevance, suitable additional requirements, which we shall call  admissibility conditions, are imposed on such 

solutions, see for instance  [38],  [64]. These admissibility conditions, such as  entropy conditions, are typically 

motivated by some physical considerations. In the literature, various admissibility conditions have been 

introduced. In this section, we introduce some of these conditions.The main results in which these admissibility 

conditions are employed to single out the unique, physically relevant solution to the Cauchy problem (16) -(17) 

is also discussed. 

 

2.3.1   Admissibility condition 1 (The Oleinik inequality)  

  Oleinik  [82] introduced the Lipschitz (with respect to x ) condition for a genuinely nonlinear single 

conservation law (16) given by  

 
( , ) ( , )

. > 0, > 0.
u x a t u x t E

a t
a t

 
  (40) 

 Here 
1

=
inf

E
F 

 is independent of , , a .x t nd a  Using the Lax-Friedreich finite difference scheme, Oleinik 

showed that if F  is convex (which implies > 0F ), there exists precisely one weak solution of the Cauchy 

problem (16) - (17) satisfying (40). Note that the weak solutions of (16) - (17) that satisfies (40) will, for > 0t  

have x -difference quotient bounded from above. Note that as t  tends to zero, the upper bound may tend to plus 

infinity. 

The Oleinik inequality (40) was motivated by the fact that if 0 0,u   a classical solution u  of (16) - (17) exists 

with  

 
0

0 0

= .
1 ( )

x

u
u

tF u u



 
 

So that  

 

0

1
, > 0 > 0

( )
x

K
u t for some constant K

tF u t
 


 

which is an infinitesimal version of the Oleinik inequality (40). It is therefore reasonable for a solution of the 

Cauchy problem (16) - (17) to satisfy the inequality (40). However, typical nonclassical weak solutions of the 

Cauchy problem (16)-(17) may not have usual partial derivatives at all points ( , ).x t  To avoid the derivatives of 

weak solution and still show that u  satisfies (40), one make use of finite difference scheme. The basic idea of 

the finite difference scheme in PDE is to replace derivatives with appropriate finite differences. The main result, 

concerning solutions satisfying (40), which is also found in  [92], is given below.  

Theorem 2.6 [ [92], Theorem 16.1]  Let 0 ( ),u L R  and let 
2 ( )F C R  with > 0F  on 

0{ :| | }.u u u P P  Then there exists exactly one weak solution u  of (16)-(17) satisfying the following: 

there exists a constant > 0,E  depending only on ,M   and ,A  such that for every > 0a , > 0,t  and 
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,xR  the inequality  

 
( , ) ( , )

< .
u x a t u x t E

a t

 
 (41) 

 holds. Here, 
0 0, = min{ ( ) :| | }LM u F u u u 


 P P P P  and 0= max{| ( ) |:| | }.A F u u u 

 P P  

Furthermore,   

    1.  | ( , ) | , ( , ) [0, ).u x t M x t   R   

    2.  u  is stable and depends continuously on 0u  in the following sense: If 0 0 1, ( ) ( )u v L L R R  with 

0 0 ,v u P P P P  and v  is the solution of (16) with initial data 0v  satisfying (41), then for every 1 2, ,x x R  

with 1 2<x x  and every > 0t ,  

 
2 2

0 0
1 1

| ( , ) ( , ) | | ( ) ( ) | .
x x At

x x At
u x t v x t dx u x v x dx




     (42) 

  

Remark 2.7 (i) An immediate consequence of (41) is that for any > 0,t  the solution ( , )u t  is of locally 

bounded total variation, that is ,locu BV  which means the total variation of u  is bounded in every compact 

subset of [0, ). R  To see this, let us define a function  

 ( , ) = ( , ) .
E

v x t u x t x
t

  

Then if > 0a  (41) implies  

 ( , ) ( , ) = ( , ) ( , ) < 0.
E

v x a t v x t u x a t u x t a
t

      

That is, v  is a decreasing function and thus has locally bounded total variation. Hence, u  is of locally bounded 

total variation since the function cx  is also of locally bounded total variation. Thus even though 0u  is only 

,L  the solution ( , )u t  is fairly regular. In fact, we can conclude that it has at most a countable number of 

jump discontinuities, and it is differentiable almost everywhere. 

(ii) Oleinik result, Theorem 2.3.1, is limited to single conservation laws in one spatial dimension. An analogue 

of the Oleinik inequality (41) has not been found for systems of conservation laws. 

(iii) The Oleinik inequality (41) implies that >l ru u  as we move across a curve of discontinuity. To see this, 

note that the function ( , ) = ( , )
E

v x t u x t x
t

  is bounded in a domain 1 2( , ) [0, )x x    containing the line of 

discontinuity. Then v  has left and right limits at each point since it is decreasing as noted earlier. Consequently 

( , )u x t  has left and right limits at each point. For any point c  on the line of discontinuity we have  

= ( , ) ( , )lim lim lim limr l
x c x c x c x c

E E
u u u x t x u x t x

t t      

    = ( , ) ( , )lim lim
x c x c

v x t v x t
  

 < 0.  

 Which implies >l ru u  as we move across a curve of discontinuity. 

 

2.3.2   Admissibility condition 2 (The Lax inequality) 

 The inequality  

 ( ) > > ( ) f > 0.l rF u F u or all t   (43) 

 was introduced by Lax  [63]. The inequality (43) implies that the characteristics starting on either sides of the 

curve of discontinuity should intersect each other on the curve. At this point of intersection, u  has two values 

which is impossible, so that there is a jump discontinuity at that point. Indeed, if 0 < 0,u  there are two points 

1 2,y y R  such that 1 2<y y  and 1 0 1 0 2 2= ( ) > ( ) = .u u y u y u  If (43) holds then 

0 1 0 2( ( )) > ( ( ))F u y F u y   so that the characteristics drawn from points 1( ,0)y  and 2( ,0)y  intersect at the 
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point when 
2 1

0 1 0 2

=
( ( )) ( ( ))

y y
t

F u y F u y



 
 with u  having values 1u  and 2u  at that point. 

The Lax inequality can be obtain from the Jump condition. To see this, let F  be a convex function, then 

> 0F  which implies F  is increasing so that if > ,l ru u  then  

 ( ) > ( ).l rF u F u   

 By the Mean Value Theorem there exists [ , ]r lu u   such that  

 
( ) ( )

( ) = = .l r

l r

F u F u
F

u u
 





 

Since F  is increasing we have that  

 ( ) > ( ) > ( ),l rF u F F u    

which leads to the Lax inequality (43). 

If all the discontinuities of a weak solution satisfy condition (43), then no characteristics drawn will intersects 

the curve of discontinuity, see Figure 2. A discontinuity satisfying the jump condition (38) and the Lax 

inequality (43) is called a  shock. A weak solution having only shocks as discontinuity is called shock wave 

solution. Lax showed that there is exactly one shock wave solution u  of the equations (16) - (17), which is 

expressed explicitly as  

 
1

2

i < ,
( , ) =

i > ,

u f x t
u x t

u fx t









 

 if we take the initial value to be  

 
1

0

2

i < 0,
( ) =

i > 0.

u f x
u x

u fx





 

 Here, 1 2,u u R  are the left and right initial states with 1 2> .u u  The jump condition 

1 2 1 2( ) = ( ) ( )u u F u F u    and the Lax condition 1 2( ) > > ( )F u F u   are satisfied. 

 

 

 
Figure  2: 

  

Example 2.8 [The Riemann Problem]  The Riemann problem is the Cauchy problem  

 ( ( )) = 0 i (0, )t xu F u n  R  

 0

i < 0
( ,0) = ( ) =

i > 0.

l

r

u f x
u x u x

u f x





 

 Here, ,l ru u R  are the left and right initial states of .u  Note that .l ru u  If >l ru u  the shock wave 

solution to the Riemann's problem is  

 
i < ,

( , ) :=
i > .

l

r

u f x t
u x t

u f x t









 

 

The main result by Lax is given below    



Vanishing Viscosity Method And Nonlinear Hyperbolic Conservation Laws 

DOI: 10.9790/5728-1403036082                                 www.iosrjournals.org                                            70 | Page 

Theorem 2.9 Let :F R R  be a 
2C - smooth and convex function. If 0 ( )u L R  then there exists a 

weak solution u  of the Cauchy problem (16) - (17) given by the formula  

 
0( , ) = f > 0 a . .

x y
u x t b or each t nd a e x

t

 
 

 
R  (44) 

 where 0 0= ( , )y y x t  is the the value of y  that minimizes  

 0( , , ) = ( ) ( ).
x y

K x y t U y tG
t


  

Here the function ( )b s  is defined as 
1( ) = ( ( ))b s F s   and ( )G s  is defined as the solution of  

 
( )

= ( ), ( ) = 0, w = (0),
dG s

b s G c ith c F
ds

  

and  

 0 0( ) = ( ) .
y

U y u s ds
  

 The discontinuity of the solution u  constructed in Theorem 2 are shocks, which means u  satisfied the Lax 

inequality (43) and has the semi group property. The semigroup property means that if 1( , )u x t  is taken as a 

new initial value, the solution 2( , )u x t  at 2 1>t t  corresponding to the initial condition 1( , )u x t  equals 

1 2( , ).u x t t    Remark 2.10 (i) For fixed > 0,t  the function 0 ( , )y x t  is an increasing function of ,x  see  

[64, Lemma 3.3]. 

(ii)The shock wave solution constructed in Theorem 2 satisfies the Oleinik inequality (40). Indeed, since b  and 

( , )y x t  are increasing functions, then for 2 1>x x  we have that  

1 0 1
1

( , )
( , ) =

x y x t
u x t b

t

 
 
 

1 0 2( , )x y x t
b

t

 
  

 

2 0 2 2 1
( , )x y x t x x

b
t t


  

  
 

2 1
2= ( , ) ;

x x
u x t

t



  

 which implies  

 
2 1

2 1

( , ) ( , )
,

u x t u x t

x x t





 

 here > 0  is a Lipschitz constant for the function .b   

A generalized form of the Lax condition (43) was given by Oleinik  [83]. For 0 1,    

 ( (1 ) ) ( ) (1 ) ( ) i > ,r l r l l rF u u F u F u f u u         (45) 

 ( (1 ) ) ( ) (1 ) ( ) i < .r l r l l rF u u F u F u f u u         (46) 

The inequality (45) implies that F  is convex. Geometrically this means that the graph of F  over the interval 

[ , ]r lu u  lies below the chord of F  drawn from the point ( , ( ))l lu F u  to the point ( , ( )).r ru F u  On the other 

hand, the inequality (46) implies that F  is concave, which means that the graph of F  over the interval 

[ , ]l ru u  lies above the chord of F  drawn from the point ( , ( ))l lu F u  to the point ( , ( )).r ru F u  

We now discuss the relationship between the Lax inequality (43) and the generalized Oleinik inequality (45). To 

start with, the convexity of F  implies that the inequality (45) is equivalent to  

 

* *

* *

( ) ( ) ( ) ( )
.l r

l r

F u F u F u F u

u u u u

 


 
 (47) 

 for every 
* = (1 ) ,r lu u u    with 0 < <1.  Combining the inequality (47) with the Mean Value 

Theorem, we have that there exists [ , ]r lu u   such that  

 
( ) ( )

( ) = =l r

l r

F u F u
F

u u
 





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and  

 

* *

* *

( ) ( ) ( ) ( )
( ) .l r

l r

F u F u F u F u
F

u u u u


 
 

 
 (48) 

 Now Taking limits as 
*

lu u  and 
*

ru u  in (48), we have  

 ( ) ( ),l rF u F u    

 which is the Lax inequality. Thus, the generalized inequality (45) implies the Lax inequality. On the other hand, 

if the flux function ,F  is a convex function, which implies > 0,F  then the Lax inequality (43) would 

implies the inequality (45). 

Essentially, all the conditions considered so far require that the flux function F  be convex or concave. 

Krushkov  [59] introduced a more general admissibility condition for a flux function F  that is not necessarily 

convex or concave. One advantage of the Kruzkov condition is that it is also applicable to systems of 

conservation laws in more than one dimension, whereas the Oleinik condition is limited to single conservation 

laws in one dimension. Although the Lax inequality is applicable to systems of conservation laws, it still 

requires the convexity of the flux function F , moreover the Lax inequality is limited to systems in one spatial 

dimension. Kruzkov's admissibility condition is given below. 

 

2.3.3   Admissibility condition 3 (The Entropy/Entropy flux pair)  

 The admissibility condition discussed in this section was first introduced by Kruzhkov  [59], in terms of 

entropy/entropy flux pairs which we define below 

Definition 2.11 [Entropy/entropy flux] The pair ( , )   is called an entropy/entropy flux pair for the 

conservation law (16), if for every C
-smooth and convex function : R R  there is a C

-smooth 

function : R R  such that  

 ( ) = ( ) ( ), .z z F z z    R  (49) 

    is called an entropy flux function for the entropy function .  For every convex function   we can find a 

corresponding entropy flux function   given by  

 
0

( ) = ( ) ( ), .
z

z
z z F z z    R  (50) 

 

For each entropy/entropy flux pair ( , ),   the admissibility condition, known as the  entropy condition is 

given by  

 

( ) ( ) 0,

( (0, )), 0

t x

c

u u dxdt

for each C

 

 





   


    



R

 (51) 

 Definition 2.12: [Entropy solution]  The function 
1([0, ), ( )) ( (0, ))u C L L    R R  is called an 

entropy solution of the Cauchy problem (16) - (17) if it satisfies the entropy condition (51) for each 

entropy/entropy-flux pair ( , ),   and 0(., )u t u  in 
1L  as 0.t   

We now explore how the entropy condition relates to the other admissibility conditions considered in this 

section. In this regard, assume u  is 
1C  - smooth in the left subregion l  and right subregion r  of some 

region ( [0, ))  R  divided by a smooth curve .C  Let u  also satisfy the entropy condition. If we take 

( ) =u u   and ( ) = ( )u F u  in (51) we see that  

 ( ) = 0 i , .t x l ru F u n    

Integrating (51) by parts we get  

 ( ) ( ) ( ) ( ) 0t x t x

l r

u u dxdt u u dxdt   
 

        

From whence we deduce  

 2 1[( ( ) ( )) ( ( ) ( )) ] 0l r l ru u n u u n dS      C  (52) 
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 where 1 2= ( , )n n n  is the unit normal to C  pointing from l  to .r  Suppose the curve C  is represented in 

parametric form as {( , ) : = ( )}x t x s t  for some smooth function :[0, ) ,s  R  then 

1 2
2

(1, )
= ( , ) = .

1

s
n n n

s








 Consequently (52) becomes  

 ( ( ) ( )) ( ) ( ) a ,r l r ls u u u u long     C  (53) 

 which leads to the jump condition  

 [[ ]] = [[ ( )]].s u F u  (54) 

 Thus the entropy condition (51) is stronger than the jump condition. 

Suppose > .l ru u  Fix 
*u  such that 

*> >l ru u u  and define the entropy/entropy flux pair as  

 

* *( ) i > 0
( ) =

0 o

z u fz u
z

therwise

  
 


 

and  

 ( ) = s ( ) ( ) .
z

u
l

z gn v u F v dv
   

Then  

 
*( ) ( ) =r l lu u u u    

and  

 
*( ) ( ) = ( ) ( ).r l lu u F u F u    

Consequently (53) implies  

 
* *( ) ( ) ( )l ls u u F u F u    

which, when combined with (54), gives  

 

*

*

( ) ( )l

l

F u F u
s

u u





  (55) 

 Similarly, if >r lu u  and 
*> >r lu u u  then  

 

*

*

( ) ( )r

r

F u F u
s

u u





  (56) 

 Conditions (55) and (56) gives condition (47). Thus the entropy condition (51) implies the Lax condition. 

Remark 2.13(i) Note that any entropy solution of (16) - (17) satisfying definition 2.3.3 is also a weak solution 

of (16). This follows if we set ( ) = , ,z z z R  in which case = .F   

(ii) There is at most one entropy solution to the Cauchy problem (16) - (17). 

(iii) If 
1( )u C   is a classical solution of the initial value problem, then  

 ( )( ( ( )) ) = 0t xu u F u   

 for any convex function .  This further implies  

 0 = ( ) ( ) ( ) = ( ) ( ) ,t x t xu u u F u u u u u u         

 with   any entropy flux associated with .  This verifies that a classical solution is also an entropy solution. 

In the next section we discuss the vanishing viscosity method for conservation laws. 

 

III. Solutions of Scalar Conservation Laws via Vanishing Viscosity 
  The role of the entropy condition in conservation laws is to distinguish between the physically relevant 

weak solution and other, possibly irrelevant weak solutions. One method for obtaining and analyzing solutions 

to hyperbolic conservation laws is to modify the given conservation law by adding a small perturbation term to 

the right-hand side of the equation, for example, , w << 1,xxu ith   to obtain from (16) a regularized 

equation  

 ( ( )) = 0t x xxu F u u     (57) 

 The motivation that is often given for the study of the Cauchy problem (16) - (17) through the regularized 
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problem such as  

 ( ( )) = i (0, ), > 0t x xxu F u u n   R  (58) 

 0( ,0) = ( ) .u x u x xR  (59) 

 is that physically and mathematically correct solutions of (16) - (17) should arise as the limit of solutions of u
 

of (58) - (59), as the parameter   tends to zero. This method is generally known as viscosity method  [38],  

[92],  [90]. 

In this regard we may recall that the model for thermoelastic materials under adiabatic conditions is a first order 

system of hyperbolic PDEs, while that of thermoviscoelastic, heat-conducting materials is a second order PDE, 

containing a diffusive term, see  [38]. Every material has a degree of viscous response and conducts heat. 

Classifying a material as an elastic nonconductor of heat simply means that viscosity and heat conductivity are 

negligible, but not totally absent. The consequence of this is that the theory of adiabatic thermoelasticity may be 

physically meaningful only as a limiting case of thermoviscoelasticity, with viscosity and heat conductivity 

tending to zero see  [38],  [92]. In the same way the theory of hyperbolic conservation laws is considered to be 

physically meaningful as a limiting case of the parabolic equation (58). 

Here we should note that solutions of nonlinear PDEs are in general highly unstable with respect to small 

perturbations of the equation. Thus in spite of the physical intuition underlying such viscosity methods, the 

rigorous mathematical analysis of the limiting behavior of solutions of equations like (58) - (59) as   tends to 

0,  is highly non trivial. 

One particular example of the viscosity method which we discuss in this section is the vanishing viscosity 

method. The aim is to construct the entropy solution of the scalar conservation law (16) as the limit of solutions 

of the parabolic equations (58) - (59). The artificial viscosity term xxu  added to the right side of (16) is 

supposed to provide a small viscous effect, which 'smear out' sharp shocks. 

It is well known that for any > 0,  and for bounded and measurable initial data, there exists a unique classical 

solution u
 of the parabolic equation (58) - (59), see  [82],  [107]. This unique solution u

 of equation (58) - 

(59) is called a viscosity solution of (58) - (59). The following general theorem guarantees the existence of a 

sequence of solution to the parabolic problem (58) - (59).   

Theorem 3.1 ( [107])  (i) For any fixed > 0,  the Cauchy problem (58) - (59) with 0u L  always has a 

local classical solution ( , ) ( (0, ))u x t C  R  for a small time ,  which depends only on the L  norm of 

the initial data 0 ( )u x .  

(ii) If the solution u
 has an a priori L  bound or estimate ( , ) ( , )Lu t M T 


 P P  for any [0, ],t T  then 

the solution exists on [0, ].TR  

(iii) The solution u
 satisfies:  

 0
| | | |

( , ) = 0, ( ) = 0.lim lim
x x

u x t if u x

 

 

Following standard theory for parabolic equations, the local existence of a solution can easily be obtained by 

applying the contraction mapping principle to an integral representation of the solution. Whenever there is a 

local solution with a priori L  bound, the time   can be extended, step by step, to a further time T  since the 

step time depend on the L  norm. Details of the proof can be found in  [62],  [92]. Two fundamental questions 

concerning the solution u
 of (58) - (59) are the following. 

  In what sense does the sequence of functions u
 converge to a limit function u  as   tends to 0?   

  Given that u
 converges to some u  in a specified way, in what sense can we interpret u  as a solution of the 

Cauchy problem (16) - (17)? In particular, if u
 is the unique classical solution of (58)-(59) and u

 converges 

to some function u  as   tends to 0,  is u  an entropy solution of the Cauchy problem (16) - (17)?  

An interesting problem related to first question concerns the behavior of u
 in the neighborhood of a 

discontinuity of .u  A partial answer to the above questions is given in the following Theorem, see  [38],  [49],  

[60].   Theorem 3.2 [38, Theorem 6.3.1] Suppose u  is the solution of (58), (59), and assume that for some 

sequence { },n  with 0n   as ,n  we have that 
n

u u   boundedly a.e on [0, ). R  Then u  is 
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an entropy solution of (16)-(17) on [0, ). R     

Remark 3.3 
n

u u   boundedly a.e means that 
n

u  is norm bounded in L  and 

( , ) ( , ) a 0n
n

u x t u x t s    in R  for almost all ( , ) [0, ).x t   R  Since the weak solutions of (16)-

(17) are in ,L  and are typically not continuous, it may happen that as the smooth function u
 approaches u  

the functions xu 
 and xxu

 may become unbounded, in a neighborhood of a point of discontinuity of .u  Thus 

establishing the convergence u u   is a nontrivial issue.  

The rigorous mathematical theory of scalar conservation laws via vanishing viscosity was initiated by E. Hopf in 

his paper 1950  [57]. There Hopf considered the viscous Burgers equation  

 = i (0, )t x xxu uu u n  R  (60) 

 0( ,0) = ( ) i .u x u x n R  (61) 

 Using the transformation  

 

1
( )
2= w = 2 (log ) = 2 ( ),

udx
x

x

v
v e ith inverse u v

v

  


 
 (62) 

 he first transformed the viscous Burgers equation (60)-(61) into the linear heat equation  

 = 0,t xxv v  (63) 

 

1
( )

02 0
0( ,0) = ( ) = .

x

u d

v x v x e
 


 

 (64) 

 The solution of (63) - (64) is  

 

2( )

4
0

1
( , ) = ( ) ,

4

x y

tv x t v y e dy
t








  (65) 

 which may be obtained by standard methods for solving parabolic PDEs, for example using the Fourier 

transform. Substituting the expression (65) for ( , )v x t  in (62) one obtains an explicit formula for the unique 

solution of equation (60) - (61). This result is stated below:  

Theorem 3.4 [Hopf E.,  [57]] Suppose 
1

0 ( )locu L R  is such that  

 
2

0
0

( ) = ( ) f | | l .
x

u d o x or x arge   (66) 

 Then there exists a unique classical solution of equation (60)-(61) given by  

 

1
( , , )

2

1
( , , )

2

( , ) =

K x y t

K x y t

x y
e dy

tu x t

e dy




















 (67) 

 where  

 

2

0
0

( )
( , , ) = ( ) .

2

y x y
K x y t u d

t
 


  (68) 

 The solution u
 has the following properties   

    1.  For all ,aR   

 0
0 0

( , ) ( ) a , 0,
x a

u t d u d s x a t         (69) 

  

    2.  If 0 ( )u x  is continuous at =x a  then  

 0( , ) ( ) a , 0.u x t u a s x a t    (70) 

 A solution of (60) - (61) which is 
2C -smooth in the interval 0 < <t T  and satisfies (69) for each value of a  

necessarily coincides with (67) in the interval. 

The condition (66) on the initial value is necessary to guarantee the convergence of the definite integral (65), 
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thus also those in the expression (67) for the solution of (60) - (61). 

Hopf also studied the convergence of ,u
 as   tends to 0.  In this regard, he made use of the functions miny  

and ,maxy  which are defined as follows:  

 ( , ) := min{ : ( , , ) a }miny x t y K x y t ttains its minimum value  

and  

 ( , ) := max{ : ( , , ) a }.maxy x t y K x y t ttains its minimum value  

That is, the minimum of ( , , )K x y t  for fixed ,x t  is ( , ) = min = ( , , ) = ( , , ).min maxm x t K K x y t K x y t  

( , )m x t  is a continuous function of , ,x t   [57, Lemma 2]. Obviously,  

 ( , ) ( , ).min maxy x t y x t  

However, it was shown that  

 1 2 1 2( , ) ( , ) < ,max miny x t y x t x x   

thus miny  and maxy  are monotone in .x  Since a monotone function has only a denumerable number of 

discontinuities one can infer for any > 0,t  =min maxy y  holds for all x  with the possible exception of a 

denumerable set of values of x  where < .min maxy y  Note that ( , )miny x t  is lower semi-continuous while 

( , )maxy x t  is upper semi-continuous  [57, Lemma 3]. Both functions are continuous at a point where 

= .min maxy y  The convergence theorem for the solution u
 of (60) - (61) may now be stated as follows   

Theorem 3.5 Let ( , ), > 0,u x t t
 be the solution of (60) - (61) with 0u  satisfying (66). Then for all x  and 

> 0,t   

 
0 0

( , ) ( , )
liminf ( , ) limsup ( , ) .max minx y x t x y x t

u x t u x t
t t

 

  

 
    

In particular,  

 
0

( , ) ( , )
lim ( , ) = =max minx y x t x y x t

u x t
t t





 
 

holds at every point ( , ),x t  > 0,t  in which = .max miny y  

Define the function u  as  

 
0

( , ) := lim ( , ) . .u x t u x t a e


 

in every point ( , ), > 0x t t  where this limit exists. By Theorem 2(`)@, this limit will exist at every point in 

which = .min maxy y  Thus the convergence of u
 to u  is almost everywhere. At the point where the limit 

exists, ( , )u x t  is defined and is continuous in both variables. 

It was further shown that the inequality  

 = ( , ) ( , ) =l ru u x t u x t u   

holds for all > 0t  and by the method of characteristics, that the equation  

 
1

1 1

( ) ( ) 1
lim = [ ]

2
l r

t t

x t x t
u u

t t





 (71) 

 holds. Here = ( )x x t  is the curve of discontinuity for ( , ).u x t  From (71) we have that  

 
1

= [ ],
2

l rx u u  

which is the jump condition for inviscid Burgers equation  

 = 0.t xu uu  (72) 

 

To show that the limit function ( , )u x t  obtained above is a weak solution of the inviscid Burgers equation, we 

note firts that a solution u
 of (58) - (59) satisfies the equation  
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2

0 0

( )
{ } = 0,

2
t x xx

u
u dxdt u dxdt


    

   

 
      (73) 

 for each test function 0 ( ).C    From the convergence Theorem 2(`)@ it follows that every point ( , )x t  

has a neighborhood in which the solutions u
 of (58) - (59) are uniformly bounded as   tends to 0.  As such 

we can pass limit 0   in (73) with   being fixed. Thus we have  

 

2

0
{ } = 0,

2
t x

u
u dxdt 

 


   

which shows that ( , )u x t  is a weak solution of the inviscid Burgers equation (72). 

However, the solution u  that satisfies the jump condition (71) that was constructed here was not shown to be 

the unique solution that satisfies this condition. 

Lax  [63] obtained a result similar to that of Hopf by showing that the weak solution  

 
0( , ) = f > 0 a . .

x y
u x t b or each t nd a e x

t

 
 

 
R  

 obtained in Theorem 2 can be written as the limit of the solution u
 of the inviscid Burgers equations (60) - 

(61), that is  

 = .lim n
n

u u


 (74) 

 To see this, consider the equation (60) in the form  

 
21 1

( ( )) = , ( ) = .
2 2

t x xxu F u u F u u
n

  (75) 

 Defined ( )F u  as  

 ( ) = ,lim n
n

F u F


 

where  

 

( ( ))

= .

nK

n
nK

x y
F b e dy

tF
e dy















 (76) 

 Then the function nu  defined as  

 

( , , )

( , , )

( )

=

nK x y t

n
nK x y t

x y
b e dy

tu
e dy















 (77) 

 is a solution to the equation (75) - (61). Here,  

 0( , , ) = ( ) ( ),
x y

K x y t U y tG
t


  

the function ( )b s  is defined as 
1( ) = ( ( )) ,b s F s   ( )G s  is defined as the solution of  

 
( )

= ( ), ( ) = 0, w (0) = ,
dG s

b s G c ith F c
ds

  

and  

 0 0
0

( ) = ( ) .
y

U y u s ds  

The convergence of nu  to u  as n  tends to   is almost everywhere and the function u  is a weak solution of 

(16) - (17)  [63, Theorem 2.1]. 

If we denote by nV  the function  

 = log nK

nV e dy




  

then  
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1

=n nu V
n x





 

and  

 
1

( , ) =n nF x t V
n t





 

provided that ( ( )) = ( ) ( ).F b z zb z G z  It then follows that  

 ( ) ( ) = 0.n t n xu F  (78) 

 Multiply equation (78) by a test function 0 ( )C    and integrate to get  

 = 0,n t n xu F 


   

letting n   we obtain the limit relation  

 ( ) = 0,t xu F u 


   

This shows that u  is a weak solution of equations (16) - (17). 

In addition, Lax  [65] introduced a finite difference scheme for the scalar conservation law and showed, using 

some numeric examples, that both the viscosity method and the finite difference scheme, when applied to the 

cauchy problem (16) - (17) with 0 ( ) ,u x L  converge to the same limit ( , ),u x t  given by the explicit 

formula (44). He also applied the finite difference scheme to the case where ( ) = log( )uF u a be   and 

obtain the following result: 

Theorem 3.6 [Lax,  [66]] Consider the single conservation law (16) with  

 ( ) = log( ) = 1.uF u a be a b    (79) 

 Replace in (16) the time derivative by a forward difference and the space ( x ) derivative by a left difference:  

 ( , ) = ( , ) { ( ( , )) ( ( , ))}.u x t u x t F u x t F u x t     (80) 

 Let u  be the solution of this difference equation with bounded and measurable initial value 0( ,0) = ( ).u x u x  

Then  

 
0

= ( , )limu u x t


 (81) 

 exists for fixed t  for almost all .x  Furthermore the limit u  is given by (44). 

 The following theorem gives the properties of the limit function u  obtained through the finite difference 

scheme.   

Theorem 3.7 The function ,u  defined by (44) is a weak solution of (16)-(17) with F  given by (79), and 

satisfies the following properties.   

    1.  It depends continuously on the initial data 0u .  

    2.  The dependence of u  on 0u  is completely continuous in the following sense: For 0 ( ,u L R  denote by 

0( )g u  the solution (44) of (16) - (17), with F  given by (79). If ( )A L R  is bounded in ( )L R  and 

suppA  is compact, then ( )g A  is compact in the 1L  topology.  

    3.  It has a semigroup property. That is if 1( , )u x t  is taken as a new initial value, the corresponding solution 

at time 2t  equals 1 2( , ).u x t t   

For an arbitrary function ,F  there are no explicit formulas for the solution to the parabolic equation. However, 

Oleinik  [80] proved that for a general convex or concave function, the solutions of the parabolic problem (58) - 

(59) tends to the weak solution of (16). A simpler proof was given by Ladyzhenskaya in  [61]. 

We remark that if u  converges to u  in the weak sense only; the sequence ( )F u  will converge in the weak 

sense but not to ( ).F u  In this regard, we have the following theorem by Lax:  

Theorem 3.8 ( [63],  [65]) If the sequence of functions nu  converges in the weak sense to a limit ,u  then 

( )nF u  converges in the weak sense to ( )F u  if and only if nu u  strongly in 1.L   
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  As mentioned in section 2.3.1, see in particular Theorem 2.6, Oleinik  [82] showed that there exists a 

unique solution of (16)-(17) that satisfies the admissibility condition (40), provided that the flux function F  is 

convex. This solution is constructed as a limit of solutions u
 of equation (58) -(59) obtained through a  finite 

difference scheme introduced by Lax in  [65]. It was subsequently shown that u  is in fact the unique solution of 

(16) - (17) satisfying (40), see  [92, Lema 16.9 through Theorem 16.11]. 

Kruzhkov  [59],  [60] introduced a new method to apply the vanishing viscosity method to a larger class of 

equations. For initial data 0 ,u L  he proved existence and uniqueness of the classical solution ( , )u x t
 of 

(58)-(59). Using a family of entropy-entropy flux pairs ( , )k k k  R  where  

 ( ) =| | a ( ) := ( )( ( ) ( )),k ku u k nd u sgn u k f u f k      

it was shown that the solution ( , )u x t
 of equations (58) - (59) converges as   tends to 0  almost everywhere 

to a weak solution ( , )u x t  of the Cauchy problem (16) -(17).   

Theorem 3.9 [Kruzhkov,  [60]] Let 0 ( ).u L R  Then the solution ( , )u x t
 of problem (58) - (59) converges 

as 0   almost everywhere in [0, )TR  to a function ( , )u x t  which is a weak solution of the problem (16) 

- (17).  

 In the proof of the above theorem, a priori bounds (independent of  ) were obtained for the solutions ( , )u x t
 

which ensures the compactness of the family of functions { ( , )}u x t
 with respect to the 1L - norm. This in turn 

guarantees the existence of a subsequence nu


 of u
 that converges to the weak solution ( , ).u x t  Thus a weak 

solution of the Cauchy problem (16) - (17) is constructed as the limit of solution u
 of the parabolic problem 

(58) - (59). The following theorem shows that the weak solution constructed above is an entropy solution.   

Theorem 3.10 Let 0 ( ).u L R  If ( , )u x t
 converges to a function ( , )u x t  almost everywhere as 0   in 

[0, ).TR  Then the solution u  also satisfies the following inequality, for every entropy/entropy flux pair 

( , )    

 
0( ) ( ) ( ( )) ( ,0) 0,t xu u dxdt u x x dx  



     
R

 (82) 

 for all 0 ( (0, )), 0.C    R   

The issue of uniqueness the solution ( , )u x t  of the problem (16) - (17) is addressed in the following result,  

[59],  [60].    

Theorem 3.11 [90, Theorem 2.3.5]  For every function 0 ( ),u L R  there exists one and only one entropy 

solution 
1( [0, )) ([0, ); ( ))locu L T C T L  R R  of (16) -(17). The entropy solution u  satisfies the 

maximum principle  

 
( [0, )) 0 ( )= .L T Lu u

 
R RP P P P  

Furthermore, let 0 0,u v L  and u  and v  the entropy solutions of (16) -(17) associated with 0u  and 0v  

respectively. Let  

 0 0 0 0= sup{| ( ) | : [inf ( , ),sup( , )]}.M F s s u v u v   

Then the entropy solution u  satisfies the following:   

    1.  For all > 0t  and every interval [ , ],a b  we have  

 0 0| ( , ) ( , ) | | ( ) ( ) | .
b b Mt

a a Mt
v x t u x t dx v x u x dx




     

 

    2.  In particular, if 0u  and 0v  coincide on 0[ , ]x x    for some >,0  then u  and v  coincide on the 

triangle 0{( , ) :| | < }.x t x x Mt     

    3.  If 
1

0 0 ( ),u v L  R  then 
1( ) ( ) ( ),u t v t L  R  where ( ) := ( , ),u t u t  and  

 1 0 0 1( ) ( )
( ) ( ) ,

L L
v t u t v u  

R R
P P P P  
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 0 0( ( , ) ( , )) = ( ( ) ( )) .v x t u x t dx v x u x dx  R R
 

 

    4.  If 
1

0 ( ),u L R  then 
1( ) ( ),u t L R  for all > 0,t  and  

 1 0 1 0( ) ( )
( ) , ( , ) = ( ) .

L L
u t u u x t dx u x dx  R R R R

P P P P  

 

    5.  If 0 0( ) ( )u x v x  for almost all ,xR  then ( , ) ( , )u x t v x t  for almost all ( , ) [0, ).x t   R   

    6.  If 0u  has bounded total variation, then ( )u t  has bounded total variation for all > 0t  and  

 0( ( )) ( ).TV u t TV u  

 

Remark 3.12: Theorem 3.11, is valid in several spatial dimension,  [60],  [90]. By Theorem 3(`)@, one can 

construct a semi group operator ( ),S t  associated with the entropy solution ( , )u x t  with respect to the initial 

data 0u  and time > 0t  written as,  

 0( , ) = ( ).tu x t S u x  

The semi group : [0, )S   D D  with 1( )L RD  a closed domain containing all functions with 

bounded total variation, has the following properties  [16]:   

    1.  0 = , = ,t s t sS u u S u S S u   

    2.  tS  is uniformly Lipschitz continuous w.r.t time and initial data: There exists , > 0L L  such that  

 0 0 0 0 | | .t sS u S v L u v L t s    P P P P  

 

 The proof of the above uniqueness Theorem 3(`)@ is based on the fact that the semigroup operator tS  of (16) 

is a contraction in 
1( ) ( )L LR R  with respect to the 

1L  -norm. This fact is expressed in property (P3), 

which implies that if 0 ,u BV  then u BV  for all > 0t  as stated in property (P6). Property (P4) is a 

consequence of property (P3), which leads to property (P5). 

Panov  [84] has proved that it is not necessary to consider the whole family of entropy/entropy flux pair. A 

single pair of entropy/entropy flux pair ( , )   is sufficient to characterize entropy solutions of (16) - (17). 

 

IV.  Conclusion 
 The theory of hyperbolic conservation laws has developed in a number of directions. One major 

approach, as discussed, consists of considering weak solutions in suitable spaces of functions with bounded 

variation (BV functions). Actually, the problem, and a very difficult one, is to prove that various approximating 

schemes such as the vanishing viscosity, Glimm scheme, wave front tracking etc, converge to the entropy 

solution. The BV approach then consists of proving convergence of these schemes under assumption on the 

initial condition 0u  related to it's total variation. Typically, one assumes that the total variation satisfies a 

smallness condition, see  [10]. Another approach is to construct weak solutions through weak convergence and 

compensated compactness arguments, see for instance  [78],  [97],  [107]. Recently, the ordercompletionmethod 

wa applied to prove existence of solution to conservation. The method consist of constructing solutions to 

conservations in a space of Hausdorff continuous functions, see [1], [5]. 
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