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AbstractThere are many methods for solving a nonlinear algebraic equation. Here a recurrence iteration for-

mula for two-roots finding is derived based on the quadratic expansion of Taylor series. The general formula of 

quadratic equation is obtained using the derived formula. A family of iteration functions is derived from the 

derived formula. This family includes the Newton,Patrik, Halley, and Schroder’smethods.All methods of the 

family are cubically convergent for a simple root(except Newton's which is quadratically convergent).A simple 

general formula is derived and proved to be one of the familyof Halley-like method. 
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I. Introduction 
The root-finding problem is one of the most important computational problems. It arises ina wide variety of 

practical applications in physics, chemistry, biosciences, engineering,etc. 

 

In 1694 Halley [1] developed the third order method given by 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓𝑛

𝑓𝑛
′ −

𝑓𝑛𝑓𝑛
′′

2𝑓𝑛
′

 

 

Here, and in the following, we denote 𝑓𝑛 = 𝑓 𝑥𝑛  and similarly for the derivatives. 

 

Since the method requires the evaluation of the function and its first and second derivatives, then we can say that 

theefficiency index (see Traub [2]) is 𝐸 = 𝑝1/𝑑 = 3(1/3) = 1.44 , which is higher than Newton’s efficiency index 

of 1.4142. Thisis assuming that the cost of the derivatives is the same as the function. 

 

Wynn [3] noted that methods using second derivatives are very useful for evaluating zeros of functions satisfying 

asecond order ordinary differential equation (e.g., Bessel’s functions). In such cases the evaluation of second 

derivatives istrivial and thus the increase in efficiency. 

 

Hansen, Eldon, and Merrell Patrick [2] derived a one parameter family of iteration functions forroot finding. This 

family includes the Laguerre, Halley, Ostrowski, and Eulermethods and, as a limiting case, Newton's method. 

 

Several new methods for solving one nonlinear equation are developed by BenyNeta[3]. Most of the methods are 

of order three and they require the knowledge of 𝑓, 𝑓 ′  𝑎𝑛𝑑 𝑓 ′′ . See also Scavo, T. R., and J. B. Thoo[4], Thoo, J. 

B[5] and Neta, Beny, and Melvin Scott[6]  

 

In this paper a new approach of a family of iteration functions forroot finding is derived based on quadratic ex-

pansion of Taylor series. This family includes the Newton, Patrik, Halley, and Schroder methods.All the methods 

of the family are cubically convergent for a simple root(except Newton's which is quadratically convergent). Also, 

the general formula of quadratic equation is obtained using the derived formula. 

 

II. Basic Fundamentals 
In this section the basic fundamentals of Taylor’s theorem as well as the forward, backward and central differ-

ence approximations of higher order derivative are reviewed. 

 

Taylor’s Theorem: If f is a function continuous and n times differentiable inan interval [x, x + h], then there 

exists some point in this interval, denoted byx + λh for some λ є [0, 1], such that 
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𝑓 𝑥 + ℎ = 𝑓 𝑥 +  ℎ𝑓 ′ 𝑥 +  
ℎ2

2
𝑓 ′′  𝑥 +⋯      +

ℎn−1

 n−1 !
𝑓𝑛−1 𝑥 +

ℎn

n!
𝑓𝑛 𝑥 + 𝜆ℎ     (1) 

 

If f is a so-called analytic function of which the derivatives of all orders exist,then one may consider increasing 

the value of n indefinitely. Thus, if thecondition holds that 

 

limn→∞
ℎ𝑛

𝑛!
𝑓𝑛 𝑥 = 0               (2) 

 

which is to say that the terms of the series converge to zero as their orderincreases, then an infinite-order Tay-

lor-series expansion is available in the formof 

 

𝑓 𝑥 + ℎ =  
ℎ j

j!
𝑓𝑗  𝑥 ∞

𝑗=0                (3) 

 

This is obtained simply by extending indefinitely the expression from Taylor’sTheorem. In interpreting the 

summary notation for the expansion, one mustbe aware of the convention that 0! = 1. 

 

III. Derivation of the proposed Equation 
In this section the proposed equation for roots finding is derived based on Taylor’s theorem. Write down Tay-

lor’s expansion of a functionf up to the third term., such that 

 

𝑓 𝑥 + ∆𝑥 = 𝑓 𝑥 +  ∆𝑥𝑓 ′ 𝑥 + 
∆𝑥2

2
𝑓 ′′  𝑥 + 𝑂(∆𝑥3)         

 

Where ∆𝑥 = 𝑥𝑘+1 − 𝑥𝑘  

 

Here, and in the following, we denote 𝑓 𝑥 + ∆𝑥  by 𝑓 𝑥𝑘+1 and similarly for the derivatives. 

 

𝑓 𝑥𝑘+1 = 𝑓 𝑥𝑘 +  ∆𝑥𝑓 ′ 𝑥𝑘 +  
∆𝑥2

2
𝑓 ′′  𝑥𝑘  

 

If 𝑥𝑘+1 is the root of function 𝑓 𝑥  so; 𝑓 𝑥𝑘+1 = 0so; 

 

∆𝑥2 + 2
𝑓 ′ 𝑥𝑘 

𝑓 ′′  𝑥𝑘 
∆𝑥 + 2

𝑓 𝑥𝑘+1 

𝑓 ′′  𝑥𝑘 
= 0 

Rearrange this equation; 

 

 ∆𝑥 +
𝑓 ′ 𝑥𝑘 

𝑓 ′′  𝑥𝑘 
 

2

+ 2
𝑓 𝑥𝑘+1 

𝑓 ′′  𝑥𝑘 
−  

𝑓 ′ 𝑥𝑘 

𝑓 ′′  𝑥𝑘 
 

2

= 0 

 

∆𝑥 = ±  
𝑓 ′ 𝑥𝑘 

𝑓 ′′  𝑥𝑘 
 

2

− 2
𝑓 𝑥𝑘+1 

𝑓 ′′  𝑥𝑘 
−
𝑓 ′ 𝑥𝑘 

𝑓 ′′  𝑥𝑘 
 

 

The recurrence formula can be written as: 

 

𝑥𝑘+1 = 𝑥𝑘 −
𝑓 ′ 𝑥𝑘 

𝑓 ′′  𝑥𝑘 
±   

𝑓 ′ 𝑥𝑘 

𝑓 ′′  𝑥𝑘 
 

2

− 2
𝑓 𝑥𝑘 

𝑓 ′′  𝑥𝑘 
 

Application 
 
1- Quadratic formula 

Les us using this equation to obtain the roots of  

𝑓 𝑥 = 𝑎 𝑥2 + 𝑏 𝑥 + 𝑐 = 0 

𝑓 ′ 𝑥 = 2𝑎 𝑥 + 𝑏 

𝑓 ′′  𝑥 = 2𝑎 
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𝑥𝑘+1 = 𝑥𝑘 −
2𝑎 𝑥𝑘 + 𝑏

2𝑎
 ±   

2𝑎 𝑥𝑘 + 𝑏

2𝑎
 

2

− 2
𝑎𝑥𝑘

2 + 𝑏 𝑥𝑘 + 𝑐

2𝑎
 

𝑥𝑘+1 = −
𝑏

2𝑎
  ±  

4𝑎2  𝑥𝑘
2 + 4𝑎𝑏 𝑥𝑘 + 𝑏2 − 4𝑎2  𝑥𝑘

2 − 4𝑎𝑏 𝑥𝑘 − 4𝑎𝑐

4𝑎2
 

𝑥𝑘+1 = −
𝑏

2𝑎
 ±  

𝑏2 − 4𝑎𝑐

4𝑎2
 

2- Newton’s formula 

After the square-root in the recurrence formula is linearized 

𝑓 ′ 𝑥𝑘 

𝑓 ′′  𝑥𝑘 
 1 − 2

𝑓 𝑥𝑘 𝑓
′′  𝑥𝑘 

 𝑓 ′ 𝑥𝑘  
2 =

𝑓 ′ 𝑥𝑘 

𝑓 ′′  𝑥𝑘 
 1 −

𝑓 𝑥𝑘 𝑓
′′  𝑥𝑘 

 𝑓 ′ 𝑥𝑘  
2  =

𝑓 ′ 𝑥𝑘 

𝑓 ′′  𝑥𝑘 
−
𝑓 𝑥𝑘 

𝑓 ′ 𝑥𝑘 
 

Substituting this result in the recurrence formula with +ve sign, the recurrence formula becomes 

𝑥𝑘+1 = 𝑥𝑘 −
𝑓 𝑥𝑘 

𝑓 ′ 𝑥𝑘 
 

Which is the Newton formula. 

 

3- Patrik’sformula 

The recurrence formula is rewritten as: 

𝑥𝑘+1 = 𝑥𝑘 −  
𝑓 ′ 𝑥𝑘 

𝑓 ′′  𝑥𝑘 
∓   

𝑓 ′ 𝑥𝑘 

𝑓 ′′  𝑥𝑘 
 

2

− 2
𝑓 𝑥𝑘 

𝑓 ′′  𝑥𝑘 
  

then multiply by 

 
𝑓 ′  𝑥𝑘  

𝑓 ′′  𝑥𝑘  
±   

𝑓 ′  𝑥𝑘  

𝑓 ′′  𝑥𝑘  
 

2

− 2
𝑓 𝑥𝑘  

𝑓 ′′  𝑥𝑘  
 

 
𝑓 ′  𝑥𝑘  

𝑓 ′′  𝑥𝑘  
±   

𝑓 ′  𝑥𝑘  

𝑓 ′′  𝑥𝑘  
 

2

− 2
𝑓 𝑥𝑘  

𝑓 ′′  𝑥𝑘  
 

 

The recurrence formula become 

𝑥𝑘+1 = 𝑥𝑘 −
2𝑓 𝑥𝑘 

𝑓 ′ 𝑥𝑘 ±  (𝑓 ′ 𝑥𝑘 )
2 − 2𝑓 𝑥𝑘 𝑓

′′  𝑥𝑘 
 

 

Which is the Patrik formula with α=1 

 
4- Halley’s formula 

After the positive square-root in Patrik’s formula is linearized, the resulting formula is 

𝑥𝑘+1 = 𝑥𝑘 −
2𝑓 𝑥𝑘 𝑓

′ 𝑥𝑘 

2  𝑓 ′(𝑥𝑘 )
2 − 𝑓 𝑥𝑘 𝑓

′′  𝑥𝑘 
 

which is the Halley’s formula. 

 

5- Schrode’sformula 

If return back to the derived formula with multiple roots and multiply the second term by 

  
𝑓 ′  𝑥𝑘  

𝑓 ′′  𝑥𝑘  
 

2

− 2
𝑓 𝑥𝑘  

𝑓 ′′  𝑥𝑘  

  
𝑓 ′  𝑥𝑘  

𝑓 ′′  𝑥𝑘  
 

2

− 2
𝑓 𝑥𝑘  

𝑓 ′′  𝑥𝑘  

 

The resulting formula is 

𝑥𝑘+1 = 𝑥𝑘 −
𝑓 ′ 𝑥𝑘 

𝑓 ′′  𝑥𝑘 
±

 
𝑓 ′  𝑥𝑘  

𝑓 ′′  𝑥𝑘  
 

2

− 2
𝑓 𝑥𝑘  

𝑓 ′′  𝑥𝑘  

𝑓 ′  𝑥𝑘  

𝑓 ′′  𝑥𝑘  
 1 −

2𝑓 𝑥𝑘  𝑓
′′  𝑥𝑘  

(𝑓 ′  𝑥𝑘  )
2
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After linearizing the square-root in the denominator, the recurrence formula is 

𝑥𝑘+1 = 𝑥𝑘 −
𝑓 ′ 𝑥𝑘 

𝑓 ′′  𝑥𝑘 
±

 
𝑓 ′  𝑥𝑘  

𝑓 ′′  𝑥𝑘  
 

2

− 2
𝑓 𝑥𝑘  

𝑓 ′′  𝑥𝑘  

𝑓 ′  𝑥𝑘  

𝑓 ′′  𝑥𝑘  
 1 −

𝑓 𝑥𝑘  𝑓
′′  𝑥𝑘  

 𝑓 ′  𝑥𝑘   
2  

 

After simplification with taking the third term with positive sign, the recurrence formula becomes: 

𝑥𝑘+1 = 𝑥𝑘 −
𝑓 𝑥𝑘 𝑓

′ 𝑥𝑘 

 𝑓 ′ 𝑥𝑘  
2
− 𝑓 𝑥𝑘 𝑓

′′  𝑥𝑘 
 

which is the Schroder’s method 

 
6- General formula 
 

A general form for Newton, Halley and Schroder methods can be driven by applyingNewton’s formula for the 

function 
𝑓 𝑥𝑘  

(𝑓 ′  𝑥𝑘  )
α  

 

The general Newton’ formula can be written as 

𝑥𝑘+1 = 𝑥𝑘 −

𝑓 𝑥𝑘  

(𝑓 ′  𝑥𝑘  )
α

 
𝑓 𝑥𝑘  

(𝑓 ′  𝑥𝑘  )
α 

′  

where; 

 
𝑓 𝑥𝑘 

(𝑓 ′ 𝑥𝑘 )
α
 

′

=
(𝑓 ′ 𝑥𝑘 )

α𝑓 ′ 𝑥𝑘 − α𝑓 𝑥𝑘 (𝑓
′ 𝑥𝑘 )

α−1𝑓 ′′  𝑥𝑘 

(𝑓 ′ 𝑥𝑘 )
2α

 

 

After simplifications the general form of the Newton’s method is 

 

𝑥𝑘+1 = 𝑥𝑘 −
𝑓 𝑥𝑘 𝑓

′ 𝑥𝑘 

 𝑓 ′ 𝑥𝑘  
2
− 𝛼𝑓 𝑥𝑘 𝑓

′′  𝑥𝑘 
 

 

For 𝛼 = 0 the general formula becomes Newton’s formula 

For 𝛼 =
1

2
 the general formula becomes Halley’s formula 

For 𝛼=1 the general formula becomes Schroder formula 

 

IV. Conclusion 
In the present study, a new approach of deriving a family of iteration functions for root finding based on 

quadratic expansion of Taylor seriesis presented. This family includes the Newton Patrik, Halley, and Schroder 

methods.  

The general formula of quadratic equation is obtained using the derived formula. 
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