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Abstract: This paper addresses the solutions of SI, SIR, SEIR and MSEIR (SIRs) models. Those epidemic 

models are simplified means of describing the transmission of infectious diseases through individuals. Infectious 

diseases are a tool which has been used to explore the mechanisms by which diseases dispersal, to prophesy the 

future course of an outbreak and to esteem strategies to control an epidemic. To find the solution of our models 

we use the multi-steps differential transform method (Ms-DTM), a reliable and powerful technique that 

ameliorate reliability and overcome drawbacks advanced in using the standard differential transform method 

(DTM).Finally, results have been compared with a software package Mathematica using the Parametric ND 

Solve code and very good agreement is obtained. 
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I. Introduction 

Biological Mathematics models begins with Hammer in 1906, who applied the simple mass action principle one 

for a deterministic epidemic model in discrete time and Ross sitting a simpleEpidemic model in 1911 and 

propagate epidemic model produced by Kermack and McKendrickin 1927. In the today's world, biologists and 

doctors still have to deal with plagues and diseases. Millions of people die annually from measles, tuberculosis, 

malaria, AIDS . . . and billions of others are infected. There was a belief in 1960s that infectious diseases would 

be soon eliminated with the improvement in sanitation, antibiotics, vaccinations, medical science and medical 

care. However, they are still the major causes of mortality in the developing countries. Moreover, infectious 

disease agents adapt and evolve, therefore we can observe new infectious diseases emerging and some already 

existing diseases re-emerged, sometimes after hundreds of years and/or even mutated. At present we know 

bacteria which are able to swim in pure bleach or survive in a dose of penicillin. Together with the threat of 

biological weapons, whose research is lately concerned about microorganisms and lethal infectious diseases, we 

have great motivation to understand the spread and control of infectious diseases and their transmission 

characteristics. Mathematical epidemiology contributed to the understanding of the behavior of infectious 

diseases, its impacts and possible future predictions about its spreading. Mathematical models are used in 

comparing, planning, implementing, evaluating and optimizing various detection, prevention, therapy and 

control programs[1]. So it is important to validate models by checkingwhether they fit the observed data, and we 

can clarify the epidemic models as the following: 

 𝑺𝑰Model is the simplest one among the epidemic models. It’s divided the population sizeto the susceptible 

compartment 𝑠(𝑡) and the infectious compartment𝑖(𝑡), and assumesthedisease to be highly infectious but 

not serious, which means that the infective remain incontact with susceptible for all time𝑡 ≥  0. It also 

assumes that the infective continueto spread the disease till the end of the epidemic. The population size to 

be constant(𝑠(𝑡)  +  𝑖(𝑡)  =  𝑁)and homogeneous mixing of population. 
𝑑𝑠 𝑡 

𝑑𝑡
= −𝑟𝜆𝑠 𝑡 𝑖 𝑡  (1) 

𝑑𝑖 (𝑡)

𝑑𝑡
= 𝑟𝜆𝑠 𝑡 𝑖(𝑡) (2) 

With initial conditions 𝑠 (0)  =  1 and 𝑖 0 =  1where 𝑟 the recovery rate is, 𝜆 number of infective. 
 

 𝑺𝑰𝑹Model, that’s assume the population size is large and constant, that can be dividepopulation size into 

three compartments 𝑠(𝑡) - susceptible, 𝑖(𝑡) - infective, 𝑟(𝑡) - recovered. 
𝑑𝑠 𝑡 

𝑑𝑡
=  1 − 𝑝 𝜋 − 𝛽𝑠 𝑡 𝑖 𝑡 − 𝜇𝑠 𝑡  (3) 
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𝑑𝑖 (𝑡)

𝑑𝑡
= 𝛽𝑠 𝑡 𝑖 𝑡 −  𝛾 + 𝜋 𝑖 𝑡 (4) 

𝑑𝑟 (𝑡)

𝑑𝑡
= 𝑝𝜋 + 𝛾𝑖 𝑡 − 𝜋𝑟(𝑡)     (5) 

With initial conditions  𝑠(0)  =  0 , 𝑖 (0)  =  1and𝑟 (0)  =  0; where 𝑝 is the fraction of the susceptible 

individuals,𝛽disease transmission rate, 𝛾recovery rate and the all positive parameters is constant with 0 <
𝑝, 𝛽, 𝛾 <  1. 

 𝑺𝑬𝑰𝑹Model, a population supposed constant is divided into different classes, disjoint and 

based on their disease status. At time 𝑡, 𝑠 (𝑡)is the susceptible group, 𝑒 (𝑡) is the exposedgroup, 𝑖 (𝑡) is the 

infective group, and 𝑟 (𝑡) is the recovered group 

 
𝑑𝑠 𝑡 

𝑑𝑡
= 𝑏 − 𝛽𝑠 𝑡 𝑖 𝑡 − 𝜇𝑠 𝑡    (6) 

𝑑𝑒 (𝑡)

𝑑𝑡
= 𝛽𝑠 𝑡 𝑖 𝑡 −  𝜎 + 𝜋 𝑒 𝑡    (7) 

𝑑𝑖 (𝑡)

𝑑𝑡
= 𝜎𝑒 𝑡 −  𝜉 + 𝜇 𝑖 𝑡     (8) 

𝑑𝑟 (𝑡)

𝑑𝑡
= 𝜉𝑖 𝑡 − 𝜇𝑟 𝑡    (9) 

 

With initial conditions 𝑠 (0)  =  0 , 𝑒 (0)  =  1, 𝑖 (0)  =  1 and𝑟 (0)  =  0; where the all recruitment is done by 

birth into the class of susceptible and occurs at constant birth rate𝑏. The rate constant for non-disease related 

death is 𝜇; thus 
1

𝜇
is the average life time, and 𝛽 is the disease transmission rate, 𝜎 is the exposed people becomes 

infectious with a constant rate, so that 
1

𝜎
is the average incubation period. Some infectious individuals will 

recover after a treatment or a certain period of time at a rate constant𝜉, making 
1

𝜉
 the average infectious period 

[2]. 

 𝑴𝑺𝑬𝑰𝑹 Model, can divided into five classes the passively-immune group𝑚 (𝑡), the susceptible group 𝑠 (𝑡), the 

exposed group 𝑒 (𝑡), the infective group 𝑖(𝑡), and the recoveredgroup 𝑟 (𝑡). 
𝑑𝑚  𝑡 

𝑑𝑡
= 𝐵 − 𝛿𝑚 𝑡 𝑠 𝑡 − 𝜇𝑚 𝑡 (10) 

𝑑𝑠(𝑡)

𝑑𝑡
= 𝛿𝑚 𝑡 𝑠 𝑡 − 𝛽𝑠 𝑡 𝑖 𝑡 − 𝜇𝑠 𝑡 (11) 

𝑑𝑒 (𝑡)

𝑑𝑡
= 𝛽𝑠 𝑡 𝑖 𝑡 −  𝜀 + 𝜇 𝑒 𝑡  (12) 

𝑑𝑖 (𝑡)

𝑑𝑡
= 𝜀𝑒 𝑡 −  𝛾 + 𝜇 𝑖 𝑡 (13) 

𝑑𝑟 (𝑡)

𝑑𝑡
= 𝛾𝑖 𝑡 − 𝜇𝑟 𝑡  (14) 

 

With the initial conditions 𝑚 (0)  =  1 , 𝑠 (0)  =  1 , 𝑒 (0)  =  0, 𝑖 (0)  =  1 and 𝑟 (0)  =  0; where thesymbols 

stands for is the Recovery rate𝛾, 𝛽is the Transmission rate, 𝜀 is the progression rate,𝛿is the Immunity rate, 𝜇is 

the death rate and 𝐵 is the infectious hepatitis [3]. 

Some recent studies scrutinize the SIRs models such as Shah et al [4] addressed the SEIRmodel and 

simulation for vector borne diseases. A note on solutions of the SIR models ofepidemics using method of 

Homotopy analysis is explored by M. Sajid et al [5] Ibrahimet al [6] construct the nature of MSEIR epidemic 

model using Homotopy analysis method. Asfour et al [7] study the differential fractional transform method to 

solve the epidemic MSEIR model. Lisi et al [8] addressed the analysis of an age-structured MSEIR model. 

Badshah et al [9] indicate the role of dynamics in epidemiology by mathematical models such asSI, SIR, SEIR 

and MSEIR. The numerical simulation for SI model with variable-order fractional is constructed by Asfour et al 

[10].In this study, the solutions of those models obtained by using DTM which is one of a semi-numerical 

method for solving a large diversity of differential equations. The DTM gives exact values of the nth derivative 

of an analytic function at a pointin terms of unknown and known boundary conditions, so that the solutions are 

shown in terms ofconvergent series with easily computable components. DTM has some disadvantages, the 

maindrawbacks is that the obtained solutions usually converges in a very small region and it has slowconvergent 

rate or completely divergent in the wider region and to overcome the shortcoming,we apply the multi-step 

differential transform method, that provides the solution in terms ofconvergent series over a sequence of 

subintervals [11-14].  

This attempt is prepared as the following. Section 2, 3study the mathematical analysis of DTM and Ms-DTM. In 

Section 4. Applications of DTM and Ms-DTM on SI, SIR, SEIRand MSEIR models are progressed. Section 5. 

Results of Ms-DTM application and discussion are presented. 
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II. Differential Transformation Method 
    Consider a general equation of n

th
 order ordinary differential equation [15-17] 

𝑦(𝑡, 𝑓, 𝑓′, . . . , 𝑓⁽ⁿ⁾) = 0. 

Subject to the initial equations 

𝑓 𝑘 (0) = 𝑑𝑘 , 𝑘 = 0, . . . , 𝑛 − 1. 

    To demonstrate the differential transformation method (DTM) for solving differential equations, the basic 

definitions of differential transformation are introduced as follows. Let 𝑓(𝑡) be analytic in a domain 𝐷 and let 

𝑡 = 𝑡ⁿ represent any point in𝐷. The function 𝑓(𝑡) is then represented by one power series whose centre is 

located at tⁿ. The differential transformation of the 𝑘 − 𝑡𝑕 derivative of a function 𝑓(𝑡) is defined as the 

following: 

𝐹 𝑘 =  
1

𝑘!
   

𝑑 𝑘 𝑓 𝑡 

𝑑𝑡  𝑘 
  

 𝑡=𝑡0 
, ∀𝑡 ∈ 𝐷.    (15) 

And the inverse transformation of 𝐹(𝑘) can take the form 

𝑓 𝑡 =  𝐹 𝑘  𝑡 − 𝑡0 
 𝑘 ∞

𝑘=0 , ∀𝑡 ∈ 𝐷.       (16) 

In fact, from Eq. (25) and (26), we obtain 

𝑓 𝑡 =  
 𝑡−𝑡0 

 𝑘 

𝑘!
 
𝑑 𝑘 𝑦 𝑡 

𝑑𝑡  𝑘 
 
𝑡=𝑡0

, ∀𝑡 ∈ 𝐷.∞
𝑘=0       (17) 

Eq. (16) implies that the concept of differential transformation is derived from the Taylor series expansion. 

Form the definitions of (15) and (16); it is easy to prove that the functions comply with the following basic 

mathematics operations (see Table 1). In real applications, the function 𝑓(𝑡) is expressed by a finite series and 

(27) can be written as: 

𝑓 𝑡 =  𝐹 𝑘  𝑡 − 𝑡0 
 𝑘 𝑁

𝑘=0 , ∀𝑡 ∈ 𝐷.       (18) 

Eq. (18) implies that  𝐹 𝑘  𝑡 − 𝑡0 
 𝑘 ∞

𝑘=𝑁+1  is negligibly small.The following table show that the 

transformation for some functions and relation by using differential transformation method. 

 

Table 1 

Operations of the one dimensional differential transform. 

Original function Transformed function 

𝑓 𝑡 = 𝑔 𝑡 + 𝑕 𝑡  𝐹 𝑘 = 𝐺 𝑘 + 𝐻 𝑘  
𝑓 𝑡 = 𝛼𝑔 𝑡  𝐹 𝑘 = 𝛼𝐺 𝑘  

𝑓 𝑡 = 𝑔 𝑡 𝑕 𝑡  𝐹 𝑘 =  𝐺 𝑙 𝐻 𝑘 − 𝑙 

𝑘

𝑙=0

 

𝑓 𝑡 =
𝑑𝑔 𝑡 

𝑑𝑡
 𝐹 𝑘 =  𝑘 + 𝑙 𝐺 𝑘 + 𝑙  

𝑓 𝑡 =
𝑑𝑛𝑔 𝑡 

𝑑𝑡𝑛
 𝐹 𝑘 =

 𝑘 + 𝑙 !

𝑘!
𝐺 𝑘 + 𝑛  

𝑓 𝑡 = 𝑢 𝑡 𝑣 𝑡 𝑤 𝑡  𝐹 𝑘 =   𝑈 𝑙 𝑉 𝑙 𝑤 𝑘 − 𝑟 − 𝑙 

𝑘−𝑙

𝑟=0

𝑘

𝑙=0

 

 

III. Multi-steps Differential Transformation Method [18] 
The multi-step DTM is treated as an algorithm in a sequence of intervals for finding accurate approximate 

solutions for systems of differential equations.Suppose [0, 𝑇]is the interval over which we want to find the 

solution for a system of equations 15 − 17 . In actual applications of the DTM, the approximate solution for a 

system of equations can be expressed by the finite series 

𝑓 𝑡 =  𝑎 𝑘 𝑡
 𝑘 𝑁

𝑘=0 , 𝑡 ∈  0, 𝑇 .(19) 

The multi-steps approach introduces a new idea for constructing the approximate solution. Assume that the 

interval [0, 𝑇] is divided into 𝑀 sub intervals [𝑡𝑚−1, 𝑡𝑚 ], 𝑚 = 1,2, . . . , 𝑀  of equal step size 𝑕 =
𝑇

𝑀
 by using the 

nodes𝑡𝑚 = 𝑚𝑕. The main ideas of the Multi-step DTM are as follows. First, we apply the DTM to a system of 

equations  15 − 17  over the interval [0, 𝑇] we will obtain the following approximate solution 

𝑓1 𝑡 =  𝑎1𝑛𝑡
𝑘𝑁

𝑘=0 , 𝑡 ∈  0, 𝑡1 ,        (20) 

Using the initial conditions 𝑓 𝑘  0 = 𝐶𝑘Form𝑚2 and at each sub interval  𝑡𝑚−1 , 𝑡𝑚    we will use the initial 

conditions 𝑓𝑚
 𝑘  𝑡𝑚=1 = 𝑓𝑚=1

 𝑘  𝑡𝑚=1  and apply the DTM to Eqs. (15 − 17)over the interval 𝑡𝑚=1, 𝑡𝑚  , where 

𝑡ⁿ in Eq. (16) is replaced by 𝑡𝑚−1 the process is repeated and generates a sequence of approximate solution 

sum. 𝑓𝑚 𝑡 ,𝑚 = 1,2, … ,𝑀for the solution𝑓(𝑡). 
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𝑓𝑚  𝑡 =  𝑎𝑚𝑘  𝑡 − 𝑡 𝑚−1  
2𝑁

𝑘=0 , 𝑡 ∈  𝑡𝑚 , 𝑡𝑚−1        (21) 

The new algorithm, multi-step DTM, is simple for computational performance for all values of𝑕. It is easily 

observed that if the step size𝑕 = 𝑇, then the multi-step DTM reduces to the classical DTM. 

 

IV. Analytical solutions by means of the Multi-step DTM [18-21] 
This section simulates the solution under the application of DTM to equations ((1)-(14)). 

Model 1 

 𝑘 + 1 𝑆 𝑘 + 1 = −𝑟𝜆  𝑆 𝐼 𝐼 𝑘 − 𝑙 𝑘
𝑙=0 (22) 

 𝑘 + 1 𝐼 𝑘 + 1 = 𝑟𝜆  𝑆 𝐼 𝐼[𝑘 − 𝑙]𝑘
𝑙=0        (23) 

With transformed initial conditions𝑆(0)  = 1 and𝐼(0) =  1. 

Model 2 

 𝑘 + 1 𝑆 𝑘 + 1 = 𝛿 𝑘, 0  1 − 𝑝 𝜋 − 𝛽  𝑆 𝐼 𝐼 𝑘 − 𝑙 − 𝜇𝑆[𝑘]𝑘
𝑙=0          (24) 

 𝑘 + 1 𝐼 𝑘 + 1 = 𝛽  𝑆 𝐼 𝐼[𝑘 − 𝑙]𝑘
𝑙=0 −  𝛾 + 𝜋 𝐼[𝑘]      (25) 

 𝑘 + 1 𝑅 𝑘 + 1 = 𝑝𝜋𝛿 𝑘, 0 + 𝛾𝐼 𝑘 − 𝜋𝑅[𝑘]       (26) 

With transformed initial conditions 𝑆 (0)  =  0, 𝐼 (0)  =  1 and𝑅 (0)  =  0 

Model 3 

 𝑘 + 1 𝑆 𝑘 + 1 = 𝑏𝛿 𝑘, 0 − 𝛽  𝑆 𝐼 𝐼 𝑘 − 𝑙 𝑘
𝑙=0 − 𝜇𝑆 𝑘      (27) 

 𝑘 + 1 𝐸 𝑘 + 1 = 𝛽  𝑆 𝐼 𝐼 𝑘 − 𝑙 𝑘
𝑙=0 −  𝜎 + 𝜇 𝐸 𝑘       (28) 

 𝑘 + 1 𝐼 𝑘 + 1 = 𝜎𝐸 𝑡 −  𝜉 + 𝜇 𝐼[𝑘]       (29) 
 𝑘 + 1 𝑅 𝑘 + 1 = 𝜉𝐼 𝑡 − 𝜇𝑅[𝑘]         (30) 

With transformed initial conditions 𝑆 (0)  =  0, 𝐸 (0)  =  1, 𝐼 (0)  =  1 and𝑅 (0)  =  0 

Model 4 

 𝑘 + 1 𝑀 𝑘 + 1 = 𝐵𝛿 𝑘, 0 − 𝛿  𝑀 𝐼 𝑆 𝑘 − 𝑙 𝑘
𝑙=0 − 𝜇𝑀[𝑘]      (31) 

 𝑘 + 1 𝑆 𝑘 + 1 = 𝛿  𝑀 𝐼 𝑆 𝑘 − 𝑙 𝑘
𝑙=0 − 𝛽 𝑆 𝐼 𝐼 𝑘 − 𝑙 𝑘

𝑙=0 − 𝜇𝑆[𝑘 + 1]     (32) 

 𝑘 + 1 𝑆 𝑘 + 1 = 𝛽  𝑆 𝐼 𝐼 𝑘 − 𝑙 𝑘
𝑙=0 −  𝜀 + 𝜇 𝐸[𝑘]   (33) 

 𝑘 + 1 𝐼 𝑘 + 1 = 𝜀𝐸 𝑘 −  𝛾 + 𝜇 𝐼[𝑘]        (34) 
 𝑘 + 1 𝑅 𝑘 + 1 = 𝛾𝐼 𝑘 − 𝜇𝑅[𝑘]       (35) 

 

With transformed initial conditions𝑀 (0)  =  1;  𝑆 (0)  =  1, 𝐸 (0)  =  0, 𝐼 (0)  =  1 and𝑅 (0)  =  0, where𝛿is 

Kronecker’s delta. 

 

V. Results of Ms-DTM application and discussion 

The solutions obtained by the Ms-DTM are displayed by the aid of graphical illustrations. 

1. SI Model 

 Figs.1 (I, II) are prepared to study the variation of susceptible and infectious groups with thetime, it seems 

that from Fig.1 (I) a susceptible group increases with an increase in time butinfectious group decreases with 

an increase in time with aid of DTM and ParametricNDSolvemethods. 

2. SIR Model 

 Figs.2 (a1, a2) display the influence of increasing in time on the susceptible group, it’s observed from 

Fig.2 (a1) susceptible group increases with an increase in time (using DTM), until point (0.56613, 0.4) 

then it decreases. So we use Ms-DTM, whichprovides the solution in terms of convergent series over a 

sequence of subintervals. For this from Fig.2 (a2) a susceptible group increases with an increase in time till 

a certain value (19.8223, 0.49), thensusceptible group constant with the increases in time which is agree 

with ParametricNDSolve. 

 Figs.2 (b1, b2) show that the impact of increasing in time on the infectious group, it’s observed from Fig.2 

(b1) infectious group decreases with an increase in time (using DTM), until point (0.5831, 0.1.6798) then it 

increases. Then by using Ms-DTM, Fig.2 (b2) show that infectious group decreases with an increase in 

time till a certain value (18.6324, 0.112), then Infectious group constant with the increases in time. 

 Figs.2 (c1, c2) depicts that the effects of increasing in time on the recovered group, it’s observed from 

Fig.2 (c1) a recovered group increases with an increase in time (using DTM), until point (0.72614, 0.44) 

then it decreases. Therefore we use Ms-DTM, Fig.2 (c2) a recovered group increases with an increase in 

time till a certain value (9.6213, 0.499), then recovered group constant with the increases in time. 

 That’s means the Ms-DTM have accuracy as ParametricNDSolve. 
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Fig. 1: The comparisons of the results of DTM and ParametricNDSolve package for 𝑆𝐼 Model with 𝑟 =  0.5 

and 𝜆 =  0.8 

 

 
Fig. 2: The comparisons of the results of Ms-DTM and ParametricNDSolve package for 𝑠𝑖𝑟 Model at 𝑝 =

 0.9, 𝛽 =  0.2, 𝛾 =  0.5and 𝜇 = 0.7. 

 

3 SEIR Model 

 Figs.3 (d1, d2) are prepared to study the influence of increasing in time on the susceptible group, that show 

it’s almost like Figs.3 (a1, a2) 

 Figs.3 (f1, f2) show that the impact of increasing in time on the exposed group, it’s start from point (0,1) 

and decreases to reach a zeroth constant point. 

 Figs.3 (g1, g2) depicts that the effects of increasing in time on the Infectious group, it’s seems that 

infectious group decreases with an increase in time. 

 Recovered group increases with an increase in time at point (2.21,0.2765), then start to decrease to reach a 

fixed value in Figs.3 (h1, h2) 

 

 



Computational Simulation For The Analytical And Numericaltreatment Related  

 

DOI: 10.9790/5728-140402819                           1www.iosrjournals.org                                                86 | Page 

4 MSEIR Model 

 Figs.4 (j1, j2) display the influence of increasing in time on the passively-immune group,that find the 

passively-immune group start from a super point (0,1) this means that atthe beginning of the treatment, the 

response is quick and strong at first, but over time theresponse rate is decreases to a fixed point. 

 Figs.4 (k1, k2) show that the impact of increasing in time on the susceptible group, thetreatment speed is 

initially at the point (0, 1) and these numbers are maximized and thencontinuously reduced to a fixed value. 

 Figs.4 (L1, L2) depicts that the effects of increasing in time on the exposed group, exposedgroup start from 

point (0,0) and increases to reach a maximum point (1.8,0.13), thendecreases to a fixed value. 

 Figs.4 (O1, O2) and Figs.4 (Q1, Q2) show that the infectious and recovered group increaseswith an 

increase in time 

 
Fig. 3The comparisons of the results of Ms-DTM and ParametricNDSolve package for 𝑠𝑒𝑖𝑟 Model at𝑏 =  0.25,

𝛽 =  0.5, 𝜇 =  0.625, 𝜉 = 0.3, 𝛾 =
𝜋

3
and𝜎 = 0.1. 
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Fig. 4: The comparisons of the results of Ms-DTM and ParametricNDSolve package for 𝑚𝑠𝑒𝑖𝑟 Model at𝐵 =

0.6, 𝛿 = 0.9, 𝜇 = 0.1, 𝜀 = 0.3, 𝛽 = 0.5 and𝛾 = 0.2. 
 

Table 2: Comparison between ND Solve Method and DTM for 𝑆𝐼Model at 𝑟 =  0.5 and 𝜆 =  0.8 
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Table 3: Comparison between ND Solve Method and MS-DTM for 𝑆𝐼𝑅 Model at𝑝 =  0.9, 𝛽 =  0.2, 𝛾 =  0.5 

and𝜇 = 0.7. 
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Table 4: Comparison between ND Solve Method and MS-DTM for 𝑆𝐸𝐼𝑅 Model at𝑏 =  0.25, 𝛽 =  0.5, 𝜇 =

 0.625, 𝜉 = 0.3, 𝛾 =
𝜋

3
and𝜎 = 0.1. 
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Table 5: Comparison between ND Solve Method and MS-DTM for 𝑀𝑆𝐸𝐼𝑅 Model at𝐵 = 0.6, 𝛿 = 0.9, 𝜇 =
0.1, 𝜀 = 0.3, 𝛽 = 0.5 and𝛾 = 0.2. 
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VI. Conclusion 

In this paper, semi analytical solutions have been evaluated using the Ms-DTM method and compared with 

ParametricNDSolve solutions. The results are displayed through figures andtables. 

The main findings are as follows: 

 Ms-DTM provides the solution in terms of convergent series over a sequence of subintervals. 

 SIRs models study the influence of treatment on the HIV virus. 

 Ms-DTM more reliable and accuracy than others methods. 

 Our tables show a good agreement between Ms-DTM and the Mathematica software package 

(ParametricNDSolve) and compare the errors for the given solutions by the two indicated methods.  

 The displayed data show that errors in our solutions are of magnitude less than 4.07685 × 10−16 . 
 

References 
[1] L. Bubniakov, The mathematics infectious diseases, Bratislava,15 (2007) 1-63 

[2] E. F. Doungmo, S. C. Oukouomi,and S. t. Mugisha, A fractional SEIR epidemic model for spatial and temporal 

spread of measles in meta-populations, Abstract and Applied Analysis, 10 (2014) 1-6. 

[3] A. A.Momoh, M. O. Ibrahim and K. K. Asogwa, Global equilibrium stability of habitat's B model and vaccination 

impact, Journal of Engineering and Applied Science, 6 (2011) 440-445. 

[4] N. H. Shah and J. Gupta, SEIR model and simulation for vector borne diseases, Applied Mathematics Scientific 

Research, 4(2013) 13-17. 

[5] M. Sajid, Z. Abbas, N. Ali and T. Javed,A note on solutions of the SIR models of epidemics using HAM, ISRN 

Applied Mathematics, 10 (2013) 1-4. 

[6] M. O. Ibrahim, I.I. Raji, A. Aladesuyi and A.Nwagw, On the Homotopy analysis method of MSEIR epidemic model, 

IOSR Journal of Applied Physics, 6(2014) 55-61. 

[7] H. A. Asfour and M. Ibrahim, On the differential fractional transformation method of MSEIR epidemic model, 

International Journal of Computer Applications, 113 (2015) 10-16. 

[8] M. Lisi and S. Totaro, Analysis of an age-structured MSEIR model, Rend. Sem. Mat. Univ. Pol. Torino, 66 (2008) 

113-129. 

[9] V.H. Badshah, P. Porwal and V. Tiwari, Mathematical modeling and mole of dynamics in epidemiology, 

International Journal of Computational Science and Mathematics, 5 (2013) 1-10. 

[10] H. A.Asfour and M. G. M. Ibrahim, Numerical simulation for SI model with variable-order fractional, New Trends in 

Mathematical Sciences, 2 (2016) 45-55. 

[11] Z.Odibata,C. Bertelle, M.A.Aziz and G. H. E. Duchamp, A multi-step differential transform method and application 

to non-chaotic or chaotic systems, Computers and Mathematics with Applications, 59 (2010) 1462 -1472. 

[12] K. R. Raslan, A. Biswas and Z. Abu Sheer, Differential transform method for solving partial differential equations 

with variable coefficients, International Journal of Physical Sciences, 7 (2012) 1412 - 1419. 

[13] Raslan K. R. and Z. F. Abu Sheer, Differential transform method for solving non-linear systems of partial differential 

equations, International Journal of Physical Sciences, 8(2013) 1880-1884. 

[14] K. R. Raslan and Z. F. Abu Sheer, Comparison study between differential transform method and Adomian decompo-

sition method for some delay differential equations, International Journal of Physical Sciences, 8(2013) 744-749. 

[15] R.A. Zait, A.A. El-Shekhipy and N.M. Abdo, Statistical measures approximations for the Gaussian part of the 

stochastic nonlinear damped Duffing oscillator solution process under the application of Wiener Hermite expansion 

linked by the multi-step differential transformed method, Journal of the Egyptian Mathematical Society, 6 (2016) 1–

12. 

[16] M. Hatami and J. Hatami, Differential transformation method for Newtonian and Non-Newtonian fluids low analysis: 

comparison with HPM and numerical solution, Braz. Soc. Mech. Sci. Eng., 7 (2016) 589–599. 

[17] B. Soltanalizadeh, Differential transformation method for solving one-space-dimensional telegraph equation, 

Computational and applied Mathematics, 30 (2011) 639–653. 

[18] E. R. El-Zahar, Applications of Adaptive Multi Step Differential Transform Method to Singular Perturbation 

Problems Arising in Science and Engineering, Applied Mathematics and Information Sciences, 9(2015) 223-232. 

[19] M.Keimanesh, M.M.Rashidi, A. J.Chamkha and R.Jafari, Study of a third grade non-Newtonian fluid flow between 

two parallel plates using the multi-step differential transform method, Computers and Mathematics with 

Applications, 62 (2011) 2871–2891. 

[20] W.M. Hasona, A.A. El-Shekhipy and M.G. Ibrahim, Combined effects of magnetohydrodynamic and temperature 

dependent viscosity on peristaltic flow of Jeffrey nanofluid through a porous medium: Applications to oil refinement, 

International Journal of Heat and Mass Transfer 126 (2018) 700–714. 

[21] D. Younghae and B. Jang, Enhanced multistage differential transform method application to the Population Models, 

Abstract and Applied Analysis, 14(2012) 1-15. 

 

W. M. Hasona “Computational simulation for the analytical and numericaltreatment related 

to SIRs models. IOSR Journal of Mathematics (IOSR-JM) 14.4 (2018) PP: 81-91 

 


