
IOSR Journal of Mathematics (IOSR-JM) 

e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 14, Issue 5 Ver. I (Sep - Oct 2018), PP 48-55 

www.iosrjournals.org 

DOI: 10.9790/5728-1405014855                                      www.iosrjournals.org                                        48 | Page 

 

The Modification of Second Derivative Linear Multistep 

Ordinary Differential Equation for solving stiffly Differential 

Equation 
 

Sabo John, PiusTumba, A. I. Bakari, 
Department of Mathematic, Adamawa State University, Mubi, Nigeria. 

Department of mathematics, Federal University, Gashua, Nigeria. 

Department of Mathematics, Federal University, Dutse, Nigeria 

Corresponding Author: Sabo John 

 

Abstract: This research discussed the modification of second derivative linear multistep method (LMM) using 

Enright's approach,which focused in solving second order ordinary differential equations (ODEs).The newly 

constructed method satisfied the basic requirements for the analysis of Linear Multistep methods (LMM). The 

methods displayed better accuracy when implemented with numerical examples than the existing method with 

which we compared our results. 
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I. Introduction 
In the early 1950s, as a result of some pioneering work by C. F. Curtiss and J. O. Hirschfelder, (1952), 

A. M. Stuart and A. R. Humphries, (1996) it was realized that there was an important class of ordinary 

differential equations (ODEs), which have become known as stiff equations, which presented a severe challenge 

to numerical methods that existed at that time. Since then an enormous amount of effort has gone into the 

analysis of stiff problems and, as a result, a great many numerical methods have been proposed for their 

solution. More recently, however, there have been some strong indications that the theory which underpins stiff 

computation is now quite well understood, and, in particular, the excellent text of Hairer&Wanner, (1996) has 

helped put this theory on a firm basis. As a result of this, some powerful codes have now been developed and 

these can solve quite difficult problems in a routine and reliable way. 

The main purpose of this research is to outline some of the important theory behind stiff computation 

and to direct users of numerical software to those codes which are most likely to be effective for their particular 

problem. In sciences and engineering, mathematical models are formulated to aid in the understanding of 

physical phenomena. The formulated model often yields an equation that contains the derivatives of an 

unknown function. Such an equation is referred to as Differential equation. 

Interestingly, differential equations arising from the modeling of physical phenomena often do not have 

exact solutions. Hence, the development of numerical methods to obtain approximate solutions becomes 

necessary. To that extent, several numerical methods such as finite difference methods, finite element methods 

and finite volume methods, among others, have been developed based on the nature and type of the differential 

equation to be solved. 

A differential equation can be classified into Ordinary Differential Equation (ODE), Partial Differential 

Equation (PDE), Stochastic Differential Equation (SDE), Impulsive Differential Equation (IDE), Delay 

Differential Equation (DDE), etc. Stuart and Humphries,(1996). 

In recent times, the integration of Ordinary Differential Equations (ODEs) is investigated using some 

kind of block methods. This research discusses the formation of implicit Linear Multistep Method (LMM) for 

numerical integration of general second order ODEs which arise frequently in the area of science and 

engineering especially mechanical system, control theory and celestial mechanics, Y. Skwame, J. Sunday and J. 

Sabo, (2018). In this research, the system of second-order ODEs of the following form 

       baxayyayyyxfy ,,',,,','' 00  
     (1.1) 

shall be considered. Many scholars have been developed numerical methods for solving equation of the form 

(1.1) directly. These techniques have been introduced in many literature such as Hairer, E., Nørsett, S. P. 

&Wanner, G., (1987), M. Alkasassbeh and Zurni O, (2017), Y. Skwame, J. Sabo, P. Tumba and T. Y. kyagya, 

(2017), James, A., Adesanya, A. and Joshua, S., (2013), P. Tumba, J. Sabo and M. Hamadina, (2018), Y. 
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Skwame,  J. Sabo, J. M. Althemai, P. Tumba, (2018)and others. This mathematical modeling is the art of 

translating problem from an application area into tractable mathematical formulations whose theoretical and 

numerical analysis provides insight, answers and guidance useful for the originating application Kuboye, J. O. 

and Omar, Z., (2015). 

The aim of this research is to develop a new numerical method for solving systems of second-order stiff ODEs 

of the form (1.1). 

This research is organized as follows: in the coming section, we carried out the derivation of the 

method, where we considered two-step with a single off-grid points through interpolation and collocation 

method approach. The details of the analysis of the method which include order, error constant, consistency and 

zero stability were discussed in Section three. In the fourth section, some numerical problems were solved and 

the performance of the developed method was compared with those of the existing methods, Y. Skwame; G. M. 

Kumleng and I. A. Bakari,(2017), Y. Skwame,(2018), Y. Skwame, J. Sunday and J. Sabo,(2018) and J. Sabo, T. 

Y. Kyagya, A. A. Bumbur, (2018).  Finally, the conclusion was drawn in section five. 

 

II. Theoretical Procedure 
Reactions in physical systems often transform into system of ODE, which some class of these system 

are called Stiff system. The numerical methods for obtaining solutions to class of problems are one-step method 

and Multistep method (MM), Adeniran A. O., Odejide S. A., Ogundare B. S., (2015).The second derivative 

multistep methods are derived using interpolation and collocation technique as discussed in W. H. Enright, T. E. 

Hull, (1975),W. H. Enright and J. D. Pryce, (1987),Ehigie J. O., Jator S. N., Sofoluwe A. B., Okunuga S. A., 

(2014). 

Consider the initial value problem of the form 

     baxyayyxfy ,,,,' 0 
       (2.1)

 

The general second derivative formula for solving equation (2.1) using stepk   second derivative linear 

multistep method is of the form 

 

jn

k

j

jjn

k

j

jjn

k

j

j ghfhy 











 
0

2

00

        (2.2) 

Where 

 
jhnjn xyy    

  
jhnjhnjn xyxff   ,  

  xyxdfg njn ,  

   jn

jn

yx

yy

n

jn
dx

xyxdf
g









 
,

 

nx is a discrete point at  jjjandx  ,, are coefficients to be determined. To obtained the method 

of the form (2.2),  xy  is approximated by a basis polynomial of the form 
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equation (2.3) will be used for the derivation of the main and complementary methods for the class of 

continuous second derivatives multistep method of W. H. Enright, (1974) which is a special case of (2.3). 
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The system of equations generated are solved to obtained the coefficients of 2,...,2,1,0,  kjj  

which are used to generate the continuous multistep method of Enright of the form 

  knkjn

k

j

jkn ghfhyxy 



    2

0

1        (2.4) 

evaluating (2.4) knxx  yields the second derivative multistep method of Enright, evaluating at

2.,..,2,1,0,   kjxx jn gives  1k methods, which will be called complementary 

methods to complete the k block for the system. The Enright's method so obtained is of the form 
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To derive the continuous second derivative multistep method of Enright, Let the basis function  xy  be 
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Applying the Gaussian elimination method on Equation (2.7) gives the coefficient  910,' iforsai . 

These values are then substituted into Equation (2.6) to give the implicit continuous hybrid method of the form: 
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Differentiating (2.8) once yields: 
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which give the continuous schemes as 
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Where  
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III. Analysis of the Method 
In this section, the basic properties of the method derived shall be analyzed. 

 

3.1 Order and error Constants of the Method 

Given linear difference operator 
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Such that when 00 110  pp candccc  of (3.1) then  

1pc is the Error constant, and p is the order of LMM, J. C. Butcher, (2009). 
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According toLambert, (1973), the order of the new method in Equation (2.11) is obtained by using the Taylor 

series and it is found that the developed method is of uniform order eight, with an error constants vector given 

by, 

 TC 666

9 103856.3,103834.3,102429.3    

 

3.2 Consistency 

Definition 3.1: The hybrid block method (2.11) is said to be consistent if it has an order more than or equal to 

one i.e. 1P . Therefore, the method is consistent, E. Suli and D. F. Mayers (2003). 

 

3.3 Zero Stability 

Definition 3.2: The hybrid block method (2.11) said to be zero stable if the first characteristic polynomial  r  

having roots such that 11  zz rifandr , then the multiplicity of zr must not greater than two, G. 

Dahlquist, (1956).In order to find the zero-stability of hybrid block method (2.11), we only consider the first 

characteristic polynomial of the method according to definition (3.2) as follows 
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Which implies 1,0,0,0r . Hence the method is zero-stable since 11  zz rifandr . 

 

3.4 Convergence 

Theorem (3.1): Consistency and zero stability are sufficient condition for linear multistep method to be 

convergent. Since the method (2.11) is consistent and zero stable, it implies the method is convergent for all 

point, C. Baker, G. Monegato, J. Pryce and G. V. Bergh, (2001) and G. Dahlquist (1956). 

 

3.5. Regions of Absolute Stability 

Definition 3.3: The Region of Absolute Stability of the new method (2.11) is the set of all points Zz  such 

that all roots of characteristic equation are of absolute value less than one, Lambert, (1973). According to G. 

Dahlquist (1956) and J. D. Lambert, (1991) the absolute stability region of the new method is shown in the 

figure below. 

 
Figure 3.1: The Absolute Stability Region. 
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IV. The Implementation of Method 

In this section, the efficiency and the performance of the method is investigated with three systems 

ODEs. The problems consideredwill be compare with existing onceand the results obtained in tables 4.1, 4.2 and 

4.3 shows the comparison of the results obtained by the new methods with that of the existing method,Y. 

Skwame; G. M. Kumleng and I. A. Bakari, (2017), Y. Skwame, (2018),Y. Skwame, J. Sunday and J. Sabo, 

(2018) and J. Sabo, D. Raymond A. A. Bumburand T. Y. Kyagya(2018). 

 

Problem 4.1 

Consider the stiffly problem, 
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Source, Skwame, et-al (2017). 

 

Table 4.1: Comparison of results of the proposed method with that of Skwame, et-al(2017). 

X  Error in Skwame, , et-al(2017) Errors in New method,  

6,2  pK  7,3  pK  8,2  pK  

 xy1
  xy2

  xy1
  xy2

  xy1
  xy2

 

1.0  71061.3   
71060.3   

61060.2   
61060.2   

71090.2   
71092.2   

2.0  71021.3   
71030.3   

61042.2   
61042.2   

81059.3   
91060.7   

3.0  71028.6   
71027.3   

61018.2   
61018.2   

71092.2   
71094.2   

4.0  71065.5   
71065.5   

61090.3   
61090.3   

81019.8   
81067.5   

5.0  71069.6   
71068.6   

61058.3   
61058.3   

71089.2   
71091.2   

6.0  71003.6   
71002.6   

61023.3   
61023.3   

71012.1   
71011.9   

7.0  71092.5   
71092.5   

61035.4   
61035.4   

71077.2   
71079.2   

8.0  71036.5   
71037.5   

61097.3   
61097.3   

71028.1   
71012.1   

9.0  71038.7   
71038.7   

61059.3   
61059.3   

71060.2   
71061.2   

0.1  71070.6   
71070.6   

61031.4   
61030.4   

71035.1   
71021.1   

 

Problem 4.2 

Consider the stiffly problem, 

 

  1.0,001999999

101998998

221

'

2

121

'

1





hyyyy

yyyy

 
With Exact Solution 

 

 

 1,0

2

1000

2

1000

1











x

eexy

eexy

xx

xx

 

Source, Skwame, et-al (2017), (2018) and et-al (2018). 
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Table 4.2: Comparison of results of the proposed method with that of Skwame, et-al (2017), (2018) and et-al 

(2018). 

 
 

Problem 4.3 

Consider the stiffly problem, 

 

  1.0,100;1.0

10;901.9100

221

'

2

121

'

1





hyyyy

yyyy

 
With Exact Solution 

  xexy 99.0

1



   xexy 99.0

2 10 

  1,0x
 

Source, Sabo, et-a.,  (2018).

 
 

Table 4.3: Comparison of results of the proposed method with that of Sabo, et-al., (2018) 

X  Error in Sabo, et-a.,  (2018) Error in new Method 

6,1  pK  8,2  pK  

 xy1
  xy2

  xy1
  xy2

 

1.0  101000.5   
91000.4   

91060.9   
91000.5   

2.0  91050.1   
91000.7   

81087.1   0  

3.0  91050.1   
91000.9   

91050.7   
91000.5   

4.0  91020.2   
81030.1   

81055.1   
91000.3   

5.0  91020.2   
81050.1   

91040.6   
91020.2   

6.0  91030.2   
81030.1   

81022.1   
91000.2   

7.0  91030.1   
81020.1   

91010.5   
91000.2   

8.0  81010.2   
81040.1   

81000.1   
91000.2   

9.0  91070.1   
81050.1   

91020.4   
91000.2   

0.1  91040.2   
81070.1   

91010.8   
91000.3   
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V. Conclusion 
In this research, we discussed the modification of second derivative linear multistep method (LMM) 

using Enright method which focusing in solving second order ordinary differential equations (ODEs).The 

analysis of the method was studied and it was found to be consistent, convergent and zero-stable, with the 

region of absolute stable within which the method is stable. The newly constructed Enright method was applied 

to solve three systems of second-order stiffly ordinary differential equations and from the results obtained; it is 

obvious that the developed method performed better than the existing method. This study concluded that, it has 

been shown in many literatures; the multistep method is very effective method for solving nonlinear stiff ODEs 

either initial value problems or boundary value problems. Therefore the general solution of second order Linear 

Multistep Method (LMM) is a convenient technique for determining the solutions of mathematical modeling 

since it can approximate the result even though the efficiency is less than the other multistep method. 
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