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Abstract: In order to solve certain problems in calculating probabilities, such as Markov chains or conditional 

specification of discrete distributions, the use of matrix and vector treatment of conditioned probabilities and of 

vectors of marginal probabilities is common. Following these ideas, the present study obtains matrix forms of 

some elementary results of probability theory, such as the total probability and Bayes theorems. These results 

and methodology are applied to the matrix study of results of diagnostic tests, allowing an immediate 

generalization to tests with more than two results. In addition,we propose safety and validity measures of a test 

based on matrix rules, which in some cases are related to the well-known Youden index. 
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I. Introduction 
 In the Markov chain theory ([1];[2]) as well as in conditional specification problems for finite random 

variables [3], the matrix treatment of conditional probabilities is common. This line is followed in the present 

study, and the main results of conditional probabilities are obtained, including a matrix form of the Bayes' 

theorem. The results obtained, are applied to the study of diagnostic test. 

 

II. Matrix Approach 

Let us consider two complete sets of events, 1 2, ,..., ,...,i nA A A A  and 1 2, ,..., ,...,j mB B B B , both with non-

zero probabilities 1 2( ), ( ),..., ( ),..., ( )j mP B P B P B P B . 

We define the 1 2( ), ( ),..., ( ),..., ( )i nP A P A P A P A vectors. 
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Both matrices have n×m dimension. 

We denote n
1  the column vector of n dimension with all its components equal to one, and by n

0  the column 

vector of n dimension with all components equal to zero. On the other hand, it should be remembered that a 

matrix is said to be stochastic by rows (columns) if it is non-negative and the sum of the elements in each row 

(column) is equal to one. 

Note that 
n

t t

m
1 A 1  and 

m n
B1 1 , therefore, A is stochastic by columns and B is stochastic by rows. 

In [3] Arnold and Press obtain the theorem 1: 

Theorem 1. (Total probability theorem, matrix form). 

Aβ α   t
B α β  

Demonstration: we rely on the total probability theorem in its usual form: 
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Similarly, it is shown that t
B α β . 

Theorem 2. The matrices
t

AB  and 
t

B A  have eigenvalue one with α  and β eigenvectors associated with 

that value and, respectively, each matrix. 

Demonstration: combining the formulas of the previous theorem we have: 

  t
Aβ α AB α α  

  t t
B α β B Aβ β  

As a result: 

( ) det( ) 0    t t t

n n n
AB α α AB - I α 0 AB - I

 

( ) det( ) 0    t t t

m m mB Aβ β B A-I β 0 B A-I  

Theorem 3. 
2

2
t

α Aβ α   
2

2
t t

β B α β
  

2

2
t

α Bβ β  

Demonstration: Just need to apply Theorem 1. 
2

2
 t t

α Aβ α α α
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2
 t t t

β B α β β β
 

On the other hand, the last equality is obtained by transposing the second. 

Let M be the matrix of the probabilities of the intersections of the two complete sets of events: 

1 1 1 2 1

2 1 2 2 2

1 2

( ) ( ) ... ( )

( ) ( ) ... ( )

( ) ( ) ... ( )

m

m

n n n m

P A B P A B P A B

P A B P A B P A B

P A B P A B P A B

 
 
 
 
 
 

M
   

 

Theorem 4. (Non-conditional total probability theorem). 

t t
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t
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Demonstration: Simply operate on the first member of each equation, 
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 The second equality is obtained by transposition of the first. The third equality is demonstrated latter is 

tested as the first one.□ Let ( )n M  be the set of square matrices of n dimension. Let us now define the 

application : ( )n

n nD  M , which associates to each vector 
nv  the square matrix whose diagonal is 

v  and the rest of elements are null. If there is no room for confusion we will omit the n subscript, that is, 

nD D . In this way, we obtain: 
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Theorem 5. 
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The demonstration of the other equality is analogous. 

Theorem 6.(Bayes' theorem, matrix form). 

 -1
A D(α)BD(β)

  
 -1

B D(α) AD(β)  

Its proof is an immediate consequence of Theorem 5. 

 

3.- Diagnostic tests. 

Consider a clinical test for the diagnosis of a certain disease (see, [4]). Suppose, as is usual in this context, that 

each patient can be sick (event D) or healthy and that the test can only present positive results (event R) if it 

detects the disease, and negative results otherwise. Define the vectors: 

Disease prevalence vector: 
( )

( )

P D

P D

 
  
 

α . 

It contains, among other elements, the prevalence of the disease P(D) 

Test results vector: 
( )

( )

P R

P R

 
  
 

β . 

Containing the probabilities of positive and negative results, ( )P R  and ( )P R . 

We also define the matrices: 

Test security matrix: 
( | ) ( | )

( | ) ( | )

P D R P D R

P D R P D R

 
  
 

A  

It contains, among other elements, the predictive values of the test, ( | )P D R  (positive) and ( | )P D R  

(negative). 

Test validity matrix: 
( | ) ( | )

( | ) ( | )

P R D P R D

P R D P R D

 
  
 

B . 

It contains, among other elements, ( | )P R D  sensitivity and ( | )P R D  specificity. 

Test Matrix:
( ) ( )

( ) ( )

P D R P D R

P D R P D R

  
  

  
M . 

Containing the true positives ( )P D R , true negatives ( )P D R , false positives ( )P D R  and false 

negatives ( )P D R . 

The relation between the test matrix and the prevalence and results vectors is then obtained in matrix form 


2

M1 α  and t

2M 1 β : as well as the relation between all the elements of a diagnostic test: 

 AD(β) M D(α)B . 

On the other hand, applying the forms of the total probability theorem and the Bayes' theorem, we obtain 

 t -1
A D(B α) BD(α) . This is the matrix version of well-known formulas of the type 
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  

   

    1 1  

prevalence x sensibility
TPV

prevalence x sensibility prevalence specificity


  
 

, 

which correlates prevalence, sensitivity and specificity with predictive values. 

Note that the use of matrices allows an easy generalization to tests with several levels of diagnosis or to diseases 

with different typologies. In addition, it allows definingtest security measures and indexes in terms of distances. 

The safety of a test usually requires the study of its predictive values. A test is completely safe if 

( | ) ( | ) 1P D R P D R  .That is, both predictive values are worth one. For these tests, the safety matrix A 

defined above is the unit . In this case, a safety measure for a test with the safety matrix A, can be defined as a 

certain distance from the matrix A to the identity ( ) ( , ) || ||MS d  A I A I A , for some matrix norm 

(See, for instance, [5]). For a completely unsafe test these measures are worth zero. For a completely useless 

test, that is, ( | ) ( | ) 0P D R P D R  , the safety matrix is 
0 1

1 0

 
  
 

J and MS(J)must be maximal. Its 

value will depend on the norm used. Normalizing and transferring the MS measure,security indexes -SI- can be 

obtained, so that if the maximum value of MS is  then 1
MS

SI


  ,taking values between 0 and 1. The 

test is completely safe if it takes the value 1 and completely useless when it takes the value 0. Let's look at some 

specific cases. 

i.-Row norm. 

 

 

1 ( | ) ( | )
( ) || ||

( | ) 1 ( | )

|1 ( | ) | | ( | ) |,| ( | ) | |1 ( | ) |

P D R P D R
MS

P D R P D R

máx P D R P D R P D R P D R

 

  
  

  

      

A
 

 

( ) ( | ) ( | )

0 ( ) 2

MS P D R P D R

MS





 

 

A

A
 

By normalizing, we obtain the associated safety index, 

( | ) ( | )
( ) 1

2

P D R P D R
SI


 A  

ii.-Column norm. 

 

1 1

1 ( | ) ( | )
( ) || ||

( | ) 1 ( | )

|1 ( | ) | | ( | ) |,| ( | ) | |1 ( | ) |

P D R P D R
MS

P D R P D R

máx P D R P D R P D R P D R

  
  

  

      

A
 

 1

1

( ) 2 ( | ), ( | )

0 ( ) 2

MS máx P D R P D R

MS



 

A

A
 

By normalizing we obtain the associated safety index, 

 1( ) 1 max ( | ), ( | )SI P D R P D R A  

 

iii.-Euclidean or spectral norm. 

1 ( | ) ( | )
( ) || - || || ||

( | ) 1 ( | )
s s s

P D R P D R
MS

P D R P D R

  
   

  
A I A
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which is the square root of the greatest singular value. The singular values of that matrix are 0 and 

 2 22 ( | ) ( | )P D R P D R  thus: 

 2 2( ) || || 2 ( | ) ( | )

0 ( ) 2

s s

s

MS P D R P D R

MS

   

 

A I A

A

 

The associated safety index is

2 2( | ) ( | )
( ) 1

2
s

P D R P D R
SI


 A . 

The same reasoning may be used with the validity matrix Band define test validity measures and indexes. It 

must be taken into account that for sensitivity and specificity equal to one, we have that B = I, 

( ) ( , ) || ||MV d  B I B I B  and the maximum validity is found for zero MV, while the maximum 

validity is given in the case of B = J. 

Norm MV Index 

Row ( | ) ( | )P R D P R D  
( | ) ( | )

1
2

P R D P R D
  

Column  2 ( | ), ( | )máx P R D P R D   1 ( | ), ( | )máx P R D P R D  

Spectral  2 22 ( | ) ( | )P R D P R D  

2 2( | ) ( | )
1

2

P R D P R D
  

 

MV is bounded between 0 and 2 in the three cases studied. 

Note that in the case of the row norm, the validity index
1

2

Y
VI


 ,where Y is the well-known Youden 

index ([6]). 

In addition, this way of dealing with conditional probabilities can be used in teaching as a nexus between 

subjects containing elementary theory of probability and those containing elements of linear algebra, which are 

usually separated. 
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