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Abstract: This Study investigates the performances of seemingly unrelated regression (SUR) estimators when 

the homoscedastic assumption of disturbances is violated in each of the regression equation. The finite 

properties and relative performance of the estimators to Ordinary Least Square (OLS) were examined under 

four forms of heteroscedasticity of the error terms and levels of Contemporaneous Correlation (Cc). The 

efficiency of three estimation techniques for SUR model was examined using Root Mean Square Error (RMSE) 

criterion to determine the best estimator(s) under different conditions at various sample sizes. The simulation 

results revealed that OLS estimator performed very well in small sample in the absence or low 

contemporaneous correlation at different forms of heteroscedasticity except when the form of heteroscedasticity 

is quadratic where Huber estimator was the best. Feasible Generalized Least Square (FGLS) is the most 

efficient estimator when the contemporaneous correlation (𝜌) is moderate (𝜌 = 0.5 & 𝜌 = 0.7) or high 

(𝜌=0.95) irrespective of the sample sizes or forms of heteroscedasticity. However, in large samples; OLS, 

Huber and BISQ showed equivalent performances. Above all, the relative gain of using FGLS increases 

tremendously when the Cc is high. The study concludes that no single estimator is generally efficient than the 

other under all different conditions considered. 

Key Words: Seemingly unrelated Regression, Heteroscedasticity, Homoscedasticity, Contemporaneous 

correlation and Feasible Generalized Least Square 
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I. Introduction 

Seemingly Unrelated Regression (SUR) Equations is a system of M multiple regression equations in 

which each equation has a single dependent and K (k≥1), independent or exogenous variables as in standard 

regression model.  The m equations have no link or relationship with one another except that their disturbances 

are said to be correlated. 

Zellner (1962) introduced the SUR estimation procedure for systems of regression equation as against 

the general estimation method of ordinary least square (OLS) estimator.  Prior to the introduction of SUR 

estimation procedure, OLS has been the common method of estimating the coefficient of the parameters of 

regression model.    The OLS is a single-equation estimation method that does not account for the interactions 

that may exist among the different regression equations.  The OLS is unbiased, consistent and remain the most 

efficient estimator when all the assumptions of classical linear regression model are satisfied.  The single by 

single equation estimation of SUR model without using the information from error terms across equations by 

OLS is still unbiased and consistent but seizes to be the best linear unbiased estimator (BLUE). 

In view of this, the inferences about the parameters of the model using the statistic from OLS estimator 

become invalid. Zellner (1962) viewed that the disturbance terms of these equations are likely to be 

contemporaneously correlated because of unobservable factors that influence the disturbance term in one 

equation may affect the disturbance terms in other equations.  Estimating these equations separately without 

accounting for the non-zero covariance structure of the errors leads to inefficient parameter estimates.   

However, the joint estimation procedure of SUR using the information from the correlation among the 

errors of different equations is more efficient than the separate equation estimation procedure of the ordinary 

least square (OLS) and the gain in efficiency is achieved if contemporaneous correlation between the 

disturbances across equation is very high and other assumptions of classical regression model are satisfied, see 

(Judge et al 1988; Zellner, 1962&1963; Zellner&Theil, 1962). 
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1.1. Background of the Study 

After the Proposed Aitken’s Generalized Least Squares (AGLS) estimator often reffered to as Feasible 

Generalized Least Square (FGLS) by Zellner (1962), much extensive theoretical and empirical applications of 

the work have been recorded in econometrics, statistics and other areas in recent time.  For instance, finite 

sample properties of SUR estimator (SURE) have been studied in the literature (e.gZellner, 1962 &1963; 

Kakawani, 1967, Zellner& Huang, 1962; Zellner&Theil, 1962) by asymptotic expansions (e.g. Srivastava and 

Maekawa, 1995), or by simulation (e.g. Kmenta& Gilbert, 1968). Several other researchers also work on SUR 

model under the violation of basic model assumptions in different data generating processes, such as time series, 

Panel, Cross-sectional etc.  For example, Kmenta and Gilbert (1970), considered the problem of estimating a 

system of regression equations in which the disturbances are both serially and contemporaneously correlated.  

They developed an estimator that is consistent and efficient than SURE in situation in which each of the 

disturbance follows a first order auto regressive scheme.  Other works within the SUR frame-work with 

autocorrelated disturbances and error component can be found in (Guilkey and Schmidt (1973); Avery (1977); 

Walter Kramer (1980); Baltagi (1980); Messemer and parks (2004);and Alaba(2010)). 

Takada et al (1995), presented methods of resolving the problem of non-singularity in the covariance 

matrix of the errors in the SUR model and proposed an efficient procedure of estimation.  The empirical study 

of the estimator was investigated by studying the diffusion processes of video cassette recorders across different 

geographic regions in the US, which exhibits a singular covariance matrix.  The empirical results show that the 

procedure is efficient in tackling the problem and provide plausible estimation results. 

The efficiency of SUR model when exogenous variables across-equations are correlated was 

investigated by Yahya et al (2008).  In their work, it was established that at large sample size (n≥ 50), the 

SURE would still be efficient if correlation exists among the exogenous variable in SUR model. 

However, under small and moderate sample sizes, they recommended a Tolerable non-orthogonal 

correlation point (TNCP) of ±0.2 under which SUR estimator would still be efficient. 

Situations in which the assumption of independency of error terms is violated was investigated by 

Olamide and Adepoju (2013), the performances of FGLS, Iterative Ordinary Least Squares (IOLS) and 

Ordinary Least Squares (OLS) were compared in SUR model with first order autoregressive error terms.  

Olanrewaju (2013) noted that one of the problems of time series data is autocorrelation of the error 

terms and extended the work of Yahay et al(2008) to situations where disturbances in different equations follow 

a first order autocorrelation. The effect of multicollinearity, autocorrelation and correlation between the errors 

terms on some methods of estimation of system of simultaneous equation were investigated through Monte 

Carlo experiment. He implored seemingly unrelated regression model and assumed first order autocorrelation of 

the error term. The performances of Ordinary Least Squares (OLS), Three Stage Least Squares (3SLS), Feasible 

Generalized Least Squares (FGLS), Maximum Likelihood (ML), Full Information Maximum Likelihood (FML) 

and Multivariate Regression (MR) were investigated extensively at different levels of multicollinearity, 

autocorrelation and correlation between the error terms. The results of the study shows that ML estimator is 

preferred when there is presence of autocorrelation and multicollinearity in the model. However, when there is 

correlation between the error term SUR and 3SLS should be preferred. 

SUR model also gained an appreciable application in econometrics and applied sciences, for instance 

,Sparks (2004) developed a SUR procedure that is applicable to environmental situations especially when 

missing and censored data are inevitable. 

 Singh and Ullah (1974) extended Zellner's (1962) SUR model to credibility regression model with 

random coefficient and proposed estimators that are asymptotically more efficient than Zellner's estimator.  In 

share equation systems with random coefficient, Mandy & Martins-Filho (1993) proposed a consistent and 

asymptotically efficient estimator for SUR systems that have additive heteroscedastic contemporaneous 

correlation.  They followed Amemiya (1977) by using Generalized Least Squares (GLS) to estimate the 

parameter of the covariance matrix. 

 

1.2. Justification For The Study 

The violation of each assumption has attracted the attention of many researchers especially in single 

regression model but the violation of homoscedasticity  assumption in system of regression model has not been 

adequately exploited. When errors are heteroscedastic, the consequences ofusing FGLS estimatorbased statistic 

in hypothesis testing could be disastrous than using single equation estimation for SUR model such as OLS. In 

recent time, fewer research works have been done to investigate the performances of SUR estimators under 

violation of basic model assumptions in SUR model. More so, since many real life data do not satisfy the 

Constant variance assumption of the error terms there is need for further investigation on the performances of 

FGLS relative to some alternative estimator of SUR model with different error variance structures. The present 

study therefore investigate the performances of some estimators of SUR model under different forms of 
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heteroscedasticity at various levels ofcontemporaneous correlation under different samples sizes using Monte 

Carlo simulation procedures. 

 

II. Sur Framework And Estimation Procedures 
The SUR model is given by 

𝑌𝑖 = 𝑋𝑖𝛽𝑖 + 𝜀𝑖                        𝑖 = 1, …… . ,𝑀                                                                            (2.0) 

Where 𝑌𝑖  is n x 1 vector denoting observations for the i equation and 𝑋𝑖  𝑖𝑠  a n x k matrix of non-stochastic 

regressors, 𝛽𝑖 is a k x 1 vector of parameter and n x 1 vector of disturbances  𝜀𝑖 . 
The equation (2.0) could be written compactly as; 

𝑌 = Χ𝛽 + 𝜖          (2.1) 

And in matrix form as: 
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𝑚𝑛 × 1           𝑚𝑛 ×  𝐾𝑖
𝑚
𝑖=1   𝑘𝑖

𝑚
𝑖=1  × 1  𝑚𝑛 × 1 

The assumption regarding the disturbances in equation (2.0) is that the disturbances are contemporaneously 

correlated with mean,  𝐸 𝜀 = 0  and variance-covariance of the disturbances given as Ω is 𝐸 𝜀𝜀 ′ = 𝑉𝑎𝑟 𝜀 =
Ω =∑ 𝐼where  is the Kronecker product operator, 𝐼 is an identity matrix of order  𝑁 × 𝑁 and ∑= ((𝜎𝑖𝑗 )) is an 

M×M symmetric and positive definite matrix such that 

E 𝜀𝑖𝜀
′
𝑗 =  

𝜎𝑖𝑖𝐼   𝑓𝑜𝑟 𝑖 = 𝑗,           𝑗 = 1, ………… . .𝑚
𝜎𝑖𝑗 𝐼 𝑓𝑜𝑟 𝑖 ≠ 𝑗,            𝑖 = 1, ………… . ,𝑚

      (2.3) 

𝑤𝑕𝑒𝑟𝑒 Ωis an m x m matrix of the form: 

E 𝜀𝑖𝜀
′
𝑗 = var.(𝜀𝑖)=Ω= 

𝜎11 Ι 𝜎12 Ι……. 𝜎1𝑚 Ι
𝜎21 Ι 𝜎22 Ι……. 𝜎2𝑚 Ι

:
𝜎𝑚1Ι

:
𝜎𝑚2

…….
:

𝜎𝑚𝑚 Ι

         (2.4) 

   

Estimating k × l vector of parameters in the equation (2.1) is equivalent to applying OLS to each equation since 

the covariance matrix is no longer scalar of the form 𝜎2Ι. The ordinary least-squares (OLS) estimator of 𝛽  for 

separate equation in equation (2.1) is given as 

𝛽 = (𝑋′X)−1𝑋′y           (2.5) 

The OLS estimator of equation (2.1) is unbiased and consistent but less efficient 

And its variance-covariance matrix is 

V(𝛽 ) = (𝑋′X)−1𝑋′ΩX(𝑋′X)−1         (2.6) 

Aitken (1962) suggested an infeasible estimator called generalized least square (GLS) estimator for a known m 

by m positive definite variance-covariance matrixΩ using a Weighted Least Square (WLS) approach. 

The idea is to transform the model in (2.1) such that the disturbances covariance matrix in (2.6) becomesΩ=𝜎2Ι. 
That is, transform the joint model in (2.1) by a square and invertible but non- diagonal weighting matrix A, such 

that: 

ΑΩΑ′ = Ιn ⇔ Ω = (Α′Α)−1(𝟐. 𝟕) 

Multiplying the compact SUR model in (2.3) by A, we obtain  

𝐴𝑌 = 𝐴Χ𝛽 + 𝐴𝜖                                                                              (2.8) 

With 𝑌∗ = 𝐴𝑌,    Χ∗ = ΑΧ,     𝜀∗ = Α𝜀   , 𝑡𝑕𝑒𝑛 model (2.1) becomes 

𝑌∗    = Χ∗𝛽 +     𝜀∗      (2.9) 

The E (𝜀∗ 𝜀∗′) = 𝐸 𝐴𝜀𝜀 ′𝐴′ = 𝐴𝐸(𝜀𝜀 ′)𝐴′ ) =AΩ𝐴′ = Ι𝑚 , thus the transformed model now has a diagonal 

variance- covariance matrix with all its off-diagonal elements zero. That is  E( 𝜀∗)=0 and Var(𝜀∗) = 𝜎2Ιnm . 

The generalized least square (GLS) estimator of 𝛽 in (2.9) is given by 

𝛽𝐺𝐿𝑆 
 = (Χ∗Χ∗)−1Χ∗′𝑌∗  = (Χ′Ω−1Χ)−1Χ′Ω−1𝑌      (2.10) 

And its variance- covariance matrix is  

V (𝛽𝐺𝐿𝑆) = 𝜎2(𝑋′Ω−1𝑋)−1        (2.11) 

However, in practice the value of the covariance matrix Ω is generally unknown. Zellner (1962) suggested 

replacing Ω by its consistent estimator Ω  and then estimate the parameters in SUR model in two steps called 

Feasible GLS (FGLS) estimator given as 

𝛽𝐹𝐺𝐿𝑆 =(Χ′Ω −1Χ)−1Χ′Ω −1Y     (2.12) 

Where Ω =𝑆⨂Ι is an m x m matrix based on single equation of OLS disturbances and S= (𝑠𝑖𝑗 ) , where 𝑠𝑖𝑗 =

𝜀𝑖
′𝜀𝑗 𝑛 − 𝑘, see (Yahya et.al, 2008). 
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III. Robust M- Regression Estimator 
M-estimators for regression which was introduced by Huber (1973), is a generalization of  the OLS estimation 

procedure by minimizing the sum of a less rapidly increasing function (objective function) of the residuals 

instead of minimizing the sum of squared residuals as; 

𝛽 = 𝑚𝑖𝑛 𝜌(𝑦𝑖−Χ𝑖
′𝛽)

𝑛

𝑖=1

                                                          (3.1) 

Equivalent to M-Estimator of location, the robustness of the estimator is determined by the choice of weight 

function. The solution is not scale equivariance, and thus the residuals must be standardized by a robust scale 

estimator 𝜎 𝑒  usually the median absolute deviation (MAD). Differentiating the objective function in (3.1) and 

setting the partial derivative to zero gives the score function: 

𝛽 = 𝑚𝑖𝑛 𝜓((𝑦𝑖−Χ𝑖
′𝛽)/

𝑛

𝑖=1

𝜎 𝑒)𝜒𝑖
′ = 0                                (3.2) 

Where  𝜓 is the derivative of the objective function 𝜌.The equation (3.2) is a P system of normal equations. 

Then 𝜓 is replaced by appropriate weights that decrease as the size of the residual increases, defined 

by    𝑤 𝜀 =
𝜓 𝜀 

𝜀
𝑎𝑛𝑑 𝑤𝑖=𝑤(𝜀). Hence (3.2) becomes 

𝛽 = 𝑚𝑖𝑛 𝜔𝑖((𝑦𝑖−Χ𝑖
′𝛽)/

𝑛

𝑖=1

𝜎 𝑒)𝜒𝑖
′ = 0                                          (3.3)              

In order to solve the equation in (3.3) with respect to 𝛽 , an iterative procedure called Iterative Re-Weighted 

Least Squares (IRWLS) is employed as follows; 

1. Set the iteration counter t=0 and select the initial estimates 𝛽(0) from initial OLS estimates. 

2. Calculate the residual from OLS in (1) and set as 𝜖(0) 

3. Select any weight function of choice and applied to the initial OLS residuals to create an initial 

weights, w(𝜖(0)) 

4. The first iteration, t=1, uses weighted least squares(WLS) to minimize  𝜔𝑖
1𝜀𝑖

2 and obtain 𝛽(1).In 

matrix form, W represent an n x n diagonal matrix of individual weights, the solution is 

𝛽(1) = (Χ′𝑊Χ)−1Χ′𝑊𝑌 

5. At each iteration t, calculate the residual 𝜖(𝑡−1) and associated weights w(𝜖(𝑡−1)) from previous 

iteration 

6. Solve for new WLS estimates  𝛽(𝑡) = (Χ′𝑊(𝑡−1)Χ)−1Χ′𝑊(𝑡−1)𝑌, where𝑊(𝑡−1) = 𝑑𝑖𝑎𝑔(𝑊𝑖
(𝑡−1)), the 

current weight matrix and X is the model matrix, with 𝜒𝑖
′as its i

th
 row. 

7. Steps 4-6 are repeated until the estimated coefficients converge. 

 

M-estimates based on Huber’s 𝜓 function were used in this study with Objective and bi-weight function defined 

respectively as:  

𝜌(𝜀)𝑕𝑢𝑏𝑒𝑟 =  
1

2
𝜀2             𝑓𝑜𝑟  𝜀 ≤ 𝑘

𝑘 𝜀 − 1
2𝐾

2 𝑓𝑜𝑟   𝜀 > 𝑘
       (3.4 

𝑤𝑕𝑢𝑏𝑒𝑟 =  
1             𝑓𝑜𝑟  𝜀 ≤ 𝑘

𝑘

 𝜀 
   𝑓𝑜𝑟   𝜀 > 𝑘

        (3.5) 

Huber’s 𝜓 functions have computational advantage but sensitive to leverage points,( See Maronne et al (2006) 

for more details.The choice of c = 1.345 recommended by Huber (1981) produced a relative efficiency of 

approximately 95% when the error density is normal. 

 

 

IV. Robust  Mm- Regression Estimator 
 MM-estimator is robust estimator which combines the high breakdown point of S-estimator and high 

efficiency of M estimator. Breakdown point is a measure of the proportion of outliers that can be addressed 

before these observations affect the model. The S-estimator   proposed by Rousseeuw andYohai (1984), 

minimizes the dispersion of the residuals, expressed as: 

𝑚𝑖𝑛
    1   

𝑛
   𝜌(

𝜀𝑖

𝜎 𝑒
)𝑛

𝑖    (4.1) 

Where 𝜎 𝑒  is the estimate of residual scale and 𝜌 is the weight function. 

The MM-estimator requires three stages. The first stage finds the regression parameter using S estimator which 

is consistent and has high breakdown point of 50% but not necessarily efficient. In the second stages, M 

estimator of the residuals scale is calculated using the residuals obtained from initial S estimator. The M 

estimator of the regression parameter as described in section 1.34 is then used in the third stage to estimate the 
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regression parameter that is consistent, robust to outlier with high efficiency and asymptotically normally 

distributed (Maronnaet al (2006)). The MM uses the Turkey’s objective function: 

𝑤𝑏𝑖𝑠𝑞𝑢𝑎𝑟𝑒 =  

𝑐2

6
 1 −  1 − (𝜀/𝑐]3            𝑓𝑜𝑟  𝜀 ≤ 𝑘

𝑐2

6
                                        𝑓𝑜𝑟   𝜀 > 𝑘

      (4.2) 

And Turkeybi-weight functions as: 

𝑤𝑏𝑖𝑠𝑞𝑢𝑎𝑟𝑒 =  
  1 − (𝜀/𝑐)2]2            𝑓𝑜𝑟  𝜀 ≤ 𝑐

 0                                  𝑓𝑜𝑟   𝜀 > 𝑐
      (4.3) 

Where the constant, c= 4.685 produced 95% relative efficiency (Susanti et al., 2014).  

 

V. Methodology 

The simulation study considers a system of SUR equations containing two distinct linear regression 

equations to examine the performances of single equation estimators relative to SUR estimation procedure under 

different forms of heteroscedasticity in SUR model. In view of this,the study considered four heteroscedastic 

error structures coined from Harvey (1976) additive and multiplicative heteroscedastic model but in our model 

we assumed that the variance of the error varies as the mean of the responses. These two General forms are: 

(i)    Var(ε
1
ε)= σ

2
E(yi)

θ
 and  (ii) Var(ε

1
ε)= σ

2
Ҽ

E(yi)   
 ;𝜃 ≥0, 

 

Emanating from the two above, four heteroscedastic structures were formulated, namely: 

(a) Exponential form (EXP):hi1 = σ
2
exp (α1 +γ20Xi1 + γ21Xi2)  

(b)  Linear forms (LN): hi2 = σ
2
 (α1 +γ20Xi1 + γ21Xi2)  

(c)  Square Root (SQR): hi3 = σ
2
 (α1 +γ20Xi1 + γ21Xi2)

0.5
 

(d)  Quadratic (QUAD): hi4 = σ
2
 (α1 +γ20Xi1 + γ21Xi2)

2
   i= 1,2.  

Where α1, γ20  and, γ21  are   arbitrary constant fixed for each sample size as ;  α1 =      0.6,γ20=0.8 , γ21 =
0.4, and σ

2
=1  

In order to assess the asymptotic and small sample properties of the various estimators under the violation of 

normality assumption of the responses, homoscedasticity assumption of the error terms and, the level of 

correlation among errors across equations, the entire simulation experiments was performed for various sample 

sizes (n): n=500, 250,100,50,30,20 with 100 replicates in each case. However, the model specification, form of 

heteroscedasticity and distributions used in this work are in consonant with what is in the literature with little 

modification, See ( Takada et.al, 1995; Carroll, 1982: Kmenta& Gilbert, 1968). 

The simulationstudy was generated given the SUR model in equation 1.0  as: 

𝑌1 = 𝑋1𝛽1 + 𝜀1  

𝑌2 = 𝑋2𝛽2 + 𝜀2   

With exogenous variables, error terms and parameters defined as: 

𝑋1= (1, X11 , X12);𝛽1 = (𝛽10 , 𝛽11 , 𝛽12) 

𝑋2= (1, X21 , X22);𝛽1 = (𝛽20 , 𝛽21 , 𝛽22)  and 𝜀 =(𝜀1 ,𝜀2) 

The values of the model parameters were set as follows;  

𝛽10= -20, 𝛽11 =  15, 𝛽12=13,𝛽20= 11.5   ,𝛽21 = 10.0 , and 𝛽22 =6.5 

The contemporaneous correlations between the errors from the two equations were specified as:𝜌 =
0.0 , 0.2 ,0.5 ,0.7 𝑎𝑛𝑑 0,95. 

The formulated SUR model becomes: 

yi1 =  −20 + 15Χi1 + 13Χi2+εi1 hij  ; j=1, 2,3,4.    (5.1) 

  yi2 = 11.5 + 10Χ1i + 6.5Χ2i + εi2hij  ;   for i= 1,…, n    (5.2) 

 

VI. Data Generation Procedure 
The simulations of observations for the two regression equation model of (5.1& 5.2) were given as follows: 

1. The exogenous variables [𝑋1, 𝑋2] were generated from uniform distribution with parameters a=0.5 and 

b= -0.5, U(0.5, -0.5) for various sample sizes 

2. The error terms [εi1 , εi2 ] in equation (5.1& 5.2) were drawn from normal distribution with mean=0 

and variance equals 1 ,i.e. N(0,1) 
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The heteroscedastic structure for error variance, hij   as given in section 5were generated using the specified 

values: α1 = 0.6,γ20=0.8,γ21 = 0.4,  σ
2
=1  based on generated exogenous variables [𝑋1, 𝑋2] 

1000 replications were used for different sample sizes 20, 30, 50, 100, 250 and 500. For each replication, the 

value of the parameters 𝛽1 = (𝛽10 , 𝛽11 , 𝛽12) and 𝛽1 = (𝛽20 , 𝛽21 , 𝛽22) were estimated for the following 

estimators: 

I. Feasible Generalized Least Squares (FGLS) 

II. Ordinary Least Squares (OLS) 

III. Huber M-Estimator (Huber) 

IV. Turkey Bi-Squares MM- Estimator (BISQ) 

The performances of the estimators at different heteroscedastic structures, contemporaneous correlations and 

sample sizes were evaluated using RMSE and their relative efficiency to OLS. The relative efficiency of an 

estimator is the measure of the degree to which the estimator performs similar to common method (OLS). The 

relative efficiency of two unbiased estimators, 𝜃1 and 𝜃2, of the parameter 𝜃, is defined as: 

RE= 
RMSE  (θ1)

RMSE  (θ2)
, Where, RMSE is the Root mean square error, 𝜃1 is OLS estimator and 𝜃2 is any other estimator. 

If the relative efficiency is 1, then it means that the estimator is as efficient as the OLS if the error distribution of 

the data is normal. A relativeefficiency of 1.2 for instance, implies the estimator is 20% more efficient than OLS 

estimator. 

The RMSE of the regression parameters estimator of β=(𝛽10 , 𝛽11 , 𝛽12 ,𝛽20 , 𝛽21 , 𝛽22  ) is calculated as: 

RMSE=
1

𝐾
   (𝛽𝑖𝑗𝑘 −

2
𝑗=0

2
𝑖=1 𝛽 𝑖𝑗𝑘 )2, with K = 1000 the number of replications. 

 

VII. Discussion Of Results 
Table 1, present the empirical results of parameter estimates under RMSE criterion with Relative 

Efficiency (RE) when error terms is normally distributed with constant variance at various levels of 

contemporaneous correlation and different sample sizes  

When there is low or absence of contemporaneous correlation (𝜌 = 0.0 or 0.2) between the error terms 

in different equations with constanterror terms is the best estimator is OLS at small sample sizes (n ≤ 20) using 

RMSE criterion. The OLS estimator performs better than FGLS, Huber estimator and BISQ estimator in small 

sample size under low contemporaneous correlation. 

When the contemporaneous correlation is moderate or high (𝜌 ≥ 0.5)  at various sample sizes n≤500 

with homoscedastic error term using RMSE criterion, the performance of FGLS improves as the 

contemporaneous correlation increases. In small sample, the relative efficiency of FGLS to OLS ranges between 

5% to 51% and even higher in moderate ( n= 50 &100) to large sample(n= 250 &500). However, OLS is 

consistently performed better than BISQ and Huber estimators. 

 

Table 1: Empirical Result of Estimators for Homoscedastic Normal Error Model 

  CORRELATION 

ρ=0.0 

CORRELATION 

ρ=0.2 

CORRELATION 

ρ=0.5 

CORRELATION 

ρ=0.7 

CORRELATION 

ρ=0.95 

  RMSE RE RMSE RE RMSE RE RMSE RE RMSE RE 

20 

OLS 4.4535   4.7095   4.8015   4.8411   4.5769   

FGLS 4.5317 0.98 4.7931 0.98 4.5699 1.05 4.2472 1.14 1.9805 2.31 

HUBER 4.5850 0.97 4.9131 0.96 4.9843 0.96 5.0528 0.96 4.7537 0.96 

BI-SQ 4.6445 0.96 5.0206 0.94 5.1022 0.94 5.2444 0.92 4.9033 0.93 

30 

OLS 3.4592   3.7493   3.6893   3.6521   3.7431   

FGLS 3.5417 0.98 3.7559 1.00 3.5398 1.04 3.3138 1.10 1.4901 2.51 

HUBER 3.6008 0.96 3.8617 0.97 3.8215 0.97 3.7446 0.98 3.8935 0.96 

BI-SQ 3.6403 0.95 3.9103 0.96 3.8548 0.96 3.8002 0.96 3.8980 0.96 

50 

OLS 2.7268   2.8150   2.7688   2.8695   2.6579   

FGLS 2.7414 0.99 2.7787 1.01 2.5514 1.09 2.5789 1.11 1.0673 2.49 

HUBER 2.7573 0.99 2.8281 1.00 2.7740 1.00 2.9087 0.99 2.7160 0.98 

BI-SQ 2.7806 0.98 2.8354 0.99 2.7831 0.99 2.9227 0.98 2.7230 0.98 

100 

OLS 1.9524   1.9006   1.9079   2.0032   1.7647   

FGLS 1.9490 1.00 1.8660 1.02 1.7360 1.10 1.7549 1.14 0.6933 2.55 

HUBER 1.9931 0.98 1.9162 0.99 1.9354 0.99 2.0321 0.99 1.8079 0.98 

BI-SQ 1.9919 0.98 1.9240 0.99 1.9391 0.98 2.0343 0.98 1.8046 0.98 

250 

OLS 1.1915   1.2089   1.2068   1.2374   1.1745   

FGLS 1.1885 1.00 1.1876 1.02 1.1084 1.09 1.1126 1.11 0.4579 2.56 

HUBER 1.2220 0.98 1.2521 0.97 1.2558 0.96 1.2833 0.96 1.2055 0.97 

BI-SQ 1.2198 0.98 1.2486 0.97 1.2504 0.97 1.2876 0.96 1.2031 0.98 

500 
OLS 0.8266   0.8239   0.8304   0.8466   0.8475   

FGLS 0.8267 1.00 0.8067 1.02 0.7634 1.09 0.7585 1.12 0.2995 2.83 
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HUBER 0.8331 0.99 0.8540 0.96 0.8657 0.96 0.8801 0.96 0.8738 0.97 

BI-SQ 0.8330 0.99 0.8522 0.97 0.8655 0.96 0.8787 0.96 0.8719 0.97 

 

From Table 2, the results showed that with sample sizes n=20 &30 at low correlation (ρ =0.2), OLS has 

the minimum RMSE in estimating the model parameters compared to other estimators. The relative efficiency 

of all other estimator (compared with OLS) is less than 1. The OLS is the most preferred estimator while FGLS 

and Huber estimators show equivalent behavior. 

At moderate sample size n=50& 100 with low Cc all the estimators are consistent and their RMSE is 

almost the same. However, FGLS remain the most efficient. 

Also, when the correlation is moderate or high (ρ≥0.5), the FGLS has the minimum RMSE with 

efficiency gain of 4% (RE=1.04) over OLS estimator. Meanwhile the performances of Huber and BISQ 

estimator are equivalent with that of OLS most especially when the sample size is large ( n≥50). 

However, the RMSE of FGLS increases tremendously as the Contemporaneous correlation increases. 

In particular, when Cc is high (ρ=0.95), the relative efficiency of FGLS is 2 to 2.6 times that of OLS estimator. 

 

Table 2: Empirical Result of Estimators for Exponential Heteroscedastic for Normal Error Model 

  CORRELATION 

ρ=0.0 

CORRELATION 

ρ=0.2 

CORRELATION 

ρ=0.5 

CORRELATION 

ρ=0.7 

CORRELATION 

ρ=0.95 

  RMSE RE RMSE RE RMSE RE RMSE RE RMSE RE 

20 

OLS 10.0200   10.4146   10.6142 - 10.7729 - 10.1354 - 

FGLS 10.1960 0.98 10.6635 0.98 10.2235 1.04 9.4879 1.14 4.7483 2.13 

HUBER 10.2541 0.98 10.7502 0.97 10.8785 0.98 11.0847 0.97 10.5437 0.96 

BI-SQ 10.3843 0.96 10.9863 0.95 11.1206 0.95 11.5202 0.94 10.7944 0.94 

30 

OLS 7.7712   8.3260 - 8.2051 - 8.1789 - 8.2941 - 

FGLS 7.9676 0.98 8.3994 0.99 7.9191 1.04 7.4135 1.10 3.4593 2.40 

HUBER 7.9757 0.97 8.4810 0.98 8.3834 0.98 8.2812 0.99 8.5076 0.97 

BI-SQ 8.0965 0.96 8.5565 0.97 8.4880 0.97 8.4239 0.97 8.5379 0.97 

50 

OLS 6.1907   6.2732  - 6.1810  - 6.4304  - 5.9509  - 

FGLS 6.2386 0.99 6.1816 1.01 5.6953 1.09 5.7721 1.11 2.5192 2.36 

HUBER 6.1332 1.01 7.2331 0.87 6.1274 1.01 6.4262 1.00 6.0101 0.99 

BI-SQ 6.1511 1.01 6.2347 1.01 6.1068 1.01 6.4551 1.00 6.0090 0.99 

100 

OLS 4.3631   4.2235  - 4.2589  - 4.4930  - 3.9530  - 

FGLS 4.3636 1.00 4.1370 1.02 3.8753 1.10 3.9459 1.14 1.6292 2.43 

HUBER 4.3797 1.00 4.2187 1.00 4.2603 1.00 4.4716 1.00 3.9966 0.99 

BI-SQ 4.3902 0.99 4.2593 0.99 4.2996 0.99 4.5010 1.00 4.0142 0.98 

250 

OLS 2.6025   2.6958  - 2.7006  - 2.7543  - 2.6092  - 

FGLS 2.5993 1.00 2.7190 0.99 2.4966 1.08 2.4816 1.11 1.0975 2.38 

HUBER 2.6276 0.99 2.7456 0.98 2.7623 0.98 2.8152 0.98 2.6573 0.98 

BI-SQ 2.6550 0.98 2.7467 0.98 2.7554 0.98 2.8312 0.97 2.6625 0.98 

500 

OLS 1.8587   1.8388  - 1.8490  - 1.8984  - 1.8820  - 

FGLS 1.8591 1.00 1.8000 1.02 1.6988 1.09 1.7045 1.11 0.7199 2.61 

HUBER 1.8552 1.00 1.8763 0.98 1.8972 0.97 1.9371 0.98 1.9199 0.98 

BI-SQ 1.8556 1.00 1.8785 0.98 1.9068 0.97 1.9400 0.98 1.9322 0.97 

 

Table 3 shows the simulation results for estimating the model parameters when error is linearly 

heteroscedasticity at different levels of contemporaneous correlation. With low correlation (ρ=0.2), OLS 

estimator maintained minimum RMSE at sample sizes 20 & 30. At sample sizes n≥50, all the estimators 

performed equally best. FGLS has the least RMSE with relative efficiency of 102% compared to OLS estimator. 

However, the efficiency of Huber and BISQ relative to OLS is 101%, 100% and 101%, 101% respectively for 

sample sizes 50 & 100. 

When the Cc is high (ρ≥0.5) and error is linearly heteroscedastic the RMSE for FGLS increases 

drastically with efficiency gain of 2 to 2.4 times that of OLS.The Huber and BISQ compete favorably well with 

OLS at small sample and equivalent at sample sizes n≥50. 

 

Table 3: Empirical Result of Estimators for Linear Heteroscedastic Normal Error Model 

  CORRELATION 

ρ=0.0 

CORRELATION 

ρ=0.2 

CORRELATION 

ρ=0.5 

CORRELATION 

ρ=0.7 

CORRELATION 

ρ=0.95 

  RMSE RE RMSE RE RMSE RE RMSE RE RMSE RE 

20 

OLS 3.5736   3.6955  3.7673  3.8308  3.5980  

FGLS 3.6355 0.98 3.7899 0.98 3.6421 1.03 3.3841 1.13 1.7500 2.06 

HUBER 3.6337 0.98 3.7909 0.97 3.8325 0.98 3.9084 0.98 3.7329 0.96 

BI-SQ 3.6977 0.97 3.8902 0.95 3.9294 0.96 4.0763 0.94 3.8183 0.94 

30 OLS 2.7706   2.9567  2.9150  2.9098  2.9428  
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FGLS 2.8416 0.98 2.9871 0.99 2.8179 1.03 2.6414 1.10 1.2693 2.32 

HUBER 2.8232 0.98 2.9877 0.99 2.9582 0.99 2.9325 0.99 3.0002 0.98 

BI-SQ 2.8699 0.97 3.0227 0.98 3.0024 0.97 2.9852 0.97 3.0121 0.98 

50 

OLS 2.2077   2.2312  2.2001  2.2899  2.1174  

FGLS 2.2266 0.99 2.1981 1.02 2.0288 1.08 2.0581 1.11 0.9315 2.27 

HUBER 2.1713 1.02 2.1999 1.01 2.1640 1.02 2.2728 1.01 2.1222 1.00 

BI-SQ 2.1728 1.02 2.2054 1.01 2.1598 1.02 2.2856 1.00 2.1277 1.00 

100 

OLS 1.5531   1.4992  1.5133  1.5978  1.4065  

FGLS 1.5542 1.00 1.4681 1.02 1.3786 1.10 1.4062 1.14 0.6049 2.33 

HUBER 1.5476 1.00 1.4876 1.01 1.5023 1.01 1.5766 1.01 1.4107 1.00 

BI-SQ 1.5516 1.00 1.5046 1.00 1.5198 1.00 1.5887 1.01 1.4222 0.99 

250 

OLS 0.9210   0.9574  0.9604  0.9779  0.9273  

FGLS 0.9202 1.00 0.9432 1.02 0.8899 1.08 0.8833 1.11 0.4092 2.27 

HUBER 0.9219 1.00 0.9675 0.99 0.9737 0.99 0.9912 0.99 0.9393 0.99 

BI-SQ 0.9350 0.99 0.9702 0.99 0.9736 0.99 0.9994 0.98 0.9435 0.98 

500 

OLS 0.6627   0.6532  0.6564  0.6743  0.6674  

FGLS 0.6628 1.00 0.6398 1.02 0.6042 1.09 0.6070 1.11 0.2688 2.48 

HUBER 0.6574 1.01 0.6620 0.99 0.6688 0.98 0.6835 0.99 0.6768 0.99 

BI-SQ 0.6582 1.01 0.6637 0.98 0.6736 0.97 0.6854 0.98 0.6828 0.98 

 

Table 4 shows similar picture as Table 1.2a does under low contemporaneous correlation (0.2) when 

error is linearly Heteroscedastic. OLS is the most efficient estimator. The relative efficiency of other estimator is 

less than 100% indicating OLS minimum RMSE. 

However, as the sample size increases (n≥50), all the estimators performed almost equally with FGLS 

being the most efficient estimator showing relatively minimum RMSE. While the RE of other estimator reduces, 

FGLS maintained relative efficiency of 102%. 

When contemporaneous correlation is moderate (ρ=0.5) under square root heteroscedasticity, OLS sill 

retained its efficiency at small sample size but OLS performance decreases with increase in contemporaneous 

correlation. Meanwhile the efficiency of FGLS increases with an increase in contemporaneous correlation. 

For sample sizes n≥50 and ρ=0.5, Huber and BISQ estimator behave equally well but below the OLS. 

However, FGLS remain the best and most efficient estimator. 

 

Table 4: Empirical Result of Estimators for Square-Root Heteroscedastic Normal Error Model 

  CORRELATION 

ρ=0.0 

CORRELATION 

ρ=0.2 

CORRELATION 

ρ=0.5 

CORRELATION 

ρ=0.7 

CORRELATION 

ρ=0.95 

  RMSE RE RMSE RE RMSE RE RMSE RE RMSE RE 

20 

OLS 3.9519   4.1325 - 4.2131 - 4.2655 - 4.0172  - 

FGLS 4.0213 0.98 4.2239 0.98 4.0395 1.04 3.7457 1.14 1.8043 2.23 

HUBER 4.0668 0.97 4.2897 0.96 4.3487 0.97 4.4163 0.97 4.1909 0.96 

BI-SQ 4.1029 0.96 4.3686 0.95 4.4205 0.95 4.5822 0.93 4.2761 0.94 

30 

OLS 3.0663   3.2968 - 3.2467 - 3.2265 - 3.2888 - 

FGLS 3.1420 0.98 3.3177 0.99 3.1259 1.04 2.9233 1.10 1.3223 2.49 

HUBER 2.5519 1.20 3.3775 0.98 3.3412 0.97 3.2892 0.98 3.3935 0.97 

BI-SQ 3.2055 0.96 3.4095 0.97 3.3697 0.96 3.3396 0.97 3.4025 0.97 

50 

OLS 2.4282   2.4832 - 2.4455 - 2.5397 - 2.3502 - 

FGLS 2.4456 0.99 2.4481 1.01 2.2513 1.09 2.2784 1.11 0.9551 2.46 

HUBER 2.4293 1.00 2.4795 1.00 2.4395 1.00 2.5545 0.99 2.3915 0.98 

BI-SQ 2.4382 1.00 2.4812 1.00 2.4331 1.01 2.5656 0.99 2.3875 0.98 

100 

OLS 1.7240   1.6711 - 1.6821 - 1.7717 - 1.5594 - 

FGLS 1.7232 1.00 1.6386 1.02 1.5300 1.10 1.5519 1.14 0.6177 2.52 

HUBER 1.7422 0.99 1.6806 0.99 1.6963 0.99 1.7813 0.99 1.5910 0.98 

BI-SQ 1.7459 0.99 1.6890 0.99 1.7035 0.99 1.7853 0.99 1.5885 0.98 

250 

OLS 1.0368   1.0650 - 1.0652 - 1.0889 - 0.9915 - 

FGLS 1.0350 1.00 1.0476 1.02 0.9817 1.09 0.9788 1.11 0.4110 2.41 

HUBER 1.0547 0.98 1.0937 0.97 1.0991 0.97 1.1222 0.97 1.0550 0.94 

BI-SQ 1.0591 0.98 1.0916 0.98 1.0944 0.97 1.1260 0.97 1.0558 0.94 

500 

OLS 0.7327   0.7263 - 0.7309 - 0.7482 - 0.7446 - 

FGLS 0.7328 1.00 0.7112 1.02 0.6715 1.09 0.6708 1.12 0.2677 2.78 

HUBER 0.7353 1.00 0.7472 0.97 0.7561 0.97 0.7707 0.97 0.7647 0.97 

BI-SQ 0.7350 1.00 0.7470 0.97 0.7580 0.96 0.7707 0.97 0.7665 0.97 

 

Table 5 presents the RMSE and RE for the model parameters when error is normally distributed and 

the variance structure for the error is quadratic. At ρ=0.2 under quadratic form of heteroscedasticity, the results 

reveal that neither OLS nor FGLS could maintain the small sample property as it does under other forms of 

heteroscedasticity. However, Huber estimator outperforms all other estimator showing relative minimum RMSE 
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at sample sizes n≤30. At sample sizes n≥50, Huber, BISQ and FGLS perform almost in similar manner with 

efficiency gain of 5%, 4% and 2%, for n=50, 5%, 3% and 2%, for n=100, 4%, 1% and 1% for n=250 and 4%, 

2% and 2%, for n=500 respectively, relative to OLS. Therefore at ρ=0.2, quadratic heteroscedastic error terms 

and n≥50, Huber is the most efficient estimator. 

When Cc is moderate (ρ=0.5), the FGLS and Huber estimator perform equally well with both 

estimators showing relatively minimum RMSE. Most importantly at sample size n≤30, the efficiency of FGLS 

and Huber relative to OLS are the same (102% and 103% for sample sizes 20 & 30 respectively. Meanwhile 

OLS performs better than BISQ. At sample sizes (n≥50), the performance of BISQ estimator improves with 

increase in sample size. The performances of FGLS, Huber and Bi-SQ are almost equivalent but FGLS is the 

most efficient with efficiency gain of 6 to 9% relative to OLS. 

With high Cc (ρ ≥0.7), the performances of Huber and BISQ is very encouraging under Quadratic 

heteroscedasticity than under Linear, Exponential and Square Root Heteroscedasticity. The two estimators 

performed better than OLS while FGLS is the most efficient estimator. However, the gain in efficiency of FGLS 

relatively to OLS increases at relative slow rate in Quadratic heteroscedasticity at ρ=0.95 than in other forms of 

heteroscedasticity. 

 

VIII. Conclusion 

In conclusion, the study revealed that level of contemporaneous correlation and sample sizes affects the 

performances of the estimators considered. Therefore, we recommend OLS estimator for estimating the 

parameters of SUR model with heteroscedastic error terms when there is low or absence of Cc with small 

sample size except when there is quadratic heteroscedastic error terms where Huber estimator is recommended 

in small sample. However, with moderate to high Cc regardless of sample sizes FGLS is the efficient estimator 

of SUR model with heteroscedsatic error terms. 

 

Table 5: Empirical Result of Estimators for Quadratic Heteroscedastic Normal Error Model 

  CORRELATION 

ρ=0.0 

CORRELATION 

ρ=0.2 

CORRELATION 

ρ=0.5 

CORRELATION 

ρ=0.7 

CORRELATION 

ρ=0.95 

  RMSE RE RMSE RE RMSE RE RMSE RE RMSE RE 

20 

OLS 3.0700   3.1123  3.1733  3.2547  3.0511  

FGLS 3.1223 0.98 3.2049 0.97 3.1195 1.02 2.9447 1.11 1.8609 1.64 

HUBER 2.9966 1.02 3.0809 1.01 3.1246 1.02 3.2184 1.01 3.0790 0.99 

BI-SQ 3.1210 0.98 3.2400 0.96 3.2532 0.98 3.3741 0.96 3.1854 0.96 

30 

OLS 2.3816   2.5113  2.4837  2.5031  2.4812  

FGLS 2.4452 0.97 2.5483 0.99 2.4188 1.03 2.2998 1.09 1.3165 1.88 

HUBER 2.3382 1.02 2.4356 1.03 2.4142 1.03 2.4118 1.04 2.4406 1.02 

BI-SQ 2.4040 0.99 2.5083 1.00 2.4967 0.99 2.4830 1.01 2.4746 1.00 

50 

OLS 1.9256   1.8945  1.8723  1.9568  1.8089  

FGLS 1.9449 0.99 1.8659 1.02 1.7426 1.07 1.7798 1.10 0.9945 1.82 

HUBER 1.8053 1.07 1.8003 1.05 1.7581 1.06 1.8744 1.04 1.7300 1.05 

BI-SQ 1.8103 1.06 1.8175 1.04 1.7794 1.05 1.8929 1.03 1.7763 1.02 

100 

OLS 1.3294   1.2747  1.2933  1.3695  1.2080  

FGLS 1.3324 1.00 1.2458 1.02 1.1877 1.09 1.2281 1.12 0.6533 1.85 

HUBER 1.2658 1.05 1.2087 1.05 1.2213 1.06 1.2754 1.07 1.1546 1.05 

BI-SQ 1.2781 1.04 1.2410 1.03 1.2562 1.03 1.3018 1.05 1.1919 1.01 

250 

OLS 0.7702   0.8176  0.8239  0.8342  0.7963  

FGLS 0.7709 1.00 0.8084 1.01 0.7768 1.06 0.7685 1.09 0.4571 1.74 

HUBER 0.7348 1.05 0.7871 1.04 0.7930 1.04 0.8036 1.04 0.7724 1.03 

BI-SQ 0.7625 1.01 0.8062 1.01 0.8100 1.02 0.8217 1.02 0.7872 1.01 

500 

OLS 0.5718   0.5574  0.5594  0.5774  0.5662  

FGLS 0.5721 1.00 0.5468 1.02 0.5193 1.08 0.5273 1.10 0.3041 1.86 

HUBER 0.5406 1.06 0.5376 1.04 0.5458 1.02 0.5573 1.04 0.5492 1.03 

BI-SQ 0.5485 1.04 0.5452 1.02 0.5549 1.01 0.5658 1.02 0.5612 1.01 

 

References 
[1]. Aitken, A. C., 1934-35, On Least-Squares and Linear Combination of Observations. Proceedings of the    Royal Society of 

Edinburgh. 55, 42 - 48.  
[2]. Amemiya, T. (1977).  A   Note on a Heteroscedastic Model.  Journal   of Econometrics, 6, 365 – 370.  

[3]. Avery, R. B. (1977). Error Components and Seemingly unrelated regressions. Econometrica45 , 199-209. 

[4]. Baltagi, B. H. (1980). On seemingly unrelated regressions with error Components. Econometrica, 48(6), 1547-1551. 

[5]. Carroll, R. J. (1982). Adapting for Heteroscedasticity in Linear models. Annals of Statistics, 10(4), 1224-1233. 

[6]. Guilkey, D. K. and P. Schmidt. (1973) Estimation of Seemingly Unrelated Regressions with Vector Autoregressive Errors, Journal 
of the American Statistical Association. 68, 642-647.  

[7]. Harvey, A. C. (1976). Estimating Regression Model with Multiplicative heteroscedasticity, Econometrica, 44(3) , 461-465. 

[8]. Huber, P. J. (1981). Robust Statistics,Wiley,NewYork. 



On The Efficiency of Some Estimators for Modeling Seemingly Unrelated Regression with .. 

DOI: 10.9790/5728-1404030113                                  www.iosrjournals.org                                        10 | Page 

[9]. Huber, P.J. (1973). Robust Regression:Asymptotics, Conjectures and Monte Carlo, Annals of Statitics, 1(5); 799-821. 

[10]. Judge, G. G., Hill, R.C., Griffiths, W. E. and Lutkepohl, H. (1988). Introduction to theory and practice of Econometrics, 2nded. New 

York ,Wiley, 444-468. 
[11]. Kakwani, N. C. (1967). The unbiasedness of Zellner’s Seemingly Unrelated Regression Equations Estimators. Journal of the 

American Statistical Association, 62: 141 – 142. 

[12]. Kmenta,  J. and Gilbert, R. F., (1970). Estimation of seemingly unrelated regressions with autoregressive disturbances. Journal of 
the American Statistical Association, 65, 186-197. 

[13]. Kmenta, J. and Gilbert, R. F., (1968). Small Sample Properties of Alternative Estimators of Seemingly Unrelated Regression. 

Journal of American Statistical Association, 63, 1180-1200.  
[14]. Kramer, W., (1980).Finite Sample Efficiency of Ordinary Least Squares in the Linear Regression Model with Autocorrelated 

Errors.Journal of the American Statistical Association, 75(372): 1005-1009.  

[15]. Mandy, D. M. and Martins-Filho, C., (1993). Seemingly Unrelated Regressions Under Additive Heteroscedasticity: Theory and 
share equation applications. Journal of Econometrics, 58, 315 – 346. 

[16]. Maronna, R. A., Martin, R. D. and Yohai, V. J. (2006). Robust Statistics: Theory and Methods. John Wiley and Sons Ltd, England. 

[17]. Messemer, C. and Parks, R. W., (2004). Bootstrap Methods for Inference in a SUR model with Autocorrelated 
Disturbances.University of Washington Economics Working Paper No. UWEC-2004-24 

[18]. Olanrewaju, S.O.(2013). Effect of Multicollinearity and Autocorrelation on some Estimators of System of Regression equations. 

Unpublished PhD thesis Submitted to Department Of Statistics, University of Ilorin. 
[19]. R Development Core Team (2008). R: A Language and Environment for Statistical Computing. R Foundation for Statistical 

Computing, Vienna, Austria. ISBN 3-900051-07-0.      

[20]. Rousseeuw, P. J. and Yohai, V. J. (1984). Robust Regression by Mean of S Estimators, Robust and Nonlinear Time Series Analysis, 
New York, 256-274, doi: 10.1007/978-1-4615-7821-5-15. 

[21]. Singh, B. and Ullah, A. (1974). Estimation of seemingly unrelated regressions with random coefficients. Journal of the American 

Statistical Association, 69 , 191-195. 
[22]. Sparks, R. ,(2004). SUR Models Applied to an Environmental situation with missing Data and Censored Values. Journal of Applied 

mathematics and Decision Sciences. 8, 15-32. 

[23]. Srivastava,V. K. and Maekawa, K.,(1995). Efficiency properties of feasible generalized least squares estimators in SURE models 
under non-normal.Journal of Econometrics, 66, 99-121. https://doi.org/10.1016/0304-4076(94)01609-4 

[24]. Takada, H., Ullah, A. and Chen, Yu-Min (1995).Estimation of seemingly unrelated regression model when the error covariance 

matrix is singular. Journal of the Applied Statistics, 22(4), 517-530 
[25]. Yahya W. B., Adebayo, S. B., Jolayemi, E.T., Oyejola, B. A. and Sanni, O.O.M.(2008). Effects of non-orthogonally on the 

efficiency of seemingly unrelated regression (SUR) models. InterStat Journal,  http://interstat.statjournals.net/.29. 

[26]. Zellner, A. (1962). An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. Journal of the 
American Statistical Association, 57, 348-368.  

[27]. Zellner, A. (1963). Estimators for seemingly unrelated regression equations: some exact finite sample results. Journal of the 

American Statistical Association 58: 977-992. 
[28]. Zellner, A. and  Theil, H. (1962). Three-Stage Least Squares: Simultaneous Estimation of Simultaneous Equations. 

Econometrical,30, 54 – 78. 
[29]. Zellner, A. and Huang, D.S. (1962). Further properties of efficient estimators for seemingly unrelated regression equations. 

International Economic Review 3(3): 300-313. 

 

 

APPENDIX I 

GRAPHICAL DESCRIPTION OF THE PERFORMANCES OF ESTIMATORS CONSIDERED IN THE 

STUDY 

 

OLS

F
G

L
S

H
U

B
E

R

B
I-

S
Q

R

OLS

F
G

L
S

H
U

B
E

R

B
I-

S
Q

R

OLS

F
G

L
S

H
U

B
E

R

B
I-

S
Q

R

OLS

F
G

L
S

H
U

B
E

R

B
I-

S
Q

R

OLS

F
G

L
S

H
U

B
E

R

B
I-

S
Q

R

OLS

F
G

L
S

H
U

B
E

R

B
I-

S
Q

R

0

2

4

6

8

10

12

R
M

S
E

 o
f 

p
a
ra

m
e
te

r 
e
s
ti

m
a
te

s

20 30 50 100 250 500

Sample size(N)

Fig.1.1a: Bar chart showing the Performance of Estimators using RMSE Criterion at different 
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Normal, uncorrelated across the equations and Linearly heteroscedastic(Q=1)
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Fig.2.1b:Bar chart showing performance of estimators using RMSE criterion when error is 

Normal, correlated error (R=0.2) and Linearly heterosedastic(Q=1)
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Fig.3.1b:Bar chart showing performance of estimators using RMSE criterion when error is 

Normal, correlated error (R=0.5) and Linearly heterosedastic(Q=1)
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Fig.4.1b:Bar chart showing performance of estimators using RMSE criterion when error is 

Normal, correlated error (R=0.7) and Linearly heterosedastic(Q=1)
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Fig.5.1b:Bar chart showing performance of estimators using RMSE criterion when error is 

Normal, correlated error (R=0.95) and Linearly heterosedastic(Q=1)

OLS FGLS HUBER BI-SQR



On The Efficiency of Some Estimators for Modeling Seemingly Unrelated Regression with .. 

DOI: 10.9790/5728-1404030113                                  www.iosrjournals.org                                        12 | Page 

OLS

F
G

L
S

H
U

B
E

R

B
I-

S
Q

R

OLS F
G

L
S

H
U

B
E

R

B
I-

S
Q

R
OLS

F
G

L
S

H
U

B
E

R

B
I-

S
Q

R

OLS

F
G

L
S

H
U

B
E

R

B
I-

S
Q

R

OLS

F
G

L
S

H
U

B
E

R

B
I-

S
Q

R

OLS

F
G

L
S

H
U

B
E

R

B
I-

S
Q

R

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R
M

S
E

 o
f 

p
a
ra

m
e
te

r 
e
s
ti

m
a
te

s

20 30 50 100 250 500

Sample size(N)

Fig.1.1c: Bar chart showing performance of estimators using RMSE criterion when error is 

Normal, uncorrelated across the equations and  heteroscedastic(Q=0.5)
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Fig.2.1c:Bar chart showing performance of estimators using RMSE criterion when error is 

Normal, correlated error(R=0.2) and  heteroscedastic(Q=0.5)
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Fig.3.1c:Bar chart showing performance of estimators using RMSE criterion when error is 

Normal, correlated error(R=0.5) and  heteroscedastic(Q=0.5)
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Fig.4.1c:Bar chart showing performance of estimators using RMSE criterion when error is 

Normal, correlated error(R=0.7) and  heteroscedastic(Q=0.5)

OLS FGLS HUBER BI-SQR

OLS

FGLS

H
U

B
E

R

B
I-

S
Q

R

OLS

FGLS

H
U

B
E

R

B
I-

S
Q

R

OLS

FGLS

H
U

B
E

R

B
I-

S
Q

R

OLS

FGLS

H
U

B
E

R

B
I-

S
Q

R

OLS

FGLS

H
U

B
E

R

B
I-

S
Q

R

OLS

FGLS

H
U

B
E

R

B
I-

S
Q

R

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R
M

S
E

 o
f 

p
a
ra

m
e
te

r 
e
s
ti

m
a
te

s

20 30 50 100 250 500

Sample size(N)

Fig.5.1c:Bar chart showing performance of estimators using RMSE criterion when error is 

Normal, correlated error(R=0.95) and  heteroscedastic(Q=0.5)
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Fig.1.1g:Bar chart showing performance of estimators at diferent level of heteroscedasticity 

using RMSE criterion when error is Normal, uncorrelated across the equations
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Fig.2.1g:Bar chart showing performance of estimators at diferent level of heteroscedasticity 

using RMSE criterion when error is Normal, correlated across the equations(R=0.2)
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Fig.3.1g:Bar chart showing performance of estimators at diferent level of heteroscedasticity 

using RMSE criterion when error is Normal, correlated across the equations(R=0.5)
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Fig.4.1g:Bar chart showing performance of estimators at diferent level of heteroscedasticity 

using RMSE criterion when error is Normal, correlated across the equations(R=0.7)

OLS FGLS HUBER BI-SQR

OLS

FGLS

H
U

B
E

R

B
I-

S
Q

R

OLS

FGLS

H
U

B
E

R

B
I-

S
Q

R

OLS

FGLS

H
U

B
E

R

B
I-

S
Q

R

OLS

FGLS

H
U

B
E

R

B
I-

S
Q

R

OLS

FGLS

H
U

B
E

R

B
I-

S
Q

R

0

1

2

3

4

5

6

R
M

S
E

 o
f 

p
a
ra

m
e
te

r 
e
s
ti

m
a
te

s

Exp Q=1 Q=0 Q=0.5 Q=2

Form of heteroscedasticity

Fig.5.1g:Bar chart showing performance of estimators at diferent level of heteroscedasticity 

using RMSE criterion when error is Normal, correlated across the equations(R=0.95)
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