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Abstract: In this article, the boundary value problem for singularly perturbed nonlinear reaction diffussion 

equations are treated. The exponentially fitted difference schemes on a uniform mesh which is accomplished by 

the method of integral identities with the use of exponential basis functions and interpolating quadrature rules 

with weight and remainder term in integral form are presented. The stability and convergence analysis of the 

method are discussed. The fully discrete scheme is shown to be convergent of order 1 in independent variable, 

independently of the perturbation parameter. Some numerical experiments have been carried out to validate the 

predicted theory.  
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I. Introduction 

In this study, the problem of nonlinear reaction-diffusion boundary value problem is investigated: 

        ( ) ( )   (   )      (1) 

 ( )      ( )                                                             (2) 

Such problems emerge as mathematical models of the research object in many areas of science. 

Reaction-diffusion equations are typical mathematical models in biology, physics and chemistry. Chemical 

reaction models are widely used in biological systems, population dynamics, and nuclear reactivity. These 

equations usually depend on various parameters such that temperature, catalyst, diffusion rate, etc. Moreover, 

they normally form a nonlinear dissipative system coupled by reaction between different substances [14].  

Such equations also appear in the model of population distributions. J.G. Skellam’s article on “Random 

dispersal in theoretical populations” has been a turning point [23]. A series of observations made by J.G. 

Skellam deeply affected his space ecology work. First, he set up a link between the theoretical biological species 

as a definition of movement, the random walk, and the diffusion equation as a definition of the distribution of 

the organism at the population density scale of species, and use the field data for the increase in the populations 

of the musk rats in Central Europe the connection is acceptable. Second, in parallel to Fisher’s earlier 

contribution to genetics, he has presented reaction-diffusion equations in a theoretical ecologically effective 

manner by combining a common definition of distribution with population dynamics. Third, especially using 

both the various assumptions of linear (Malthusian) and logistic population growth rate terms, one and two 

dimensional habitat geometry, and interspace between the habitat and surrounding environmental regimes, 

Skellam studied reaction-diffusion models for a population distribution in a limited living space [5]. 

 Reaction-diffusion mechanisms have been used to explain model formation in developmental biology 

and experimental chemical systems [19]. One of the ways to obtain oscillatory solutions in chemical system 

models is reaction-diffusion equations [3]. 

In the biological sense, morphogenesis, which is called chemical substances that diffuse into a tissue by 

entering the reaction, constitutes the main feature of morphogenesis. In this context, it is shown that the 

reaction-diffusion problems are utilized in the stability of the situations arising due to the morphogenesis 

suggested by Alan Turing [25].  

Reaction and diffusion terms are used in synchronization methods due to the spatial binding of the 

particles in the regime of periodic or chaotic oscillations depending on the dominant force of dynamic behavior.  

In recent times, reaction diffusion systems have received much attention as a prototype for model 

formation. Said models (facades, spirals, targets, hexagons, strips and scattering solitons) are used in a variety of 

reaction-diffusion systems.It has been argued that the reaction diffusion processes are a basis for processes 

dependent on morphogenesis in biology [10] and may even be related to animal pigmentation, skin pigmentation 
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[15], [18]. Other applications of reaction diffusion equations include ecological invasions [11], outbreak spread 

[17], tumor growth [6], [8], [22] and wound healing [21]. Another reason for the interest in reaction diffusion 

systems is the possibility of an analytical treatment, although there are nonlinear partial differential equations 

[7], [9], [12], [16], [24].  

Singular perturbation problems include boundary layers that change rapidly in the solution function. In 

this type of problem, the classical difference schemes are not stable since the derivative of the solution is infinite 

at boundary layer. Also, the exact solution of such problems usually is not found. For this reason, numerical 

algorithms are needed. In this study, difference scheme with exponential coefficients are presented for 

singularly perturbed nonlinear reaction diffusion problems with boundary layer like [4]. In constructing these 

schemes, interpolation quadrature rules which are the remainder term in integral form and contain weight 

function are used [1]. The approach ratio of the solutions of the difference problems is  (  ). 
 

II. Preliminary 
In this section, some basic definitions and basic theorems as without proof will be given . The 

interpolating quadrature rules that are used in the construction of the difference scheme with their remainder 

term integral form and containing the base function are given. In addition, the quadrature formulas and notations 

needed to establish in a equidistance mesh are given. The required differential and integral inequalities and 

difference analogues will be given unspecified. 

Lemma 1. Let  ( ) be a integrable function (weight function) and   -a real parameter. Then, the following 

interpolating quadratic formulas are true: 

∫  ( ) ( )   ,∫  ( )  -
 

 

*  ( )  (   ) ( )+
 

 

 

  ,   - ∫ (   ( )) ( )  
 

 
  ( )          (3) 

 ( )  ∫    ( )∫  ( )( )
 

 

 

 

  
   (   )             

  (   )    (   )  (   )  (   )(   )          

 ( )     (   )  ,   ,   -  
 ( )  ( )

   
, 

  ( )   
  

  
       ( )         

In some cases, second term in (3) formula may add the remainder term: 

∫  ( ) ( )  
 

 
  .

   

 
/∫  ( )  

 

 
   ( )                                    (4) 

  ( )  ∫    ( )∫  ( )( )
 

 

 

 

  
   (   )   

 (   ) ,   -∫ (  
   

 

 

 

) ( )             

  (   )    (   )    (
   

 
  ) 

 (   )  (   ) (
   

 
  )         

Moreover, 
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∫   ( ) ( )    ,   -
 

 ∫  ( )  
 

 
  ̅( )                                        (5) 

 ̅( )   ∫     ( )
 

 

∫  ( )( )    (   )  
 

 

        

In this formula, we determinate the same   (   ) function in (3) and (4) formulas, where 

  (   )    (   )     

  (   )    (   ) =  (   )    (   )     

  (   )    (   )  

 

  
  (   )    (   )                                                            [1]. 

III. Asymptotic Estimations 
For the (1)-(2) nonlinear problem, from the Taylor expansion, we can write 

 (   )   (   )  
  (   ̃)

  
  

where  ̃          , also we say  ( )   (   ) and  ( )  
  (   ̃)

  
 . Then 

       , ( )   ( )-   ( )  

If we get  

 ( )   ( )   ( ) 

we have  

        ( )   ( )         (6) 

where the following conditions valid:  

 ( )   ( )  
  (   ̃)

  
     

 ( )   (   )     

We give these lemmas for the asymptotic estimates. 

Lemma 2. Let  ( ) be a function and satisfy the following conditions: 

    ( )    

    ,     . Then  ( )     [2]. 

Proof. To prove the lemma, assume that  (  )   ,  (  )    and  (  )   , for   (     )  

(   ). Then  

   ( )  
 (  )    (

     

 
)   (  )

(
     

 
) 

    

From this, it mean that      and  ( )    for   (     ). This is contradictory to the hypothesis. 

So lemma is true.  

http://www.iosrjournals.org/


Numerical Solutions For Singularly Perturbed Nonlinear Reaction Diffusion Boundary....  

DOI: 10.9790/5728-1501013549                                  www.iosrjournals.org                                           38 | Page 

Lemma 3. For a  ( )   ,   -    (   ) function, the following estimation is true: 

| ( )|  | ( )|  | ( )|     
   

     
|  ( )|         (7) 

[2]. 

Proof. For the proof of lemma, we consider the following barrier function 

 ( )    ( )  | ( )|  | ( )|     
   

     
|  ( )|        

For the boundary conditions, from this following relations 

 ( )    ( )  | ( )|  | ( )|     
   

     
|  ( )|       

We get  ( )     and from this following 

 ( )    ( )  | ( )|  | ( )|     
   

     
|  ( )|       

 ( )    . Thus    ( )   . From here  ( )   . From the relation (1), the inequality (7) is valid.  

Lemma 4. For the solution of the (1)-(2) nonlinear problem, the following estimations are true: 

| ( )|          ;  ( )  ( )   ,   -        (8) 

|  ( )|   {  
 

 
( 

 √  

   
 √ (   )

 )}         ( )  ( )   ,   -    (9) 

[2]. 

Proof. First, we show that | ( )|     From the relation (7) 

| ( )|  |  |  |  |     
   

     
| ( )|, 

then | ( )|   . Now, we show that the estimation (9) is true. Taking into account the relation (8), if we modify 

the differential equation, we have the following estimation: 

|   ( )|   
 

  
| ( )   ( ) ( )|  

 

  
                  (10) 

Then, we needs to estimate for the values |  ( )| and |  ( )|. Using the following formula: 

  ( )   (     )  ∫   (   ) 
  ( )  

  

  

              

In this formula, if we get  ( )   ( ),    ,     ,     , then 

|  ( )|  |
 ( )   

 
|  

 

 
         (11) 

In the same way, if we get  ( )   ( ),    ,       ,     , then 

|  ( )|  |
    (   )

 
|  

 

 
       (12) 

Here, if we derivate the differential equation (6), then 

        ( ) ( )   ( ) 

          ( ) ( )   ( )  ( )    ( )  
we get  
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 ( )    ( ) 

and 

 ( )    ( )  ,  ( ) ( )   ( )  ( )-  

then 

  ( )   ( )          (13) 

Moreover, from these relations (11) and (12), 

 ( )   .
 

 
/   ( )   .

 

 
/       (14) 

We search the solution of the linear problem (13)-(14) as the form  ( )    ( )    ( ), where the 

functions   ( ) and   ( ) respectively are the solutions of the following problems: 

     ( )       

  ( )    ( )                (15) 

and 

            

  ( )   .
 

 
/      ( )   .

 

 
/           (16) 

For the solutions of the problem (15) according to the boundary conditions, we can write the following 

estimation: 

|  ( )|     
   

     
| ( )|  

Therefore, if  ( ) is uniformly bounded by  , we have 

|  ( )|                    (17) 

Now, if we apply the maximum principle to the problem (16), then we get 

|  ( )|   ( )       (18) 

Here the function  ( ) is the solution of the following problems: 

           ( )       

 ( )  |  ( )|     ( )  |  ( )|            (19) 

The solution of the constant coefficient problem (19) is obvious: 

 ( )  
 

     (
√  

 
)
,|  ( )|     (

√ (   )

 
 |  ( )|     (

√  

 
)-  

From here, it easy true that the following estimation: 

 ( )  
 

 
{  

√  

    
√ (   )

 }                                               (20) 

This show that lemma is true.   

 

IV. Construction Of Difference Schemes 

4.1. Establishing the Exponential Fitted Difference Schemes. In this section, a difference scheme is 

established for the (1)-(2) non-linear reaction-diffusion problem is equidistant grid. 

Let’s make the following notations for this. Here, the following equidistant discrete point set say the equidistant 

grid: 
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   *                     
 

 
+       *   + 

The points    said the point of mesh. The functions defined on this grid are also called grid 

functions.         has called meshsize. For the grid function        as  (  )    , the 

following notations respectively are called the forward difference derivative, backward 

difference derivative and second difference derivative: 

     
       

 
  

  ̅   
       

 
  

  ̅    
 

 
(       ̅  ) 

[20]. We establish the difference scheme for the differential equation (1) on the uniform mesh   . This scheme 

is the exponential fitted difference scheme. The difference scheme is established by using interpolation 

quadrature rules with the remaining terms in integral form and containing the weight function. For this purpose, 

we multiply both sides of the differential equation (1) with the base function   , and integrate from      to 

    . Therefore, we have the following equation: 

  
     ∫       

    

    

   
     ∫ (        ( ) ( ))    

    

    

 

   
     ∫  (   )     

    

    

 

where    is the basis function and    
√  

 
 ,   

( )( ) and   
( )( ) are respectively the 

solutions of the following problems: 

    
( )       

( )         
( )(  )      

( )(    )                            (21) 

and 

    
( )       

( )         
( )(  )      

( )(    )                          (22) 

The basis function   ( ) is as follows 

   

{
 
 

 
   

( )( )  
      (      )

       
    (       )

  
( )( )  

      (      )

       
   (       )

  

The function    is defined as follows 

      ∫     
    

    

 
     

   

 

   
  

http://www.iosrjournals.org/


Numerical Solutions For Singularly Perturbed Nonlinear Reaction Diffusion Boundary....  

DOI: 10.9790/5728-1501013549                                  www.iosrjournals.org                                           41 | Page 

For the     ∫          
    
    

 term, if partial integration rule is used, it is found the following 

equation: 

  
  (         |    

          ∫     
   

    

    

) 

   
  (     ∫     

( )   
  

    

   ∫     
( )   

    

  

) 

If interpolating quadrature rule (5) is applied to this result, it is obtained the following result: 

  
       ,  ̅  ∫   

( )   
  

    

 ∫     
( )  ∫

   ( )

   

  

    

  

    

  (   )  

     ∫   
( )   

    

  

 ∫     
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   ( )

   

    

    

    

    

  (   )  - 

    
       (       ̅  )      ( )   (23) 

where     ( ) is defined as follows 

 ( )    
  ,   ∫     

( )  
  

    

∫
   ( )

   

  

    

  (   )  

   ∫     
( )  

    

  

∫
   ( )

   

    

  

  (   )  -  

For the   
     ∫  ( ) ( )    

    
    

 term, we obtain as follows: 

  
     ∫  ( ) ( )    

    

    

   
     ∫ , ( )   (  )   (  )-     

    

    

 

   
     ∫        

    

    

       

where 

        
     ∫ , ( )   (  )-      

    

    

 

In addition to this result; if interpolation quadrature rule (4) is applied by taking as     and 

 ( )    
( ) in interval of ,       -,     and  ( )    

( ) in interval of ,         -, the 

following result is obtained: 

  
     ,    ∫   

( )     ∫ (    )  
( )  

    

  

  

    

 

 ∫     
( )

    

  

∫
   ( )

   

    

  

  (   )   
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 ∫     
( )

  

    

∫
   ( )

   

  

    

  (   )     ∫   
( )  

    

  

-       

    
     *    ∫          ̅

    

    

∫ (    )  
( )  

  

    

 

     ∫ (    )  
( )  

    

  

   ∫     
( )

  

    

∫
   ( )

   

  

    

   (     )   

   ∫     
( )    

  
∫

   ( )

   
    
  

  (   )  +         (24) 

If we combine the expressions of (23) and (24), and consider the expressions of (1) and (2), we have 

the following expression 

       ̅               
     ∫  (   )    

    
    

   (25) 

where 

     
  (       ∫ (    )  

( )  
  

    

)  
(   )

 

.    
   

 
/
   

For the   
     ∫  (   )    

    
    

 term, we obtain 

  
     ∫  (   )    

    

    

   
     ∫ *, (   )   (    )-    

    

    

 

 ∫ , (    )   (     )-      (     )  
     ∫     

    

    

+
    

    

 

  (     )           (26) 

where the remainder term      is as follows: 

       
     ,∫ , (   )   (    )-    

    

    

  ∫ , (    )   (     )-    
    

    

-  

If (21) and (22) are combined, following difference scheme is found: 

       ̅          (     )                

                (27) 

where the remainder term is             . 

For the approximate solution of  , we can write the following difference scheme 

       ̅          (     )            

                   (28) 

4.2. Error Estimations. If we get         , we can write the following problem: 
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       ̅                       

          

where if the mean value theorem is applied to this problem, following expression is found: 

 (     )   (     )  
  (     ̃)

  
(     )                                      (29) 

where 

      
  (     ̃)

  
              (30) 

If we consider (29) and (30), error of   satisfy the following boundary value difference problem: 

                              (31) 

where the remainder term   is determined as             . 

Theorem 5. For the  ( )    ,   -, the solution of the difference problem (28) is uniformly 

convergence to the solution of the problem (1)-(2) according to  in   . For the error, the following 

estimation is true: 

‖   ‖ (  )     

[2]. 

Proof. Here   is arbitrary parameter and   is meshsize, from the maximum principle for the difference 

operator    , if      , (           ),     ,     , then it can be shown that     , 

         . If Lemma 3 is applied to the problem (31), we can write as follows 

‖ ‖ (  )     ‖ ‖ (  )                       (32) 

Following estimation is obvious for   , from      and      on the  ( )    ,   -,  

|  |                                    (33) 

Proof of theorem is completed from (32) and (33).  

Remark 6. The difference problem (31) has only one solution. According to maximum principle, the 

following linear system 

                       
has only null solution. As known, this is a necessary and sufficient condition for the existence of a unique 

solution for the system of linear equations [2]. 

Let’s consider the necessary conditions for convergence ratio to be  (  ). We express this with a theorem. 

Theorem 7. If  ( )    ,   -,  (   )    ( ) and 

  ( )    ( )                         (34) 

the convergence ratio of the difference scheme (28) is  (  ) and we can write as follows: 

‖   ‖ (  )                          (35) 

[2]. 

Proof. We consider the remainder term             , for proof of theorem, we have  
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     ∫ ,

    

    

, ( )   (  )- ( )  ( )   

       
     ,∫ , (   )   (    )-    

    

    

  ∫ , (    )   (     )-    
    

    

-  

First, we show that 

|    |   (  )                       (36) 

If 

 ( )   (  )  (    ) 
 (  )  

(    )
 

 
   (  )    (    ) 

and 

 ( )   (  )  (    ) 
 (  )            (    )   

equalities are written in the term     , we obtain followings: 

        
     ,  (  )∫ (    ) ( )    

    

    

 
 

 
∫ (    )

    (  ( )) ( )  ( )  
    

    

- 

    
     ,  (  ) (  )∫ (    )       (  )∫   (  ( ))(    )

   ( )  
    

    

    

    

  

 
 

 
∫ (    )

    (  ( )) ( )  ( )  
    

    

-

   
       (  )∫ (    )

   (  ( ))  ( )  
    

    

 

   
 

 
  
     ∫ (    )

    (  ( )) ( )  ( )  
    
    

                     (37) 

The second term on the right side of (37) satisfy the following inequality: 

|
 

 
  
     ∫ (    )

    (  ( )) ( )  ( )  
    
    

|                          (38) 

from ‖   ( )‖ ,   -   ,  ‖ ‖ ,   -    and |    |
    . In order to evaluate the first term, if we 

replace following inequality 

|  (  )|   ,  
 

 
 
 √   

  
 

 
 
 √ (    )

 - 

                                                     ,  
 

 
 
 √     

  
 

 
 
 √ (      )

 -          

with from the Lemma 4, the first term in (37), we obtain 

|  
       (  )∫ (    )

   (  ( ))  ( )  
    

    

| 

http://www.iosrjournals.org/


Numerical Solutions For Singularly Perturbed Nonlinear Reaction Diffusion Boundary....  

DOI: 10.9790/5728-1501013549                                  www.iosrjournals.org                                           45 | Page 

    
     |  (  )|∫ (    )

   ( )  
    

    

 

 
 

 
   

     |  (  )|∫ (    )
   ( ) 

 √     
   

    

    

 

 
 

 
   

     |  (  )| ∫ (    )
   ( ) 

 √ (      )

   
    
    

    (39) 

It can be easily seen that the convergence ratio of the first term on the right side of (39) is  (  ). The 

followings are seen from   ( )    and        
 

  , (   ) to the second term: 

|
 

 
   

     |  (  )|∫ (    )
   ( ) 

 √     
   

    

    

| 

                               
 

 
   

     |   (  )|   
 √     

 ∫ (    )
   ( )  

    

    

 

                         
 
  
 
 
 √     

     
 

  

    √ 

√     
 

 
 √     

  

    
 

 

   
 
 √     

            

By the same way, the convergence ratio of the third term on the right side of (38) is  (  ) with 

  ( )    (for      ). So, the equality (37) is proved for            . For     (by the 

same way for      ), if we use 

 ( )   (  )  (    ) 
 (  )  

(    )
 

 
   (  )    (    ) 

and 

 ( )   (  )  ∫   ( )
 

  

    

the following is obtained: 

        
     *  (  )∫ (    ) *∫   ( )

 

  

  +     
  

  

 

 
 

 
  

     ∫ (    )
    (  ( )) ( )  ( )  

  
  

+        (40) 

The second term to the right of (40) is seen to be  (  ) from (38). We can evaulate the first term 

from   ( )    and Lemma 4 as follows: 

  
       (  )∫ (    ) *∫   ( )

 

  

  +    
  

  

 

 |  (  )| ∫ |  ( )|  
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     | 
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 √ (      )
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 ,  

 

 
∫  

 √  
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 {  ( )  (   

  √  

 )}   (  ) 

Thus we prove | ( )   |   (  ),  | (   )   |   (  ). So (40) satisfied. 

Now we consider term     ,    
   
,   -

| ( )|,    
   
,   -| ( )|, (   )    ,   -  ,     -, 

 (   )    ( ), it follows 

       
     *∫ [ (   ( ))   (    ( ))]  ( )  

    

    

 

 ∫ [ (    ( ))   (    (  ))]  ( )  
    

    

+ 

Using closed derivative formula and Taylor expansion, we have 

 (   ( ))   (    ( ))  (    ) *
  (     )

  
 
  (     )

  

  (  )
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(    )

 

  
[
   (    (  ))

   
  

   (    (  ))

    

  (  )

  
 
   (    (  ))

   
(
  (  )
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  (    (  ))

   
   (  )

   
]   

From here 

       
     ∫ (    ) *

  (     )

  
 
  (     )

  

  (  )

  
+  ( )  

    

    

 

                              ∫
(    )

 

  
{
   (    (  ))

   
  

   (    (  ))

    

  (  )

  

    

    

 
   (    (  ))

   
(
  (  )

  
)

 

 
  (    (  ))

   
   (  )

   
}  ( )    

|    |   (  )                                                      (41) 

is obvious from Lemma 4, first and second derivative estimation for   function. Finally, it is seen that 

 ‖  ‖ (  )      

from (36) and (41) in the following equality 
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Theorem is proved from this and (32) [2]. 

 

V. Numerical Example 
The difference schemes in this section tested on the following non-linear problem: 

      ( )   (   ) ( )         (   ) 

 ( )   ( )         (42) 

Let’s write this problem explicitly for the (27) and (28): 

        (    
( )     

( )      
( ))      

( )    
( )

  (     
(   ))

  
 

  (     
(   ))    

(   )
  (     

(   ))

  
  

We edit this according to following: 

                                  

        

Here the initial iteration is  
( )              . Also 

               

               
  (     

(   ))

  
  

    (     
(   ))    

(   )
  (     

(   ))

  
  

The elimination method and iteration should be applied together for the sample.           and 

the elimination method is defined by 

     
  

       
                 

     
       
       

                 

and                              [20]. 

Absolute errors are determined as 

   
   

     
|       

 

|     
   

     
|   

 

    
 

| 

because the analytical solution of the test problem is not known. The smooth convergence ratio is calculated as 

follows: 

  
  

  

  

   
 

[13]. Results are presented in following tables.Results in the solution of (42) test problem are calculated on 

uniform mesh. Errors and   convergence ratios are given on Table (1)-(2). 
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Table 1. Convergence ratio at a uniform mesh points for         (             ) 
  N=8 N=16 N=32 N=64 

    r0=0.311360 

r1=0.042791 

p=2.863215 

r0=0.046374 

r1=0.009127 

p=2.345066 

r0=0.009127 

r1=0.002110 

p=2.112825 

r0=0.002110 

r1=0.002110 

p= 2.030424 

    r0=0.228723 

r1= 0.181690 

p=0.332122 

r0=0.302153 

r1=0.042560 

p= 2.827703 

r0=0.045168 

r1=0.009008 

p=2.326072 

r0=0.009008 

r1=0.002093   

p=2.105377 

    r0=0.029511 

r1=0.021707 

p=0.443117 

r0=0.213193 

r1=0.173294 

p=0.298938 

r0=0.293582 

r1=0.042189 

p=2.798826 

r0=0.044029 

r1=0.008846   

p=2.315451 

    r0=0.013264 

r1=0.003572 

p=1.892868 

r0=0.034541 

r1=0.019164 

p=0.849931 

r0=0.202879 

r1=0.167515 

p=0.276334 

r0=0.287519 

r1=0.041926   

p=2.777732 

    r0=0.001015 

r1=0.000229 
p=2.145248 

r0=0.017297 

r1=0.003867 
p=2.161150 

r0=0.037469 

r1=0.017750 
p=1.077877 

r0=0.197143 

r1=0.164258   
p=0.263277 

    r0=0.000009 

r1=0.000015 

p=-0.780445 

r0=0.002291 

r1=0.000280 

p=3.032668 

r0=0.020158 

r1=0.004050 

p=2.315307 

r0=0.039032 

r1=0.017014   

p=1.197961 

    r0=0.000000 

r1=0.000001 
p=-5.619925 

r0=0.000048 

r1=0.000008 
p=2.529604 

r0=0.003855 

r1=0.000335 
p=3.526566 

r0=0.021867 

r1=0.004149   
p=2.397955 

 

Table 2. Convergence ratio at a uniform mesh points for         (             ) 

  N=128 N=256 N=512 N=1024 

    r0=0.000518 

r1=0.000129 
p=2.008042 

r0=0.000129 

r1=0.000032 
p=2.002020 

r0=0.000032 

r1=0.000008 
p=2.000501 

r0=0.000008 

r1=0.000002 
p= 2.000123 

    r0=0.002103 

r1= 0.000515 
p=2.030544 

r0=0.000516 

r1=0.000128 
p= 2.007474 

r0=0.000128 

r1=0.000032 
p=2.001877 

r0=0.000032 

r1=0.000008   
p=2.105377 

    r0=0.008854 

r1=0.002061 
p=2.102758 

r0=0.002081 

r1=0.000510 
p=2.029223 

r0=0.000510 

r1=0.000127 
p=2.007438 

r0=0.00012 

r1=0.000032   
p=2.001832 

    r0=0.043257 

r1=0.008739 
p=2.307372 

r0=0.008806 

r1=0.002041 
p=2.109253 

r0=0.002068 

r1=0.000507 
p=2.0282252 

r0=0.000507 

r1=0.000126   
p=2.007188 

    r0=0.284069 

r1=0.041776 
p=2.76549 

r0=0.042822 

r1=0.008680 
p=2.302650 

r0=0.008779 

r1=0.002030 
p=2.112542 

r0=0.002060 

r1=0.000505   
p=2.027695 

    r0=0.194140 

r1=0.162543 
p=0.256272 

r0=0.282245 

r1=0.041696 
p=2.758954 

r0=0.042593 

r1=0.008648 
p=2.300122 

r0=0.008765 

r1=0.002028   
p=2.111332 

    r0=0.039837 
r1=0.016639 

p=1.259558 

r0=0.192606 
r1=0.161665 

p=0.252646 

r0=0.281309 
r1=0.041655 

p=2.755580 

r0=0.42476 
r1=0.008632   

p=2.298817 
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