
IOSR Journal of Mathematics (IOSR-JM) 

e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 15, Issue 1 Ser. I (Jan – Feb 2019), PP 57-70 

www.iosrjournals.org  

 

DOI: 10.9790/5728-1501015770                                  www.iosrjournals.org                                           57 | Page 

Fluctuation around the Gamma function and a Conjecture 
 

Danilo Merlini1, Massimo Sala2 and Nicoletta Sala3 
1 CERFIM/ISSI, Locarno, Switzerland 

2 Independent Researcher 
3 Institute for the Complexity Studies, Rome, Italy 

 

Abstract: Using the expansion of the log of the ξ and the ζ functions in terms of the Pochammer's Polynomials, 

we obtain a fast convergence sequence for the first two Li-Keiper coefficients. The sequences are of oscillatory 

type. Then we study the oscillating part of the Li-Keiper coefficient (the  “tiny” oscillations) and following some 

analytical calculations we pose a new conjecture  in the form of a kind of “stability bound” for  the  maximum 

strength of the fluctuations around the mean staircase. 
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I. Introduction 
Recently, Matiyasevich has given a new interesting Formula for the first Li coefficient, i.e. a representation of it 

with positive summands by means of the binary sequence for the Euler constant γ and for log(π), which reads 

[1]: 

 

λ1 = ∑ (
1

𝜌𝑗

+
1

1 − 𝜌𝑗

) =

∞

𝑗=1

1

2
∙ (𝛾 − log(4𝜋) + 2) = 

∑

∞

𝑛=3 

1

2
∙ (2𝑁1(𝑛) + 3)

[(2𝑛) ∙ (2𝑛 + 1) ∙ (2𝑛 + 2)]
 

 

Where:
1

𝜌𝑗
 is the reciprocal of any nontrivial zero of the Zeta function and N1(n) is the number of units  

i.e. of 1 in the binary expansion  of n.  See also previous related works [2, 3]. In the first part of this work we will 

find another representation of λ1 and of λ2 which is not in the form of positive summands but that it is given by an 

alternating sequence of rational numbers and Zeta value of half  integer arguments emerging from the 

representation of the ξ function. The sequence is nevertheless “fast” converging to the true values of the two 

constants. We use a Pochammer's representation of ξ at special values of the parameters (α, β) given in a systematic 

analysis of some representation of the Zeta function [4, 5, 6, 7, 8], that is here α =1/2, β =1. We do not comment 

on a point of view present in the literature concerning the utility or not of a representation of the Zeta function 

involving values of the Zeta function at integer arguments [9, 10, 14]. 

Some serious treatments have appeared in these years and various numerical experiments have been 

extensively pursued in addition to some rigorous partial results obtained in some pioneering works [4, 5,12 ]. 

Here, since dealing with representations of functions at the border of the domain of absolute convergence  (i.e. at 

s ~ 1 ) no additional proofs seems to be necessary and our strategy is motivated by the results of our analytical 

and numerical experiments.                   

 

II. The expansion of the log of ξ (z) and others functions by means of Pochammer's Polynomials 
We start with the expression of ξ (s), i.e. the Xi function where s = σ + i·t is the usual complex variable. Introducing 

the new variable z given by z = 1-1/s i.e.  s = 1/(1-z), so that the critical line s = 1/2 + i·t   is  mapped onto the unit 

circle abs( z) = |z| = 1 we then have  [13, 14] 

 

                    ξ (z)  = (½) ·z·[1/(1-z)2 ] · π -(1/(2·(1-z)). Γ(1/(2·(1-z))) ·ζ(1/(1-z))             (1) 

 

where Γ(s/2) is the Gamma function of argument s/2 and ζ(s) is the Zeta function of argument s. Notice also that  

π-(s/2) = π-1/(2·(1-z)) . 

We then consider the Pochammer's Polynomials  in the complex variable s  of degree k , given by  [4 ,5]: 
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𝑃𝐾 (𝑠) = ∏ (1 −
𝑠

𝑟
)𝑘

𝑟=1   for k ϵ  N   and P0(s) = 1   for all s.         (2) 

 

It is then interesting to consider the log of the ξ function where  

 

ξ (s)  =    ξ (0) ∙ ∏(1 −
𝑠

𝜌
)

𝜌

 

[13, p.52]  (ρ is  also any nontrivial zero of ζ(s) )and also the  function 

 

                                                                   log [(s -1). ζ(s)]                          (3)                          

 

For Re(s) >Re(so) where so  is a complex number we have: 
1

(𝑠 − 𝑠0)

= ∫ 𝑒(−λ∙(s−𝑠0)) ∙ 𝑑λ = 𝑒(−λ∙(s−𝑠0))
∞

0

∙ [1 − (1 − 𝑒(−𝛽)]
(𝑠−𝛼)/𝛽

∙ 𝑑λ 

= ∑ 𝑃𝑘
∞
𝑘=0 (

𝑠−𝛼

𝛽
+ 1) ∙ (∑ (−1)𝑗𝑘

𝑗=0 ∙ (
𝑘
𝑗
) ∙ (

1

𝛼+𝛽∙𝑗−𝑠0
))                             (4) 

 

in terms of a two-parameter family of Pochammer's Polynomials [8]. 

Notice that for a constant C we have: 

= ∑ 𝑃𝑘
∞
𝑘=0 (

𝑠−𝛼

𝛽
+ 1) ∙ (∑ (−1)𝑗𝑘

𝑗=0 ∙ (
𝑘
𝑗
) ∙ (𝐶)) = 𝑃0 ∙ 𝐶 = 𝐶.  (5) 

For Eq. (3) we then have: 

 

log(ζ(s))·(s-1)) =    

= ∑ 𝑃𝑘

∞

𝑘=0

(
𝑠 − 𝛼

𝛽
+ 1) ∙ (∑(−1)𝑗

𝑘

𝑗=0

∙ (
𝑘
𝑗
) ∙ [log ((𝛼 + 𝛽 ∙ 𝑗 − 1) ∙ ζ (α + β ∙ j)]) 

= ∑ 𝑃𝑘
∞
𝑘=0 (

𝑠−𝛼

𝛽
+ 1) ∙ 𝑑𝑘                        (6) 

where 𝑑𝑘 = (∑ (−1)𝑗𝑘
𝑗=0 ∙ (

𝑘
𝑗
) ∙ [log ((𝛼 + 𝛽 ∙ 𝑗 − 1) ∙ ζ (α + β ∙ j)])          (7) 

 

Notice that in dk, in the last factor, it appears α+β·j  instead of s. 

Similarly for   log(ξ(s)) we also have : 

log (ξ(s)) = ∑ 𝑃𝑘

∞

𝑘=0

(
𝑠 − 𝛼

𝛽
+ 1) ∙ (∑(−1)𝑗

𝑘

𝑗=0

∙ (
𝑘
𝑗
) ∙ log (ξ ∙ (𝛼 + 𝛽 ∙ 𝑗)) 

= ∑ 𝑃𝑘
∞
𝑘=0 (

𝑠−𝛼

𝛽
+ 1) ∙ 𝑑𝑘                                              (8) 

where   𝑑𝑘 = (∑ (−1)𝑗𝑘
𝑗=0 ∙ (

𝑘
𝑗
) ∙ [log (ξ (α + β ∙ j)])   (9) 

 

We analyse these Formulas without further comments. 

In the next Section we will consider  the case  α =1/2 and β  =1 and check the validity of the expressions given 

above  by means of the Pochammer's Polynomials  (a fast converging sequence of approximations)  for ξ(s = 0) , 

λ1   and  λ2,that is the first two Li-Keiper coefficients with the particular pair (α , β) given  above.  

 In general we have [15] that 

log(ξ(z)) = log(ξ(s = 0)) + ∑ (
λ𝑛

𝑛
)

∞

𝑛=1

∙  𝑧𝑛 

i.e. the series around  z = 0where  λn is the n-then Li-Keiper coefficient. 

 

III. The case [α=1/2, β = 1] 
We are now interested to check the Formulas  following the approach with the Pochammer's polynomials 

(infinite series).To the best of our knowledge  the following numerical experiments  have not been considered 

before along these lines. 
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III.1 The case α = ½, β = 1 

 

log(ξ(s)) = ∑ 𝑃𝑘

∞

𝑘=0

(𝑠 +
1

2
) ∙ (∑(−1)𝑗

𝑘

𝑗=0

∙ (
𝑘
𝑗
) ∙ log ξ ∙ (

1

2
+ 𝑗)) = ∑ 𝑃𝑘

∞

𝑘=0

(𝑠 +
1

2
) ∙ 𝑑𝑘 

             (10) 

 Where: 𝑑𝑘 = ∑ (−1)𝑘 ∙∞
𝑘=0 (

𝑘
𝑗
) ∙ log ξ ∙ (

1

2
+ 𝑗) 

and Eq.(6), 

log(ζ(s))  ∙ (s − 1)  = ∑ 𝑃𝑘

∞

𝑘=0

(𝑠 +
1

2
) ∙ (∑(−1)𝑗

𝑘

𝑗=0

∙ (
𝑘
𝑗
) ∙ [log ((𝑗 −

1

2
) ∙ ζ (

1

2
+ j))]) 

(11) 

Remark     

About the convergence we just remark that we use the Baez-Duarte inequality given by  |Pk(s)| < (c/kRe(s)) [4,12], 

in our case we have   

|Pk(((s+1/2 ) | < c/k1+δ at large  k for Re( s)> δ+1/2 and the boundedness would be “ensured” if |dk| < r where r is 

a constant.     

Below we analyze  Eq.(10)   and  also Eq.(11). For Eq.(11) we have that 

                                  [logξ(1/2+j) ] = log [( π)-(1/2+j) /2·  Г(5/4+j/2) · (j-1/2)· ζ(1/2+j)]                                       (12) 

 

III.2 The first two Li-Keiper coefficients λ1 and λ2. 

We now check Eq. (11) and Eq. (10) first for the case α = 1/2, β = 1 and   compute  the first two  Li-Keiper 

coefficients with these parameters. 

From above we know that the Li-Keiper coefficients enters in the log of the ξ(s) function and of its log 

derivative as: 

log(ξ(s)) = log(ξ(z)) = log (
1

2
) + ∑ λ𝑛

∞
𝑛=1 ∙

𝑧𝑛

𝑛
   i.e. the expansion in z = 0 (z = 1- 1/s:  s = 1, z= 0),              (13)                                                                                                                                    

ξ′(s)

ξ(s)
=∑ λ𝑛

∞
𝑛=1 ∙ 𝑧𝑛−1i.e. the expansion in z= 0   of the log derivative. 

For Eq. (10) we have:       

log(ξ(z))  =   

∑ 𝑃𝑘

∞

𝑘=0

(
1

(1 − 𝑧)
+

1

2
) ∙ 𝑑𝑘

∗ = ∑ (
1

𝑘!
) ∙ (

1

(1 − 𝑧)
)

𝑘∞

𝑘=0

∙ ∏ (
1

2
− 𝑟) ∙ (𝑎𝑟 + 𝑧) ∙ 𝑑𝑘

𝑘

𝑟=1

 

                                                                                                                                                                             (14) 

 

Where ar = (r-3/2)/(1/2-r) , r =1..k. In general, we have that: 

 

∏(𝑎𝑟 + 𝑧) =

𝑘

𝑟=1

∏(𝑎𝑟) ∙

𝑘

𝑟=1

(∑ (
1

𝑎𝑟

) ∙ 𝑧 +

(

 (
1

2
) ∙ (∑(

1

𝑎𝑟

)

𝑘

𝑟=1

)

2

−
1

2
∙ ∑(

1

𝑎𝑟
2

)

𝑘

𝑟=1
)

 ∙ 𝑧2

𝑘

𝑟=1

+ 𝑂(𝑧2)) 

(15) 
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Fig.1. The constant log(ξ(1))= log(1/2) = - 0.69.... 

 

We then obtain  the expression for  logξ(1) and for the first two  Li-Keiper coefficients using  Eq.(10) as  

follows: log(ξ(1/(1-z)) at z = 0 is given by 

log(ξ(1)) = 𝑑0 + ∑ 𝑑𝑘 (
1

𝑘!
) ∙ ∏(𝑟 −

3

2
) = −0.69314718045 = 𝑙𝑜𝑔 (

1

2
)

𝑘

𝑟=1

𝑝

𝑘=1

 

λ1 = ∑ 𝑑𝑘 (
1

𝑘!
) ∙ ∏ (𝑟 −

3

2
) ∙ [𝑘 + ∑

(
1

2
−𝑟)

(𝑟−
3

2
)

𝑘
𝑟=1 ]𝑘

𝑟=1
𝑝
𝑘=1     (dk, from Eq.(10))           

(16) 

Up to some decimals we obtain:  λ1 = 0.0230957090. (0.0230957089...is the exact value up to 10 decimals).               

The exact value (Section1) is given by:  

λ1 =
1

2
∙ (𝛾 − log(4𝜋) + 2) =

𝛾

2
−

1

2
 𝑙𝑜𝑔4𝜋 + 1 = 0.023…               

 

 
Fig.2. λ1 (p) with Eq.(16) for p in the range 5-20. 

 

  At this point it is interesting to give a Table with our result given by Eq.(16)  for λ1  (See above Figure) 

and  the formula of positive summands given by Matiyasevich. Notice that our Formula Eq.(16) is alternating but 

fast converging which may be of some interest for later more elaborated numerical experiments, also for λk(p),     

k >1. We remember here that the formula of Matiyasevich is given by:      
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λ1(𝑝) = ∑ (
1

2
) ∙ (2𝑁1(𝑛) + 3) ∙ (

1

2𝑛 ∙ (2𝑛 + 1) ∙ (2𝑛 + 2
)

∞

𝑛=3

 

 

where N1(n) is the number of  units, i.e. of 1 in the binary expansion of the integer n (i.e. 1 for n=1, 1,10 for 2, 

11 for 3 , 100 for 4  i.e. N1(4)=1). 

 

 

                     p      Matiyasevich                           Eq.(16)                  Exact 

                     3      0.0104166667                      0.0231132914 

                     6      0.0181429681                      0.0230953998  

                     9      0.0205045706                      0.0230957329 

                   12      0.0212906505                      0.0230957042 

                   15      0.0216840359                      0.0230957100 

                   18      0.0218474882                      0.0230957089 

                   21      0.0219721434                      0.0230957087 

                   24      0.0220600665                      0.0230957090        0.02309570896 

Table1 for λ1 (p) 

 

The formula of Matyiasevich for λ1 is of course very interesting since it is also in connection with the binary 

system. We now continue with our Formulas and compute λ2. From above: 

λ2 = ∑ 𝑑𝑘 (
1

𝑘!
) ∙ ∏ (𝑟 −

3

2
) ∙ [𝑘 ∙

(𝑘 + 1)

2
+ ∑

(
1

2
− 𝑟)

(𝑟 −
3

2
)

𝑘

𝑟=1

+
1

2
∙ (∑

(
1

2
− 𝑟)

(𝑟 −
3

2
)

𝑘

𝑟=1

)

2

+

𝑘

𝑟=1

𝑝

𝑘=1

 

−
1

 2
∙ (∑

(
1

2
− 𝑟)

(𝑟 −
3

2
)

𝑘

𝑟=1

)

2

] 

(17) 

 

Up to some decimals we obtain: λ2 = 0.0923457352. 
The “exact” value is also known and given by λ2  =  0.09234573522           

 

 
Fig. 3. λ2 (k)  from Eq.(17)  for p in the range 10-25. 

 

We conclude the analysis concerning the experiments using the Pochammer's polynomials for the first two Li-

Keiper coefficients using the pair of parameters (α = 1/2, β =1) using directly the ξ function instead of its logarithm 

or its  log derivative; we limit the calculation to the first  coefficient λ1.We have (See Eq.(1)): 

ξ (z) =  
1

2
 ∙ z ∙ [

1

(1 − 𝑧)2
] 𝜋

−(
1

2∙(1−𝑧)
)
∙ Γ (

1

2 ∙ (1 − 𝑧)
)  ∙ ζ (

1

1 − 𝑧
) 
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=  𝜋
−(

1

2∙(1−𝑧)
)
∙ Γ (1 +

1

2 ∙ (1 − 𝑧)
)  ∙ (

𝑧

1 − 𝑧
) ∙ ζ (

1

1 − 𝑧
) 

(18) 

 

The Taylor expansion of  π- (1/(2·(1-z))·Γ(1+1/(2·(1-z)) to first order  is 

 (½)·exp( 1-  γ/2  -log(4· π)) and now we compute to first  order the Taylor expansion of (z/(1-z)·ζ(1/(1-z))  =  

(s-1)·ζ(s). By means of the Pochammer's expansion given by: 

 

 

ξ (s) =  ∑ 𝑃𝑘
∞
𝑘=0 (

𝑠−𝛼

𝛽
+ 1) ∙ (∑ (−1)𝑗𝑘

𝑗=0 ∙ (
𝑘
𝑗
) ∙ (𝛼 + 𝛽 ∙ 𝑗 − 1) ∙ (ξ(𝛼 + 𝛽 ∙ 𝑗))) 

 
(19) 

so that still for the case   α =1/2 and β=1 we have: 

(𝑠 − 1) ∙ ζ(s) = ∑ 𝑃𝑘

∞

𝑘=0

(𝑠 +
1

2
) ∙ (∑(−1)𝑗

𝑘

𝑗=0

∙ (
𝑘
𝑗
) ∙ (𝑗 −  

1

2
) ∙ (ζ (

1

2
+ 𝑗))) 

(20) 

where the second factor is the dk for this expansion. With s=(1/(1-z)), we now check that  we obtain  1+ γ·z= 

1+eγ·z , at z~0. 

For the constant we have as above 

𝑓(𝑝) = 𝑑0 + ∑ 𝑑𝑘 (
1

𝑘!
) ∙ ∏ (𝑟 −

3

2
) =𝑘

𝑟=1
𝑝
𝑘=1 (−

1

2
) ∙ ζ (

1

2
)+ ∑ 𝑑𝑘 (

1

𝑘!
) ∙ ∏ (𝑟 −

3

2
)𝑘

𝑟=1
𝑝
𝑘=1  

 

while for the linear term in z we obtain: 

𝑔(𝑝) = ∑ 𝑑𝑘 (
1

𝑘!
) ∙ ∏ (𝑟 −

3

2
)

𝑘

𝑟=1

𝑝

𝑘=1

∙ (𝑘 + ∑(

1

2
− 𝑟

𝑟 −
3

2

)

𝑘

𝑟=1

) 

 

the plots of  the functions f and g are given below. 

 

 
Fig. 4. Plot of f(p) in the range 1<p <30 and the constant 1 . 

 

 
Fig. 5.   Plot of g(p) and in the range 10<p<30  and γ  =   0.577...   , (γ is the Euler constant). 
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We thus have:  

ξ (z→ o)= (
1

2
) ∙ 𝑒(1−

𝛾

2
−(

1

2
)𝑙𝑜𝑔(4𝜋)+𝛾)∙𝑧 = (

1

2
) ∙ 𝑒λ1∙𝑧 

with 

λ1 =  1 +
𝛾

2
− (

1

2
) 𝑙𝑜𝑔(4𝜋) = 0.0230957. 

 

It is interesting to write the formula in the Riesz case (where α = β =2) for the first Li-Keiper coefficient   λ1, 

following the expansion of (s-1)·ζ(s).We have that: 

(𝑠 − 1) ∙ ζ(s) = ∑ 𝑃𝑘

∞

𝑘=0

(
𝑠 − 𝛼

𝛽
+ 1) ∙ (∑(−1)𝑗

𝑘

𝑗=0

∙ (
𝑘
𝑗
) ∙ (𝛼 + 𝛽 ∙ 𝑗 −  1) ∙ (ζ(𝛼 + 𝛽 ∙ 𝑗))) 

 

=
1

2
∙ 𝑒(1− 

𝛾

2
 −

1

2
log(4𝜋))∙𝑧 ∙ (ζ(2) + ∑ 𝑑𝑘 (

1

𝑘!
) ∙ ∏(𝑟 −

1

2
)

𝑘

𝑟=1

𝑝

𝑘=1

) + 

 

+ ∑ 𝑑𝑘 (
1

𝑘!
) ∙ ∏ (𝑟 −

1

2
) ∙ (𝑘 + ∑(

−𝑟

(𝑟 −
1

2
)
)

𝑘

𝑟=1

)

𝑘

𝑟=1

𝑝

𝑘=1

∙ 𝑧 

(21) 

 

where in 𝑑𝑘 = ∑ (−1)𝑗𝑘
𝑗=0 ∙ (

𝑘
𝑗
) ∙ (1 + 2 ∙ 𝑗) ∙ ( ζ (2 + 2 ∙ 𝑗)), it appears, in addition,  the factorial  powers  of  π.  

Since 

 

ζ (2+2·j) = (-1)(1+2·j) ·2(3+4·j) ·B4+4·j·π 4+4·j·(1/(4+4·j)!)(22) 
 

We should obtain from above: (1/2)·e (1-  γ /2   -(1/2)·log(4π) )· z ·(1+γ·z) 

The numerical computation gives in fact for p = 45: 

(ζ(2) + ∑ 𝑑𝑘 (
1

𝑘!
) ∙ ∏ (𝑟 −

1

2
)

𝑘

𝑟=1

𝑝

𝑘=1

) = 0.9999974863435160 

 

 And 

∑ 𝑑𝑘 (
1

𝑘!
) ∙ ∏ (𝑟 −

1

2
)

𝑘

𝑟=1

𝑝

𝑘=1

∙ (𝑘 + ∑(
−𝑟

𝑟 −
1

2

)

𝑘

𝑟=1

) ∙ 𝑧 = 0.5772247299616524 

The plot of the two above functions of p, approaching 1 and γ are given below. 

 

 
Fig. 6.   The constant 1. 
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Fig.7. The “plot” of γ (p) in the range 1<p <25. 

 

IV. Stability of the fluctuations: a conjecture 
We now analyse more in details the fluctuations in the log of the ξ function that is the term log((s-1).Zeta(s)).  The 

term containing the Gamma function  in  ξ  should give  the major contribution to the n-then Li-Keiper coefficient  

of the order n , given by c.n.log(n), c> 0  for  large n (called the trend).For some contributions in this direction, 

See  the works in  [ 15,16,17,18,19 ]. 

Here, concerning the tiny fluctuations [16] we make an analogy with the extensivity property of the free energy 

in statistical mechanics where the stability bound for the Hamiltonian take usually the form: 

H  > -c·N,  c> o. Formula (10) for the fluctuations (still for the pairs α =1/2 ,   β=1) is given by: 

log(ζ(s))·(s-1)) =    

= ∑ 𝑃𝑘

∞

𝑘=0

(𝑠 +
1

2
) ∙ (∑(−1)𝑗

𝑘

𝑗=0

∙ (
𝑘
𝑗
) ∙ [log ((𝑗 −

1

2
) ∙ ζ (j +

1

2
))]) 

 

where we call d**(k) the second factor containing the binomials.  Then, for the contribution of the fluctuation to 

the first Li-Keiper coefficient we obtain, using Eq. (16) above: 

λ1
∗∗(p) = ∑ 𝑑𝑘

∗∗ (
1

𝑘!
) ∙ ∏(𝑟 −

3

2
) ∙ [𝑘 + ∑

(
1

2
− 𝑟)

(𝑟 −
3

2
)

𝑘

𝑟=1

] = ∑∆1

𝑝

𝑟=1

𝑘

𝑟=1

𝑝

𝑘=1

(𝑘) 

 

Notice that   ∆ 1(1) = -d**(1)= -[log((-1/2·ζ (1/2)-log(1/2· ζ (3/2)]= 0.58158.... 

Moreover, we easily check that ∆ 1(k) is a decreasing function of k. Thus - λ1
**(p)is the sum of positive summands 

with an upper  bound given by minus  the Euler constant  i.e. - γ =  - 0.577.... and the lower bound given by – 

λ1
**(1) = - 0.58158... This bares some similarity with the property of positive summands given by Matiyasevich 

in [1] as reported above. Our function - λ1
**(p)is represented on the Figure 8 with the  constant - γ . 

 
Fig.8. The function - λ1

**(p)(in green) , - γ (in reed) , and 

                                        - λ1
**(p)>> - λ1

**(1)· 1  =  - λ1
***(1)=  - 0.58158.... 
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    On the Table 2 we give explicitly the increments   ∆ 1(k). 

 

                                             k                                 - ∆ 1(k)  

                                             2                                  0 

                                             3                                  0.00223699 

                                             4                                  0.00099514 

                                             5                                  0.00046471 

                                             6                                  0.00024213 

                                             7                                  0.00013827 

                                              8                                 0.00008460 

                                              9                                 0.00005456 

                                             10                                0.00003670 

                                             15                                0.00000778 

                                             20                                0.00000254 

                                             25                                0.00000106 

                                            30                                5.191510298.10 -7 

 

                                                              Table 2 

 

We now study the contribution of the fluctuations to the second Li-Keiper coefficient. We have similarly as 

above (Eq. (16)) that: 

 

λ2
∗∗(p) = ∑ 𝑑∗∗(𝑘) ∙ (

1

𝑘!
) ∙ ∏(𝑟 −

3

2
) ∙ [

𝑘 ∙ (𝑘 + 1)

2
+ 𝑘 ∙ ∑

(
1

2
− 𝑟)

(𝑟 −
3

2
)

𝑘

𝑟=1

+

𝑘

𝑟=1

𝑝

𝑘=1

 

 

+
1

2
∙ (∑

(
1

2
− 𝑟)

(𝑟 −
3

2
)

𝑘

𝑟=1

)

2 

− 
1

2
∙ (∑

(
1

2
− 𝑟)

(𝑟 −
3

2
)

𝑘

𝑟=1

)

2  

= ∑ ∆2

𝑝

𝑘=1

(𝑘)] 

 

 

Moreover, here too we easily check that ∆ 2 (k) is a decreasing function of k. Notice that   λ2
**(1) = λ1

**(1)  = 

0.58158... 

Thus – λ2
**(p) is here too the sum of positive summands with the lower bound equal to - 0.58158.The function – 

λ2
**(p) is represented on  the Figure below. 

 

 
Fig. 9. The function – λ2

**(p)  and his limit  - 0.483448.. =-(1/2).0.9668850..(taken from Ref. [16] and λ2
**(1) = -

0.58158 . - λ2
**(p) > - λ2

**(1) = - (1/2).λ2
***(1).λ 2***(1) = 2. λ2

**(1) = 2.0.58158 = 1.16316. 

 

Thus, - λ 2***(p)   is the sum of positive summands and λ 2***(p) < 2. λ2
**(1) =  2.λ1

***(1)= 2.0.58158... 

The Table 3 gives explicitly the increments ∆ 2 (k). 
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                                             k                                   ∆ 1(k)  

                                             2                                  0.07472470 

                                             3                                  0.01565897 

                                             4                                  0.00447817 

                                             5                                  0.00164285 

                                             6                                  0.00072314 

                                             7                                  0.00036198 

                                              8                                 0.00019849 

                                              9                                 0.00011642 

                                             10                                0.00007197 

                                             15                                0.00001091 

                                             20                                0.00000273 

                                             25                                8.985216176·10 -7 

                                             30                                3.481499094·10-7 

                                                              Table 3      

            

Here too we have the property of positive increments of ∆ 2 (k) as for ∆ 1(k) bearing some analogy with the 

Matiyasevich pioneering result on λ1, i.e. λ1, as sum of positive summands. 

For the contribution to the third coefficient λ3, defining: 

𝑠(𝑘) = ∑(𝑎(𝑟), 𝑞(𝑘)) = ∑𝑎(𝑟)2and 𝑐(𝑘) = ∑𝑎(𝑟)3

𝑘

𝑟=1

𝑘

𝑟=1

𝑘

𝑟=1

 

Then (Eq. (15)) 

λ3
∗∗(𝑝) = ∑ 𝑑∗∗(𝑘) ∙ (

1

𝑘!
) ∙ ∏ (𝑟 −

3

2
)

𝑘

𝑟=1

𝑝

𝑘=1

∙ 

∙

[
 
 
 
 
 (

1

3
) ∙ 𝑐(𝑘) − (

1

2
) ∙ 𝑠(𝑘) ∙ 𝑞(𝑘) + (

1

6
) ∙ 𝑠(𝑘)3 + (

1

6
) ∙ 𝑘 ∙ (𝑘 − 1) ∙ (𝑘 − 2) − (

1

2
) ∙ 𝑘2 ∙ (𝑘 − 1) +

−(−(
1

2
) ∙ 𝑘2 − (

1

2
) ∙ 𝑘) ∙ 𝑘 + 𝑘 ∙ (− (

1

2
) ∙ 𝑞(𝑘) + (

1

2
) ∙ 𝑠(𝑘)2) + (−(

1

2
) ∙ 𝑘 ∙ (𝑘 − 1) + 𝑘2) − 𝑠(𝑘)

]
 
 
 
 
 

 

 

= ∑ ∆3
𝑝
𝑘=1  (𝑘). 

 

Here too ∆ 3 (k) is a decreasing function of k and  λ3
**(1)  = 0.58158.. as above. Thus, – λ3

**(p)   is of the kind 

above with a lower bound   given by -0.58158..The function  -λ3
**(p)  is represented below. 

 

 
Fig. 10.  The function – λ3

**(p)  and his limit  - 0.40690.... =-(1/3)·1.220697.... (taken from Ref. [16] . We also 

have  λ3
**(1) = - 0.58158.  - λ3

**(p) > - λ3
**(1) = - (1/3)·λ3

***(1). 

 

λ3
***(1) = 3· λ3

**(1) = 3·0.58158 = 1.74474.                             

Thus, - λ 3***(p)   is the sum of  the kind above and λ 3
***(p) < 3· λ2

**(1) =  3·λ1
***(1)= 3.0.58158...Finally we 

also see that  - λ4
**(p) is increasing and then stabilizes at the limit  - 0.34389= - (1/4)·1.375588   in agreement 

with  the value taken from Ref [161  and λ 4
***(p) < 4·λ2

**(1) = 4·0.58158 = 2.32632.  

The function is represented below with his limit. 
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Fig.11   The function above and his limit -0.34389... 

 

We have thus found that  -∆ i(k) is negative for i=1,2,3,4 and  that λi
**(1) = 0.58158  indicating that λ i

***(p) < 

i·λ1
***(1)= i·0.58158.  

Moreover, from the Formula above, for any n> 0, the first term i.e. at p= k =1 is obtained as: 

𝑃1 (𝑠 +
1

2
) ∙ 𝑑1

∗∗(𝑘 = 1) = 𝑃1 (
1

(1 − 𝑧)
+

1

2
) ∙ 0.58158 

since 

 

𝑑1
∗∗(𝑘 = 1) = (∑(−1)𝑗

1

𝑗=0

∙ (
𝑘
𝑗
) 𝑙𝑜𝑔 ((𝑗 −

1

2
) ∙ ζ (𝑗 +

1

2
))) = 

 

= 𝑙𝑜𝑔 (−
1

2
) ∙ ζ (

1

2
) − 𝑙𝑜𝑔 (

1

2
) ∙ ζ (

3

2
) = 0.58158 … 

 

and for n>0, the  series expansion of     

𝑃1 (
1

(1 − 𝑧)
+

1

2
) = ∏ (1 −

1

(1−𝑧)
+

1

2

𝑟
) =∙

(−
1

2
) (1 + 𝑧)

(1 − 𝑧)
𝑟=1

= (−
1

2
) ∑ 1 ∙ 𝑧𝑛

𝑛=1

 

and 

𝑃1 (𝑠 +
1

2
) ∙ 𝑑1

∗∗(𝑘 = 1) = −𝑃1 (
1

(1 − 𝑧)
+

1

2
) ∙ 𝑑1

∗∗(𝑘 = 1) = −0.58158 ∙ (∑ 𝑧𝑛

𝑛>0

) 

i.e.  the stability bound  for each n> 0  ( k=1! )  is expected to be given by: 

H(n) > - 0.58158·n 

 

We stop here and we introduce the following conjecture. 

 

Conjecture 
The fluctuations are bounded for every n by  n.λ1

***(1)= n..0.58158 in absolute value reflecting the extensivity 

(in n) of the “stability” bound H(n) > -n. 0.58158  where  H(n) = limit (- n. λn
**(p)  p→∞)   i.e. from Ref [16] the 

“tiny” fluctuations (> or <0)  are very small .  

The main contribution (the trend  as reported in Ref. [16] , given in terms of the Gamma function , behaves like 

c. n. log(n) at large n and fit well with the explicit formula reported below:  so there is no doubt  that the trend 

behaves [16], as 

 

λn(trend) = (3/4)+ (½). (γ -1-log(2.)).n +(½).n.log(n) = (¾)  + c.n + (½).n.log(n) 

(A) 

where c= (½). (γ -1-log(2.) = -1.13.... 

A numerical experiment  to obtain  c within 1% -2% of the true value above is reported in the  Appendix, by 

means of  a sequence of approximations, the first few values of which are given by 

c1 = -1.07582,   c2 = -1.10465, c3=  - 1.12023 

 

Moreover the trend is given by the exact formula [17,18] 
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λ𝑛(𝑡𝑟𝑒𝑛𝑑) = 1 −
1

2
∙ (𝑙𝑜𝑔(4𝜋) + 𝛾) ∙ 𝑛 + ∑ (−1)𝑗𝑛

𝑗=2 ∙ (
𝑛
𝑗) ∙ (1 − 2−𝑗) ∙ ζ(j)                             (B) 

Notice that in the first formula (A) we take ¾ instead of ½ as in Ref [16].The excellent agreement between the 

Maslanka results and the above expression (B) for the trend is illustrated on the Figure below.  

 

 

 
Fig.12.   In red Eq. (B)  and in green Eq. (A),10 <n <30  . 

 

 
Fig. 13.  In red Eq. (B) and in green Eq. (A), 30<n <50. 

 

 

 
Fig.14.   The difference  between the function in Eq. (A) and that in Eq.(B) , 10<n <30.   = 0.000... 

 

 
Fig.15. The difference  between the function in Eq. (A) 
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and that in Eq.(B), 30 <n <50. (=0.000..) 

 If our conjecture is true, then the Gamma function  is “responsible” for the positivity property  of the Li-Keiper 

coefficients which ensure the truth of the Riemann Hypothesis  . 

 

 
Fig. 16.    The two function (trends) and the same increased or decreased by the  maxima of the fluctuations ( 

0.58158·n)  following the above conjecture. In the plot, 30 <n <50. 

 

Remark 

Assuming our conjecture we have the inequality: λn> (3/4)+ (½). (γ -1-log(2.))·n +(½).n .log(n)-

(log((1/2)·Zeta(3/2))·n=  ( ½).n. log(n)+ n.(γ-1-log(2. )-(log((1/2)·Zeta(3/2))+(3/4). 

 Notice that (log[(1/2)·Zeta(3/2)] = 0.58158..  as given above. 

The coefficient of n in our conjecture is given by the number  - ( ½ )· 3.42  near and a little above the lower 

bound conjectured in  [19]  and  given  by  - (½))· 3.56. 

 

V. Concluding remark 
In the first part of this work we have found - using an expansion by means of the Pochammer's Polynomials - a 

new alternating series for the first two Li-Keiper coefficients. The series converge very fast and the values have 

been compared with those of the interesting sequence of positive summands of Matiyasevich for the first Li-

Keiper coefficients λ1.  For λk, k > 2 further investigations are necessary to test more about the fast or not 

convergence of the associated sequences.  

We then studied the fluctuations (the oscillatory part of the Li-Keiper coefficients) and then  proposed a conjecture  

that these should be bounded in absolute value by c·n where c= 0.58158.. so that the trend -which behaves like 

c.n.log(n)with c>0 - should be the  dominant part, which would ensure the truth of the RH ( λk0 for all integers 

k). 

                                                                    Appendix 
 

We want to obtain an approximation to the constant c appearing in the Eq. (A) above for the trend. For this, we 

start with the Formula 

log(ξ (z)) = 𝑙𝑜𝑔 (
1

2
) + ∑ λ𝑛

∞

𝑛=1

∙
𝑧𝑛

𝑛
= 𝑙𝑜𝑔 ((

1

2
) ∙ 𝑠 ∙ (𝑠 − 1) ∙ π−

𝑠

2 ∙ Γ (
𝑠

2
) ∙ ζ(s)) 

where s=1/(1-z) . 

We take the first 19 calculated values of lambda from Ref [16] and  from n=20 to infinity we assume the 

Formula λn ~ (n/2)·log(n) +c·n. 

 In the right hand side of the above Formula we insert s= 1/(1-z) and calculate with  the sequence  of the first few 

values z1 = 0.9, z2= 0.99, z3 = 0.999. With these three values of z  we have solved the linear Equation  for  c and 

we have found the values    cn, n=1,2,3 given above exact up to few decimals of the exact value  given by c = -

1.13... [16]. 
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