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ABSTRACT: We study commutativity in Rings R with the property that for fixed positive integers k,m,n, xs™ =
S™x* for all x€ R and for all n-subsets S of R.
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I. Introduction

Recently G.Gopalakrishnamoorthy and S.Anitha have defined Q, ,, -rings by the property that x*S=Sx
for all x€ R and for all n-subsets S of R. They also have defined Q.- rings by the property that xS = Sx* for
all xe R and for all infinite subsets S of R,and defined P, ,- ring to be a ring R with the property that XY=YX
for all k-subsets X of R and n-subsets Y of R.. Also they have defined P, ,, -ring by the property that XY = YX
for all k-subsets X of R and all infinite subsets Y of R. obviously every Q , -ring is a P, ,,- ring and every P, ,-
ring is a Py ,, -ring .1t is proved that any Q,, ,, —ring with identity such that |R| > n,is commutative. If n < 4, Q, ,
—rings are commutative .If n < 8,every Q. ,, —ring with 1 is commutative.
In this paper we define Qy ,, , -rings and P, ,, , —rings, thus generalizing the above concepts and discuss their
commutativity.

k

Il. Preliminaries
Let R be an arbitrary ring not necessarily with identity.Let D,N,Z and C(R) denote the set of zero
divisors, the set of nilpotents, the center and the commutator ideal of R respectively. Let |R| denote the
cardinality of R.For any subset Y of R,let CR(Y),AL(Y), Ar(Y) and A(Y) denote the centralizer of Y ,the
leftright and two sided annihilators of Y respectively.For x,ye R the set Lx,y,k is defined to be
{w € R|x¥y = wx*}where k>1 is a fixed integer.

2.1 Definition

Let k,m,n be three fixed positive integers.A ring R is said to be Qynn ring if x*S™=S"x* for all x€R and for all n-
subsets S of R.

where [R|> n and S"={s"/seS}

2.2 Definition
Let k,m,n be three fixed positive integers.A ring R is said to be Py, ring
X™Y™=Y™X™ for all k-subsets X of R and n-subsets Y of R.

2.3 Definition

Let k,m be two fixed positive integers.A ring R is said to be Qy ,, «, ring if x*s™=8"x¥ for all xeR and for all
infinite subsets S of R.

where [R|> n and S"={s"/seS}

2.4 Definition

Let k, m, be two fixed positive integers.A ring R is said to be Py ,, .., ring

X™Y™=Y™X™ for all k-subsets X of R and for all infinite subsets Y of R.

Taking m=1 we note that XY=Y X for all k-subsets X of R and for all infinite subsets Y of R.
We simply call P, ringasa P, , ring.
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2.5 Note

i. Every Qpmnringisa Qe ring
ii. Every Qgmnringisa Py, ring
iii. Every Py, ringisa Py, o ring
iv. Every Qume ringisa Py, ring
v. Every Qo ringisa P, ring

2.6 Definition
Let R be aring and I be a subset of R.Let (k, m) be fixed positive integers.| is said to be a left (k,m)- ideal of R
if
i. x",y"el=x"-y"eland
ii. x"elr eR=r"el
Similarly the right (k,m)-ldeal and two sided (k,m) ideal can be defined.

2.7 Lemma
LetRbea Q. ring with [R|>n .Then
i.  forall x ERX*R™=R"™x*
ii.  If x“is idempotent then x“ commutes with the m™ power of every aeR
iii. N is a (k,m) ideal of R.
iv. A ()™ = 14 ()™
v.  IfRis not commutative and (x*)™ ¢Z then R\A(x*)™ UCR(x*)™ and R\A,(x*)™ U Cr(x*)™ are non-empty.

Proof:
LetRbea Q. ring with [R[>n
i. z ER™X iff z =r™x* for some reR
iff z €S™x* for some n-subsets SCR
iff z €x“S™ for some n-subsets SCR
iff z =x*(s™)’ for some s € Sc R
iff z ex“R™
i.e, R™* = x*R™ for all x R
ii. Let x €R be such that x* is idempotent. Then for all a€R
x“a™ = x*a™ ( since x* is idempotent)
=x* (x*.aM)
= x* (@".x¥) (since X*R™= R™x)
- (xk.am) Xk
= (@™.x) x* (since X*R™= R™x")
— am X2k
=a" x* (since x* is idempotent)
Hence x* commutes with the m™ power of every aeR

iii.  Letx™y™e N.clearly x™+y™ € N (adopt the standard proof that N is an ideal in commutative rings)
Since x™ € N, (x™)" =0 for some n>1.

Forallre R
(™" = (™M) (™) ....... (™ n times
= PO (™). (x"™r) x™
= ™ (M . (™) x™ (using (i)
= (M) (XM, (xTPXT
= (™) (FX™) L XT) X
= M) (XM, xR
= i
=0 (since (x™)" =x™ =0)
(rkxm)n =0

Hence r"x™ e N
Thus X" € N,r € R= r*x" € N
So, Nisa (k,m) ideal of R
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iv. Also,
z"e A;(xF)y™ iff 2™ =0
iffx“2"=0 (using (i))
iff 27 4, (x*)™

Hence | 4,(x*)™| =] A, (x*)™|
V. Let R be a non-commutative ring and X does not belongs to Z.Then there exist y €R such that
x“y"y™x* Consequently y does not belongs to C,(x)™.So C,(x)™ is a proper subgroups of (R,+).Then
from (i) and (iv) imply that A4,(x*)™ and A, (x*)™are also proper subgroups of (R,+).Since a group
cannot be the union of two proper subgroups,(v) is proved.

2.8 Note
This generalizes lemma 2.8[4].

2.9 Lemma
If R is an infinite Qy m, ring then R is commutative.

Proof

Let R be an infinite Qymn ring.

If R is commutative then there is nothing to prove.

Suppose R is non-commutative.Since all Qy 1 rings are commutative,k>1 ,m>1 and n>1 .

Assume that R is not a Qyms ring for any s<n Then there exist xR and an (n-1) subset H of R such that
X*H™£H™x* Since R is infinite R\H # @

For any a€ R|H,x(HU {a})™ = (HU {a}) "X

So if we take he H for which x*h™ does not belongs to H™x*

We have x“h™ = a™x* (1)
Since (1) holds for all ae R\ H it follows that for fixed
be R\H ,R\H"Sh™+A,(x*)™ )
Moreover
if ce A(X) , (B™+c™xk=bMxK+cMxK
- mek
- Xk hm ¢ Hka

Sob™c™ ¢ H™

That is b™c™g b™+A(X)™

This impliesb+c ¢ H

Hence b™ A/(X")™ S R-H™ (3)
Hence by (2) and (3) we have

R-H™=b"+ A,(x*)™

Hence [R-H"| =| A(x*)™ | and

IRVAQG™ [= [H™

Since A(x¥) is a proper subgroup of (R,+)

we have

R-A(X)™ = | A(X)" |

That is |[H"[>|R-H"|

The finiteness of H™ yields finiteness of R,contradicting
R is infinite.

Hence R is commutative

2.10 Note :

This generalizes lemma 2.10[4]

2.11 Lemma: (See[6])

If R is a finite ring with N € Z ;then R is commutative.

2.12 Remark

Inview of lemma 2.11,we assume henceforth that R is finite.
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1. Commutativity of Qxmn RINgS

3.1Theorem If R is any Qxmn ring with identity such that |R|>n, then R is commutative.
Proof : If R is infinite, Commutativity follows from Lemma 2.9.So, assume R is finite.
By Lemma 2.11, we need only to show that N €Z.
Since u ¢ N implies 1+u is invertible,it sufficies to prove that invertible elements are central.
Let x € R be an invertible element. If x € Z, there is nothing to prove. Assume X & Z,
then x™ ¢ Z™. Hence Cg(x™) is a proper subset of R. Choose y & R such that y™ & Cr(x™).
Then y™ x™ #x™ y™. If H is any (n-1) subset R, which does not contain y, the condition
"{y™ U H™)= (fy™}U H™) (x*)™ yields an z & H such that

(X)"y™ = 2" o)
Since x is invertible, there is unique z & R satisfying (1). Thus we have proved that every(n-1) subsets of R
contains either y™ or z™.
But S = |R-{y™,z™}| does not contain y" and z "and |S}> n-1, a contradiction. This contradiction proves that non
— central invertible elements cannot exist. This proves the theorem.

3.2 Remark
This theorem generalizes theorem 3.1[4]

3.3 Theorem
Let n>4 and let R be a Qg mnring |R|[> 2n -2 or if n is even and |R|> 2n-4.
Then (xX)™ ¢Z for all x & R.
Proof : le n>4 and R be a Qymn ring.
We shall prove that if there exists x & R such that (x)™ & Z, then |R|< 2n -2 or [R|< 2n -4.
Since (n-1)< 2n-4,we may suppose that [R|> n. Suppose there exists x € R such that(x*)"¢ Z, by Lemma 2.8(v),
there exists
y &€ R {A(X) "} U Ca(x')"}.
If H is any (n-1) subset which doesnot contain y, we have
(Y€ U HT)= (Y™} 3 U HT) (9™
Since (x*)™y™ #£2"(x*)™, there exists z" & H such that That (x*)™y™ = 2"(x*)™ is 2" & Leyx.
So H™ m—x,y,k 75(1)
Thus we have proved that any (n-1) subset of R must either contain y or intersect Ly«
This condition cannot hold if |R - Lyyk | >n.
So, |R- Ly |<(n-1)
Thatis |R| < [Lyyx [+ (n-1) (1)
Now, if w & Ly then Ly, = W+ A"
Hence | Lyy,x [=] Au(x)".
Again by Lemma 2.8 (v), Ay(x*)"£R.
S0 | Lyyk |:% for some p > 2.
Substituting in(1), we get |R| < '%' +(n-1)
i.e, |R|(1- 1/p) < (n-1)

i.e, RISz (n-1) < 2n -2 @)
Suppose that n is even, If (A;(x“)™) has index atleast 3 in (R,+), the inequality (2) yields
Ri< 20D on g

=
Thus we may assume that | Ay(x*)"|= I;ﬁ We shall show that |R|# 2n-2.
Suppose [R| = 2n - 2, then | A(x)"= === (n-1). So | A(X)"| = (n-1)
We note that A,(x)™ is an (n-1) subset not intersecting Lyy.k:

Hence y £ A(x)".

Since y ¢ RYA(X)™ U Cg (X)™}, we see that y ¢A(x)™.

So, A(X)™ % A(x)™ and consequently A.(x¥) ™(x*)™# 0.

Now, X“"({y™}u A(X™ = Y™ U A(X™)(x*) and therefore A (x)™(x*)™ < {(x*)™,y™,0}.

Hence A(xX)"(x*)™ = {0, x*,y™} is an additive subgroup of order 2.

Hence the map §: A,(x)™ — A,(X)™ (xX)™ given by g(w) = w(x*)™ has kernel of index 2 in A(x*)™.
But | Ar(xk)m| is odd and so we have a contradiction.

Hence R|< 2n — 4.
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3.4 Lemma (Theorem 5|5])
Suppose the ring R is such that x"™ ¢ 7, the centre of R, for all x ¢ R. Then if R has no non — zero nilideals, it
must be commutative.

3.5 Theorem

Let n > 4 and R be a Qgmp ring. If |R[> 2n—2 or if n is even and |R| > 2n — 4, then R is commutative,
provided R has no non- zero nilideals.

Proof: Follows from Theorem 3.3 and Lemma 3.4.

3.6 Theorem

Let n >4 and let R be a Qg mp ring with |R> %(n-l). Then R is commutative, if one the following is satisfied
i. |R|isodd.

i. (R,*)isnot the union of three proper subgroups.

iii. N is commutative.
iv. R®#{0}.

Proof: (i) Assume |R| is odd.
Suppose that R is not commutative.
Since, R[> % (n-1)>n
The arguments in the proof of throrem 3.3 gives
| AL = | A" = [RI/2
This is impossible. So, R must be commutative.
(if) Assume (R,+) is not the union of three proper subgroups. Suppose that R is not commutative. Then by (i),
|R| is even. By applying the first isomorphism throrem of groups:

¢)™RI= [R(X)"= 2.
Hence for any u & R\ A,(x)"™, (x*)"R={0, (x*)™u} and for any v & R\ A,(x*)"
R()™ = {0,v(x)"}
By Lemma 2.8(i),
(X" R = R(X™.
Ify e R\A, (X UA(X¥)™ then
£0,0¢9™y3= (X9 R =R(x)™ = {0,y(x")"}
Hence y € Cr(x*)"
Thus R= A, (X™ UA(X*)™UCR(X)™ which is a contradiction to our assumtion that (R,+) is not the union of
three proper subgroups.
(i) Assume N is commutative.
Suppose R is not commutative. Then by throrem 3.1, if R is any Qymn ring with 1 such that
|R|> n, then R is commutative.
Now, R doesnot have 1. Hence, R = D fro R is finite. If ()™ & N, some power of (x)™ is an idempotent zero
divisor € # 0.
Since, A(X)™ CA;(e) and As(e) #R,
We must have A(X)™ =A;(e)
And similarly A (xX™ =A,(e)
By lemma 2.8 (ii),e is central.
Hence, A(X)™ =A™ = AXY™ SCr(X™.
Thusify & AX)™ theny & A(X)"andy ¢ A(xX)".

Yé A" —yeRVAX)™

— {0,(x)"V} = ()" R =R(x)" = {0,y(x)" }

Hence y £ Cr(x¥) ™which is the contradiction to the assumption that (x)" & Z.
Hence (x*)™ is a non — central element.
If there exits two non — commutative elements, which is a contradicton to the assumption that N is commutative.
(iv) Assume R #0.
Suppose R is not commutative. Then there exists x & R such that x ¢ Z. the fact that (x*) " & N yields
A2 A
So, A(x*) "=R
Hence, (X" )™R = R(x*** )"=(0)
Choose y & R\ A&xk)mucR(xk)m ) and w & R\ A,(x*)"UCR(X)™))
Then y*'R = Ry**
More over, {0, ()™ y} = (x)™ R = R(x*)™ = {0,w(x")™ } so that (x*)™ y = w(x")™
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Thus (x)™ R? = (X)" yR =w(x)" R = {w (x)" y,0} = {xy""",0} = (0)
If ze Z then (x)"+Z ¢ Z so that (x+Z)R* = {0}

Hence R® = {0}, which is a contradiction to the fact that R® # {0}.
Hence R is commutative.

IV. Further Results for Small n
4.1 Theorem
If n < 8, then every Qg mn ring with 1 is commutative.
Proof: Let R be any Qy mn ring with identity. Suppose R is not commutative.
We any assume that n=8.
Then by theorem 3.1, |R| < 8.
Since all rings with 1 having fewer than 8 elements are commutative, |R| = 8 and R is indecomposable. Since
idempotents are central, we must have no idempotents except 0 and 1. Hence every element is either nilpotent or
invertible. Since u & N,1+u is invertible. If follows from lemma 2.12, there exists a pair x",y™of non- commuting
invertible elements. The groups of units is not commutative and has almost 7 elements,hence is isomorphic to
Ss. Thus, there exists a unique non — zero nilpotent element u which by Lemma 2.12 is not central. Hence there
is an invertible element w such that u(w)™ # (w*)™ u. By Lemma 2.8(iii), (W)™ and u(w*)™ are non-zero
nilpotents. This gives a contradiction.
So, R is ccommutative.
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