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I. Introduction 
 The floor function, which is also called the greatest integer function (see in [1]), is a function that takes 

an integer value. For arbitrary real number x, the floor function of x, denoted by x   , is defined by an inequality 

of 1x x x     . The floor function frequently occurs in many aspects of mathematics and computer science. 

However, as I stated in article [2], except the Graham's book [3], one can hardly find a general know-of the 
properties of the floor function though one can find something in the Internet of free wikipedia [4]. Since 
Graham's book was first published 30 year’s ago and its following-up editions made few modification on the 
part of the floor function, it is necessary to sort out the properties of the function as a reference for researchers.  

In 2017, WANG X made a brief summary on the frequently-used properties of the floor function Since 
new results come into being, this paper updates the previous summaries by adding the new results that could be 
found in literatures. 

 
II. Definitions and Notations 

The floor function of real number x  is denoted by symbol x   that satisfies 1x x x         ; the fraction 

part of x is denoted by symbol { }x that satisfies { }x x x    ; the ceiling function of x is denoted by symbol 

x   that fits 1x x x     . In this whole article, A B means conclusion B can be derived from condition A; 

A B means B holds if and only if A holds. Symbol Z means the integer set, x Z means x is an integer and 
x Z indicates x is not an integer. 

 
III. Frequently Used Properties of the Floor Function 

The following properties of the floor functions are sorted by basic inequalities, conditional inequalities 
and basic equalities. 
 
3.1 Basic Inequalities 
In the following inequalities, x and y are real numbers by default.  
(P1) [1]  1x y x y x y                          

(P2) [5] 1 1x y x y x y x y                                    

(P3)[1][3] 2 2x y x y x y                        

(P4)[ 5] ( ) ( )m n x m n y mx my nx ny                          with m and n being positive integers 

(P5)[5] ( 1)nx ny n x y x y                         with n being a positive integer 

(P6) [1][5] xy x y            with , 0x y  . 

(P7)[6] 
yy

x x

          
 with 1x  and 0y  . 
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(P8) [3] n x nx       ; { } 1n x nx n x         , where n is a positive integer. 

(P9) [7] 
1

1
q q

p p

  
  

 
 for arbitrary positive integers p and q; 

 
3.2 Conditional Inequalities 
In the following inequalities, x and y are real numbers, and n is an integer. 
(P10)[3] x n x n     , n x n x       

(P11)[3] x n y x n y            

(P12) [2] x y x y          

(P13) [2][5] x y x y          

 
3.3 Basic Equalities 
In the following equalities, x and y are real numbers, m and n are integers. 

(P14) [3][5] n x n x         . 

(P15)[5] 
x x

m m

           
with 1m  . 

(P16)[5] 
,

1,

x x
x

x x

              

Z

Z
 

(P17)[3][5] 
1 1

...
n

nx x x x
n n

                     
with n>0, particularly, 

1
2

2
x x x

           
and 

1

2 2

x x
x

             
. 

(P18)[3] 1 1
...

x x n x
x

n n n

                       
, particularly,

1

2 2

x x
x

             
 

(P19)[3] 
1

1
n n

m m

          
with 1m  . 

(P20)[1][3] x x           with 0x   

(P21)[3] log logb bx x          with 0x   

(P22)[3] log 1 log ( 1)b bm m          with 1m  . 

(P23)[3]

a
ab

c bc

  
            
  

 for an arbitrary integer a and  positive integers b and c. 

(P24) [1][5] 
, 1

1

1, | 1

m
n m

nm

n m
n m

n

                 



 

(P25)[5] 
1

1
n x

x
 

     

(P26)[7] 1 4 1 4 2 4 3n n n n n                       

 
IV. Some New Results 

The following equalities and inequalities are found newly in recent two years. 
 

(P27)[1][3] It needs 2log 1N    binary bits to express decimal integer N in its binary expression. A 

positive integer n with base b has log 1b n    digits.  
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(P28) [9] Let N be an integer; then 
2

0N N    . 

(P29)[5] Let m and p be positive integers; then number of p’s multiples from 1 to m is calculated by 
m

p

 
 
 

. 

(P30)[8] Let ,m n and p be positive integers such that 1 p m n   ; then number of p’s multiples from m to n is 

calculated by 

,

( , , )

1, |

n m
p m

p p
m n p

n m
p m

p p



    
    

     
           



 

(P31)[10] An arbitrary positive integer i yields 

1 2
2

i
i i

     
 

an arbitrary positive even integer e yields  

2
2

e
e

    
 

and an arbitrary positive old integer o yields  

2 1
2

o
o

     
 

 
(P32) [11] Let  and x be  positive real numbers; then it holds 

1 ( 1)x x x                 

Particularly, if  is a positive integer, say n  , then it yields 

( 1) 1n x nx n x               

(P33) [11] For arbitrary positive real numbers , x and y with x y , it holds 

( ) 0x y y x            

(P34) [11]. For an arbitrary odd integer 7n  , it holds  

2

1
1 log

2

n
n


     

(P34)[12] For positive integer k and real number 0x  , it holds 

2

2

1 2 ,0 log
0 2

, log2

k
k

k

k xx
x

x k x

                         
 

(P35)[13] For positive integer k and real number x >1, it holds 

1
1, 1

21

2 1
, 1

2

k

k

k

x
k

x

x
k

                  
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