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Abstract: In this paper, we analyze the existing rules for constructing derivatives of the scalar and tensor 
functions of the tensor argument with respect to the tensor argument and the theoretical positions underlying 
the construction of these rules. We perform a comparative analysis of these rules and the results obtained in the 
framework of these rules. Considering the existing approaches, we pay due attention to the earliest of them 
which for some reason is not reflected in later publications on the issue under consideration, and we give to this 
approach the further development. 
The rules for constructing the derivatives of scalar and tensor functions of the tensor argument with respect to a 
tensor and the form of representing these derivatives depend on the accepted scheme of the interaction between 
the basis vectors in a double scalar product of two tensors. Up to now, three groups of rules and forms of 
derivative representation have been developed and used. For any of these groups, the derivatives of the scalar 
functions of the tensor argument with respect to a tensor are similar. The only difference is in derivatives of the 
tensor functions of the tensor argument. 
We consider three schemes of the interaction of the basis vectors in a double scalar product of the two tensors, 
which lie at the root of the rules for constructing derivatives and derivatives themselves and establish the 
correlation between these schemes. We introduce three isotropic fourth-rank tensors, which play the role of the 
unit tensor and the unit tensor with the transpose operation for the relevant scheme of the double scalar product 
by the second-rank tensors. For these schemes we formulate the rules for differentiation of the scalar and tensor 
functions of the tensor argument with respect to a tensor and for one of them (used in our previous works) we 
derive specific forms of representation, which reflect the rules for constructing derivatives and expressions for 
derivatives themselves. In conclusion, we discuss the rules for differentiation of tensor functions of the tensor 
argument and derivatives obtained in the publications of other authors and examine them for compliance with 
the construction rules and derivatives obtained in this article.  
Keywords: Differentiation with respect to a tensor, Rules for differentiation and forms of derivatives, Scalar 
and tensor functions of tensor argument 
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I. Introduction  
In solid mechanics, differentiation of the scalar or tensor (second rank) functions of the tensor (also of 

second rank) argument with respect to a tensor is an often-used procedure. The need of finding derivatives of 
such functions arises, for example (see [1,2]), 
• when deriving from the second law of thermodynamics the constitutive equations, describing the 

thermomechanical behavior of the material (it is necessary to differentiate the scalar function – Helmholtz 
free energy with respect to the second-rank tensor, which is any kinematic quantity);  

• when constructing the heat equation from the first law of thermodynamics (it is necessary to find time 
derivative of the scalar function – entropy, depending on the force and kinematic tensors, temperature and 
parameters, describing changes in the structure of the material under deformation); 

• or when developing the relations describing the history of the deformation process step-by-step (relations in 
terms of increments, the linearization procedure of any scalar or tensor quantity). 

 
However, in the known courses of tensor analysis [3-6] the issues concerning the differentiation of the 

scalar and tensor functions of the tensor argument with respect to a tensor are usually not considered or poorly 
elucidated [7]. This is a reason that each time the derivatives of any particular function are found using the 
approaches of the theory of infinitesimals (increments of the function and the argument are built and passages to 
the limit are carried out), but not the rules for constructing derivatives, which could have been obtained in the 
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framework of this theory. The rules of the conventional mathematical analysis for finding derivatives of the 
tensor function of the tensor argument are generally not applicable. 

In this paper, we will analyze the existing rules for constructing derivations of the scalar and tensor 
functions of the tensor argument with respect to the tensor argument and the theoretical positions underlying the 
construction of these rules. We will perform a comparative analysis of these rules and the results obtained in the 
framework of these rules. Considering the existing approaches, we will pay due attention to the earliest of them, 
which for some reason is not reflected in later publications on the issue under consideration, and will give to this 
approach the further development. 

In the literature, there has been a series of works [8-18] that are devoted to the development of the rules 
for constructing derivatives of the scalar and tensor functions of the tensor argument with respect to a tensor. 
They also give some examples of how such derivatives are defined. In these works the construction of 

derivatives is implemented with the use of tensor product operators ˆ, ,⊗    (see, for example, [8-10, 14]), 

which have the following properties:  

                             
| | | | | | | | | | | |
1 2 3 4 1 3 2 4 1 4 2 3

ˆ, , ,⊗A B A B A B                             (1.1) 

where the vertical bars in front of each of the two second-rank tensors A and B  correspond to the first (left) 
and second (right) basis vectors, to which these tensors are assigned in the covariant, contravariant or mixed 
representations, whereas the numbers below them denote the sequence order of these basis vectors in the 
resulting fourth-rank tensor. Based on the unit isotropic second-rank tensor g  and using the operations ,⊗   
and ˆ, we also introduce the fourth-rank tensors   and ,  which play the role of the unit tensor and the unit 
tensor with a transposition operation* in their a double scalar product by the second-rank tensors. The latter is 
realized according to certain schemes of the interaction between the basis vectors of these fourth-rank tensors 
and the second-rank tensors (this will be discussed below), which are supposed to comply with the operations in 
the following relations: 

                                                      = = , = = .T⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅A A A A A A                        (1.2) 

The introduced operators and tensors allow us to construct derivatives of the scalar and tensor functions of the 
tensor argument with respect to a tensor in the form of tensor objects without referencing them to any basis. In 
the basis representation the derivatives of the tensor argument functions are given in works [15-17]. 

The rules for constructing derivatives of the scalar and tensor functions of the tensor argument with 
respect to a tensor and the form of their representation depend on the accepted scheme of the interaction of the 
basis vectors in a double scalar product of two tensors. For the second-rank tensors, there are two such 
independent schemes, for the second and fourth-rank tensors there are 12 schemes and for tensors of the fourth 
rank their number increases to 36. As a result, there are no uniform rules and uniform form of writing 
derivatives of the scalar and tensor functions of the tensor argument with respect to a tensor. Until the present 
time there have been only three groups of the rules and forms of derivative representation. Their derivation and 
specific expressions for derivatives for each group are presented in works [8-10], [11-13] and [15-18], 
respectively. It is interesting to note that in contrast to [15-17] of the last group of articles, in which the 
derivatives of the tensor argument functions are written in the basic form, work [18] uses the concept of 
positional scalar multiplication [19], which allowed the authors to represent the rules for constructing 
derivatives and the derivatives themselves in the form of tensor objects without referencing them to any basis. In 
work [14], the correspondence between the results obtained in the works of the first and second group has been 
established. However, the results obtained in the works of the third group, for some reason, were not taken into 
account in this consideration. 

The rules for constructing derivatives of the scalar and tensor functions of the tensor argument with 
respect to a tensor in the works of the first group is based on a widely used scheme of the interaction of the basis 
vectors in a double scalar product of the second and fourth-rank tensors (the schemes of the basis vector 
interaction will be considered in the next Section). However, this yields rather exotic representation forms, 
which essentially differ from the forms of derivative representation commonly used in conventional 
mathematical analysis. 

In the works of the second group the rules of constructing  derivatives for the scalar and tensor 
functions of the tensor argument with respect to a tensor and the forms of derivative representation do not differ 
from the rules of derivative construction and the forms of their representation used in conventional mathematical 
_____________________________________________ 
*For a second-rank tensor, the transposition operation reduces to a permutation of the basis vectors of this tensor and is 
denoted by the superscript T. 
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analysis. However, it must be emphasized that their construction is based on a special (given below) scheme of 
the basis vector interaction in a double scalar product of the second and fourth-rank tensors. 

Finally, the work of the third group also operates with a widespread scheme of the interaction of the 
basis vectors, which however is different from those used in the works of the first group. Furthermore, the 
resulting rules for constructing derivatives of the scalar and tensor functions of the tensor argument with respect 
to a tensor and the forms of derivative representation differ insignificantly from the corresponding rules and 
forms of representation used in conventional mathematical analysis. 

Note that derivatives of the scalar functions of the tensor argument with respect to a tensor are similar 
in any group. The only difference is in the derivatives of the tensor functions of the tensor arguments. Bearing 
this in mind, we may suppose that such ambiguity will not be critical to the analysis of solid mechanics who are 
one of the main users of the results of this article. 

 
II. Double Scalar Product of Tensors 

The rules for constructing derivatives of the scalar and tensor functions of the tensor argument with 
respect to a tensor and the forms of representation of the derivatives themselves depend on the scheme of double 
scalar multiplication of the basis vectors of the second and fourth-rank tensors, which lies at the heart of the 
theory that allows you to formulate these rules. For the second-rank tensors A  and ,B  there are only two 
independent schemes of double scalar multiplication of the basis vectors, which can be represented as follows: 

 
Here, the horizontal brackets indicate for which basis vectors and of which tensors the scalar multiplication is 
carried out. For example, in the left scheme the second basis vector of the second-rank tensor A is multiplied by 
the first basis vector of the second-rank tensor ,B while the first basis vector of the tensor A is multiplied by the 

second basis vector of the tensor B (first, the nearest vectors are multiplied and turn into a scalar, then, 
multiplication is performed for the next vectors, which have now become the nearest). The right-hand 
multiplication scheme is also of frequent use. It is often referred to as a double scalar product and its 
identification is also based on two points (horizontal or vertical). The cross multiplication of the nearest basis 
vectors is fulfilled according to this scheme. We will denote this operation by the symbol ( ),⋅⋅ ( ) ,⋅⋅A B leaving 

the operation notation by two horizontal (or vertical) points ⋅ ⋅  for the left scheme of the basis vector 
multiplication. Certainly, 

                                                 ( ) ,T T⋅⋅ = ⋅⋅ = ⋅⋅A B A B A B                                       (2.2) 

i.e., the operations of cross-multiplication of the nearest basic vectors and their successive multiplication are 
interrelated. 

Schemes that are similar to the above mentioned ones and exhibiting the relationship between the basis 
vectors at the interaction of tensors are of demonstrative character. They allow us to represent the operations 
with tensor objects without referencing the latter to any basis and will be used later in the article. In particular, 
based on the schemes (2.1), we can easily demonstrate the validity of the following relations: 

                                       ,T T T T∗ = ∗ = ∗ = ∗A B B A A B B A                                     (2.3) 

where ∗ = ⋅ ⋅ or ( ).∗ = ⋅⋅ Also, from (2.1) – (2.3), we obtain the following relationships: 

                             ( ) ( ) , ( ) ( ) ( ) ( ) ,T T⋅ ⋅ ⋅ = ⋅ ⋅⋅ ⋅⋅ ⋅ = ⋅ ⋅⋅A B C A B C A B C A B C                   (2.4) 

the first of which is more attractive because of its simplicity and clarity (here we need to permute only the 
operation ,⋅⋅  in contrast to the second relationship, where in addition to permutation of the ( )⋅⋅  operation it is 

necessary to perform transposition of certain tensors). 
As noted above, for the second-rank tensors there are only two independent schemes of double scalar 

multiplication of the basis vectors, which are shown in (2.1). For each of the schemes we introduced the 
appropriate operation sign. The double scalar multiplication of the basis vectors of the second and fourth-rank 
tensors involves already 12 independent schemes of vector interaction, so that there is no use of introducing the 
appropriate operation sign for each of them. Therefore, to identify the operation of the scalar multiplication we 
use in the general case a point with an indication of the basis vectors of the left (above the point) and the right 

(beneath the point) tensors of arbitrary ranks interrelated by this operation: .
m

n
⋅  Then, in the accepted notation, 

1 2         1 2

,⋅ ⋅A B

1 2         1 2 

,⋅ ⋅A B
(2.1)
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the relations (2.1) are given as 
1 2

2 1
⋅ ⋅ = ⋅ ⋅A B A B  and 

1 2

1 2
( )⋅⋅ = ⋅ ⋅A B A B  from which we immediately arrive at 

the expressions (2.2).  
Of the twelve independent schemes of the interaction between the basis vectors of the second-rank 

A and fourth-rank IVH tensors during the operation of their double multiplication, the schemes 
1 2

1 4

IV⋅ ⋅A H and 

2 3

1 2

IV ⋅ ⋅H A are introduced and used in the literature for constructing the derivatives of the scalar and tensor 

functions of the tensor argument with respect to this argument. Below, these schemes are represented in detail 
as

as well as the schemes 
1 2

1 2

IV⋅ ⋅A H and 
3 4

1 2
,IV ⋅ ⋅H A  which are represented in the following visual form: 

 
In the last line of these schemes, the basis vectors of each tensor are numbered from the left to the right. Unlike 
the schemes (2.5) and (2.6), the operation of obtaining the double scalar product introduced above for the 
second-rank tensors, and implying a sequential scalar multiplication of the nearest basis vectors, will also be 

used for the second- and fourth-rank tensors: 
1 2

2 1

IV⋅ ⋅A H and 
3 4

2 1
.IV ⋅ ⋅H A  For the sake of clarity these schemes 

are presented below at greater length: 

 
For a double multiplication of the basis vectors of the two fourth-rank tensors IVP and ,IVH  there are 

already 36 independent schemes of the interaction. The number of independent schemes of the basis vector 
interaction in the double multiplication of the basis vectors γ  of the two M−  and N− rank tensors is defined 

by the ratio ( 1)( 1),a b aγ = − − where max( , )a M N= and min( , ),b M N= and 2γ = when 

2,M N= =  12γ = at 2, 4M N= = and 36γ =  at 4,M N= = as it has been noted above. Of these 36 

schemes of interaction, only three are used for constructing the derivatives of the scalar and tensor functions of 

the tensor argument with respect to a tensor: 
2 3

1 4
,IV IV⋅ ⋅P H  

3 4

1 2
,IV IV⋅ ⋅P H  

3 4

2 1
,IV IV⋅ ⋅P H  

 
Schemes (2.5) and the first scheme in (2.8) were used in [11-13], schemes (2.6) and the second one in 

(2.8) are used in [8-10], while scheme (2.7) and the last scheme in (2.8) – in [15-18] and in this article. 
In scheme (2.6) and in the second scheme (2.8) the operation of cross multiplication of the nearest basis 

vectors of the tensors is used. For this operation, we have introduced the notation ( )⋅⋅  and used it to rewrite the 

above schemes as follows: 

                               ( ) , ( ) , ( ) .IV IV IV IV⋅⋅ ⋅⋅ ⋅⋅A H H A P H                                      (2.9) 

(2.8)

 1234          1234 

    

,IV IV⋅ ⋅P H
    

,IV IV⋅ ⋅P H

   1234           1234

.IV IV⋅ ⋅P H

  1234        1234

1 2 3 4          1 2

,IV ⋅ ⋅H A
(2.7)

,IV⋅⋅A H

    12         12 34 

(2.6)
,IV⋅ ⋅A H

    12         1 2 34 1 2 3 4          1 2

,IV ⋅ ⋅H A

  (2.5)

1 2 3 4          1 2

,IV ⋅ ⋅H A,IV⋅ ⋅A H

    12         1234 



Differentiation of Scalar and Tensor Functions of Tensor Argument  

DOI: 10.9790/5728-1502010120                                www.iosrjournals.org                                          5 | Page 

In scheme (2.7) and the last scheme (2.8) the sequential multiplication of the nearest basis vectors of 
the tensors is employed. For this operation we have introduced the notation ⋅ ⋅  and used it to rewrite the above 
schemes as follows: 

                              , , .IV IV IV IV⋅ ⋅ ⋅ ⋅ ⋅ ⋅A H H A P H                                     (2.10) 

Finally, after introducing the operation [ ],⋅⋅ which is called the operation of double positional scalar 

multiplication and involves multiplication of the basis vectors at the interaction of the second and fourth-rank 
tensors, the fourth- and second-rank tensors and fourth-rank tensors in accordance with scheme (2.5) and the 
first scheme in (2.8), we can represent these schemes as 

                             [ ] , [ ] , [ ] .IV IV IV IV⋅⋅ ⋅⋅ ⋅⋅A H H A P H                                     (2.11) 

The substance of this operation can easily be interpreted as follows: the tenor B  of the second or fourth rank on 
the right-hand side of relations is substituted in the form of ( )⋅ ⋅B  in the middle of the group of the basis 

vectors of the left tensor ,A which is also of the second or fourth rank, and the operations of scalar 

multiplication specified for tensor B are performed. For example, for the second-rank tensors A and ,B which 

are represented, respectively by contravariant and covariant components in the basis ir  and ir (see the 

beginning of the next section), we have 

       [ ] [ ] ( ) ( ) ( ) ,ij k p ij ij k p ij
i j kp i j i kp j ijA B A A B A B⋅⋅ = ⋅⋅ = ⋅ ⋅ = ⋅ ⋅ = = ⋅⋅A B rr r r r B r r r r r A B       (2.12) 

that is, for tensors of the second rank the operations [ ]⋅⋅ and ( )⋅⋅ do not differ. For the second-rank tensor A  

and the fourth-rank tensor IVH we obtain 

[ ] [ ] ( ) ( ) ,IV ij m n k p ij IV ij m n k p ij n k
i j mnkp i j i mnkp j inkjA H A A H A H⋅⋅ = ⋅⋅ = ⋅ ⋅ = ⋅ ⋅ =A H rr r r r r r H r r r r r r r r r  

            [ ] [ ] ( )IV i j k p mn i j k p
ijkp m n ijkpH A H⋅⋅ = ⋅⋅ = ⋅ ⋅ =H A r r r r r r r r A r r                        

                                                   ( ) ,i j mn k p jk i p
ijkp m n ijkpH A H A= ⋅ ⋅ =r r r r r r r r  

which corresponds to the schemes (2.5). Finally, for the fourth-rank tensors IVP and IVH we have 

  [ ] [ ] ( )IV IV ijkl m n s p ijkl IV
i j k l mnsp i j k lP H P⋅⋅ = ⋅⋅ = ⋅ ⋅ =P H rr r r r r r r rr H r r                                                         

( ) ,ijkl m n s p ijkl n s
i j mnsp k l jnsk i lP H P H= ⋅ ⋅ =rr r r r r r r rr r r  

which corresponds to the first scheme (2.8) and completes its definition by specifying the sequence order of the 
noninteracting basis vectors in the resulting tensor. Note that in [14] the operation [ ]⋅⋅ is designated as .•   

In what follows, we will use the above introduced three groups of relations between tensors (2.9) – 
(2.11). 

III.    Fourth-Rank Isotropic Tensors and Their Properties 
In view of the fact that the solid mechanics is one of the main fields of research, for which the results 

of this article might be beneficial, we will build the vector and tensor objects in the basis sets, which are directly 

related to the initial 0 ,κ current κ  and any intermediate *κ  configurations, which the body can occupy in the 

process of deformation. The position of a material point in the configuration 0κ is determined by the radius 

vector ( ),iqr in the configuration κ – by the radius vector ( )iqR and in the configuration *κ  – by the radius 

vector ( ),iqR


where , 1,2,3iq i =  are the generalized Lagrangian (material) coordinates. Then, the vectors of 

the main basis in these configurations are 

/ , / , / ,i i i
i i iq q q= ∂ ∂ = ∂ ∂ = ∂ ∂r r R R R R

 
 

the reciprocal basis vectors , ,i i ir R R


are found from the conditions 

, , ,j j j j j j
i i i i i iδ δ δ⋅ = ⋅ = ⋅ =r r R R R R

 
 

where j
iδ is the Kronecker Delta and the simplest expressions for the metric tensors of these configurations 

, ,g G G


 can be written as 

                          , , .i i i i i i
i i i i i i= = = = = =g rr r r G R R R R G R R R R

    
                  (3.1) 
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Here, for a second-rank tensor, instead of the tensor product operation ⊗a b for two vectors, we used a more 
laconic form of writing, namely, the dyad representation ,ab  and applied the convention of summation over the 
repeated indices (Einstein summation convention). In the following, we will use this form of representation. 

We will use three fourth-rank isotropic tensors ,IV IV
I IIC C and .IV

IIIC  The first of them is defined as an 

ordinary tensor product of two metric tensors of the initial ,g current G  or any intermediate G


 configuration. 

In their configurations these metric tensors play the role of the unit tensors and, by virtue of their equality as the 
tensor objects, will be denoted by I  if there is no need to specify the basis of the configuration, to which the 
tensors refer. In particular, the first isotropic tensor of the fourth rank is represented in the basis of the initial 
configuration as 

IV
I = = ⊗C gg g g  

or, with account of (1.1) and (3.1), as 

                                              ,IV i j i j i j i j
I i j i j i j i j= ⊗ = = = =C g g r r r r r r r r r r r r r r r r                          (3.2) 

where for each tensor g  the first or second representation from (3.1) is used. 

Using the operations  and ̂ and any representation of the tensor g  from (3.1), we introduce another 

two isotropic tensors of the fourth rank: 

                                    IV i j j i i j i j
II i j i j j i i j= = = = =C g g r r r r r r r r r r r r r r r r                        (3.3) 

and 
ˆ .IV j i j i i j i j

III i j i j j i j i= = = = =C g g r r r r r r r r r r r r r r r r                           (3.4) 

These fourth-rank tensors are called isotropic because, as noted above, they are constructed in the basis of 

tensors ,g G or ,G


which, if represented in the orthonormal (Cartesian) basis , 1,2,3,i i =i  have the same 

form of representation (coincide) 

i i= = = =g G G I i i


                                               (3.5) 

and are isotropic, since their parity group (equvalence group) is a complete orthogonal group: T⋅ ⋅ =O I O I for 

any orthogonal tensor .O  
The properties of the isotropic fourth-rank tensors are derived from relations (3.2) – (3.4) and depend 

on which of the schemes of interaction between the basis vectors of the second-rank tensor A and fourth-rank 

tensor IVH is used in the operation of their double multiplication. These properties are given in Table 1. 
 

Table 1 The properties of the isotropic fourth-rank tensors 
Scheme Operation IV

IC  IV
IIC  IV

IIIC  References 

(2.9) ( ) , ( )IV IV⋅⋅ ⋅⋅A H H A  1( )I A g  IV
II ≡A C   T IV

III ≡A C   [8-10] 

(2.10) ,IV IV⋅ ⋅ ⋅ ⋅A H H A  1( )I A g  T IV
II ≡A C   IV

III ≡A C   [15-18] 

(2.11) [ ] , [ ]IV IV⋅⋅ ⋅⋅A H H A  IV
I ≡A C   T IV

II ≡A C   1( )I A g  [11-13] 
 

The cell of the table at the intersection of the row and column comprises the result of the operation specified in 

the second column of the row, in which the tensor IVH is replaced by the corresponding isotropic tensor of the 
fourth rank (3.2) – (3.4) specified in columns 3 – 5. Scalar multiplication of tensors presented in Table 1 can 
easily be realized by taking into account the orthogonality of the main and reciprocal basis vectors. To this end, 
it is necessary to choose from the four forms of representation of each of the fourth-rank tensors the form that 

will correspond to the form of representation of the second-rank tensor A  (in the bases ir  and ir this tensor 

has four forms of representation – contravariant, covariant and two mixed forms). For example, if tensor A  is 

written as ,ij
i jA=A rr then in the products ( ) IV

II⋅⋅A C and IV
II⋅ ⋅A C  (the second and third rows of the Table 

1) the tensor IV
IIC is convenient to use in the form of its last representation (3.3), whereas in the products 

( )IV
II ⋅⋅C A and IV

II ⋅ ⋅C A  the first form of representation is more suitable. 

Table 1 also presents the consequences arising from the obtained results – the equivalence of the 
tensors   and  to the fourth-rank tensors (3.2) – (3.4) in the double scalar multiplication of the latter by a 
second rank tensor realized according to a certain scheme of the basic vector interaction. The properties of the 
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tensors   and   are described by relations (1.2). From the second and third rows of Table 1 the relation 

( ) IV
II⋅⋅ = ⋅ ⋅ ⋅ ⋅C  follows, from which we readily obtain the expressions (2.2) – (2.4) for the second-rank tensors. 

Indeed, 

( )
( )

( )

IV T
IV II
II IV T

II

 ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅
⋅⋅ = ⋅ ⋅ ⋅ ⋅ =  ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅

A C B A B
A B A C B

A C B A B
         (2.2)1 

( ) ( )

( ) ;( ) ( )

( ) ( )

T T IV T T T
II

IV
T II

T IV T T T
II

 ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅


 ⋅⋅ =  ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ =  ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅

A B A C B A B

A B B C A B A
B A

B C A B A

   (2.3)1 

( ) ( ) ( ) ( ) ( ) ( )IV IV T
II II⋅⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ =A B C A C B C A C B C A B C  

( ) ( ) ( ) ( ) ( ) .T T IV T T T
II= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅A B C A B C C A B C       (2.4)1 

Using the relation ( ) ,IV
II⋅⋅ = ⋅ ⋅ ⋅ ⋅C  we obtain from relations (2.9) and (2.10) the following expressions for the 

second- and fourth-rank tensors: 

( ) ( ) ,IV IV IV IV IV T IV
II II⋅⋅ = ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅A H A C H A C H A H  

( ) ( ) ,IV IV IV IV IV IV T
II II⋅⋅ = ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅H A H C A H C A H A  

while for tensors of the fourth rank we have 

( ) ( )
( ) ,

( ) ( )

IV IV IV IV dr IV
IV IV IV IV IV II

II IV IV IV IV IV dl
II

 ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅
⋅⋅ = ⋅ ⋅ ⋅ ⋅ =  ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅

P C H P H
P H P C H

P C H P H
 

where ( )IV drM and ( )IV dlM are two of the variants of transpose of the fourth-rank tensor IVM introduced in 

[14]. These variants correspond to the operations ( )IV dr IV IV
II= ⋅⋅M M C and ( )IV dl IV IV

II= ⋅⋅M C M leading 

to the following permutation of the basis vectors of the tensor :IVM  

| | | | | | | | | | | | | | | |
1234 1243 1234 2134

( ) , ( ) .IV dr IV IV dl IV= =M M M M  

In conclusion, we note that in this Section the metric tensors of the initial configuration have been used 
to construct the isotropic tensors of the fourth rank in relations (3.2) – (3.4). As mentioned above, these tensors 

coincide as the tensor objects with tensors ,G G


and I : = = =g G G I


 (see (3.5)). Therefore, in the current 

configuration, the isotropic fourth-rank tensors ,IV IV
I IIC C and IV

IIIC are represented as 

,IV i j i j i j i j
I i j i j i j i j= = = =C R R R R R R R R R R R R R R R R  
IV i j j i i j i j
II i j i j j i i j= = = =C R R R R R R R R R R R R R R R R  

and 
IV j i j i i j i j
III i j i j j i j i= = = =C R R R R R R R R R R R R R R R R  

and in the orthonormal Cartesian basis, in which the main and reciprocal reference vectors coincide, they take 
the following form: 

, , .IV IV IV
I i i j j II i j i j III i j j i= = =C i i i i C i i i i C i i i i       (3.6) 

 
IV.  Differentiation of Scalar Functions of a Tensor Argument 

Let the scalar function Φ depend on the vector argument , ( ),Φ = Φa a which can be represented by 

its contravariant and covariant components: 

.i
ii

i aa rra ==  

Here ir is the main, generally not orthonormal basis, and ir is its reciprocal. A change (variation, increment) of 

the scalar function Φ  is determined by a change (variation) of the vector argument ,a which occurs both due to 
the variation of the coordinate components, and, in the general case, due to the variation of the basis vectors: 
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( ) ( ) .i i i i
i i i id da a d da a d= + = +a r r r r  The representation of the vector a in the Cartesian basis 

,ii which does not change neither in the magnitude nor in the direction, ˆ ,i
ia=a i makes it possible to 

determine a change of the vector a  only by changes in its coordinate components ˆ ˆ: ( ) .i i
ia d da=a i So ( )Φ a  

is the function of  ˆ ˆ, ( ) ( ),i ia aΦ = Φa  only. Then, the conventional mathematical analysis of the function of 

few variables (in this case, three) yields 

    
1 2 3ˆ ˆ ˆ( , , )

ˆ( ) , 1,2,3.
ˆ

i
i

a a a
d d a i

a

∂ ΦΦ = =
∂

a    (4.1) 

Using a particular case of the inverse tensor attribute theorem* (see [20]), this expression can be rewritten as 
1 2 3ˆ ˆ ˆ( , , )

ˆ( ) ( )
ˆ

j
i ji

a a a
d d a

a

∂ ΦΦ = ⋅
∂

a i i          (4.2) 

or, given that ˆ( )i
ida d=i a as 

1 2 3ˆ ˆ ˆ( , , ) ( )
( ) ,

ˆ ii

a a a
d d d

a

∂ Φ ∂ ΦΦ = ⋅ = ⋅
∂ ∂

a
a i a a

a
  (4.3) 

where 
1 2 3ˆ ˆ ˆ( ) ( , , )

.
ˆ ii

a a a

a

∂ Φ ∂ Φ=
∂ ∂

a
i

a
        (4.4) 

Knowing the derivative ( ) /∂ Φ ∂a a in the Cartesian basis, we can easily represent it in any other system of 

coordinates. 

Now let the scalar function Φ  depend on the tensor of the second rank , ( ),Φ = ΦA A which can be 

represented both in the variable basis sets , ,i
ir r  and in the invariable Cartesian basis : .ij

i i ja=i A i i  In the 

latter case 11 12 33( ) , ( ) ( , ,..., )ij
i jd da a a a= Φ = ΦA i i A and a generalization of expression (4.1) is written 

as 
11 12 33( , , , )

( ) , , 1,2,3,i j
i j

a a a
d d a i j

a

∂ΦΦ = =
∂

A


  (4.5) 

which, using a special case of the inverse tensor attribute theorem [20] (see footnote on this page), can be 
represented in two forms according to the schemes (2.1): 

11 12 33( , , , )
( ) ( )k l

i j l ki j

a a a
d d a

a

∂ΦΦ = ⋅ ⋅
∂

A i i i i


 

or 
11 12 33( , , , )

( ) ( )( ) ,l k
i j l ki j

a a a
d d a

a

∂ΦΦ = ⋅ ⋅
∂

A i i i i


 

since the expression of the conventional mathematical analysis for the differential of the function of several 

variables (4.5) follows directly from these relations. As a result, taking into account that ( )kl T
l kda d=i i A and 

( ) ,lk
l kda d=i i A  we get 

 
____________________________________________ 

*If ij ijkl
lkA C B= and ,ij

lkA B are the components of the second-rank tensors A  and B , then ijklC  are the components of 

the fourth-rank tensor .C Special cases: (1) if ,i ij
ja C b= where ia and jb  are the components of the vectors a  and 

,b then ijC  are the components of the second-rank tensor; (2) if ,i
ia c b=  where a  is a scalar and ib  are the 

components of the vector, then ic are the components of the vector; (3) if ,ij
jia C B= where a is a scalar, jiB are the 

components of the second-rank tensor, then ijC are also the components of the second-rank tensor. 
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( ) ( ) ( )
( ) ( ) [ ] ,Td d d d

∂Φ ∂Φ ∂ΦΦ = ⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅
∂ ∂ ∂

A A A
A A A A

A A A
   (4.6) 

which allows for the fact that when using the double scalar product of the second rank tensors, the operations 

( )⋅⋅ and [ ]⋅⋅  are equivalent (see remark after expression (2.12)), ( ) IV
II⋅⋅ = ⋅ ⋅ ⋅ ⋅C  (see remark before expression 

(2.2)1) and ,IV T
II ⋅ ⋅ =C A A  where A is the second-rank tensor (see Table 1). With account of the properties 

(2.3), expressions (4.6) can be written as 

( ) ( )
( ) ( ) ,

T T

Td d d
   ∂ Φ ∂ΦΦ = ⋅ ⋅ = ⋅ ⋅   ∂ ∂   

A A
A A A

A A
   (4.7) 

where 

.
),,,()( 332111

jijia

aaa
ii

A

A

∂
Φ∂=

∂
Φ∂ 

    (4.8) 

Knowing tensor (4.8) in the Cartesian basis, we can readily recalculate it in any other basis sets. 
Five equivalent expressions (4.6) and (4.7) determine one and the same quantity ( ),dΦ A which is the 

increment of the scalar function of the tensor argument. Moreover, they introduce the other quantity appearing 
in the right-hand part of these relations in front of the increment of the argument .d A  This quantity is a 

second-rank tensor and is called a derivative of the scalar function of the tensor argument with respect to an 
argument. There are two such tensor objects, which are coupled by the transpose operation and specified by the 
scheme of multiplication of the basis vectors of the second-rank tensors, which governs the transition from 
expression (4.5) to relations (4.6) and (4.7). In mechanics, it is generally agreed that the derivative of the scalar 
function of the tensor argument with respect to an argument should be defined by the last expression of relation 
(4.6). However, due to the fact that in this chain of equations the derivative itself remains unchanged, any of the 
expressions of this relation can be used to determine the desired derivative. 

Remark. In the literature, it is general practice to introduce the derivative of the scalar function of the 
tensor argument (as well as for the tensor function of the tensor argument) with respect to an argument with the 
aid of the Gato derivative (directional derivative) 

0 0 ,

( )
( ) ( ) | ( ) | ( ) ,

ij
ij ij kp

s s kp

d d a
s a s a a

ds ds a= =
∂ ΦΔ Φ = Φ + Δ = Φ + Δ = Δ = Φ ∗Δ

∂ AA A A A A  (4.9) 

where Δ means a small but finite increment of the corresponding quantity, and ∗ is, in compliance with (2.1), 
either the operation ⋅ ⋅  or the operation ( ).⋅⋅ In the foregoing discussion when deriving the expression for the 

derivative we immediately proceeded from the next-to-last expression in (4.9). 
Hence, expressions (4.3) and (4.6) introduce variations (increments) of the scalar function of the 

vector and tensor arguments, respectively, whereas relations (4.4) and (4.8) introduce the derivatives of the 
scalar function of the vector and tensor arguments with respect to this vector or tensor. Note that in many cases 
in order to find derivatives we need to use only relations (4.3) and (4.6). 

Using the last relation in (4.6), we will find the derivatives of the principal invariants of the second 
rank tensor A with respect to an argument. 

By definition, the first principal invariant of the tensor A is 1( ) .I = ⋅ ⋅A I A Then, in view of the fact 

that the unit tensor I as an object does not change neither in the magnitude nor in the direction due to the 
invariance of its dyad vectors in the Cartesian basis (see (3.5)), i.e. 0,d =I we obtain 

1( ) ( ) .Td I d d d d d= ⋅⋅ = ⋅⋅ + ⋅⋅ = ⋅⋅ = ⋅⋅A I A I A I A I A I A   (4.10) 

Here the symmetry of the tensor ( )T=I I I and the properties of the tensors described by relation (2.3) are 

taken into account. Comparing (4.10) and (4.6) we conclude that 

( )1 ,
I∂

=
∂

A
I

A
     (4.11) 

i.e. the derivative of the first invariant with respect to an argument is equal to a unit tensor. 

In the following, we will be in need of derivatives of the first invariant of tensors 2A and 3.A  
2 2

1( ) ( ) ( )I = ⋅⋅ = ⋅⋅ ⋅ = ⋅ ⋅⋅ = ⋅⋅A I A I A A I A A A A  
(here the properties (2.4) are used). Then 
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2
1( ) 2 2 .T Td I d d d d= ⋅⋅ + ⋅⋅ = ⋅⋅ = ⋅⋅A A A A A A A A A  

Comparing this expression with (4.6) we draw a conclusion that 
2

1( )
2 .TI∂ =

∂
A

A
A

    (4.12) 

Similarly, 3 3 2
1( ) ,I = ⋅ ⋅ = ⋅ ⋅A I A A A  

3 2 2 2 2
1( ) ( ) ( ) 3 ( )T T T Td I d d d d d d= ⋅⋅ + ⋅⋅ = ⋅⋅ + ⋅⋅ ⋅ + ⋅ = ⋅⋅A A A A A A A A A A A A A A  

from which we conclude that 
3

21( )
3 ( ) .TI∂ =

∂
A

A
A

    (4.13) 

Relations (4.11) – (4.13) allow us to write the following expression for an integer positive :n  

11( )
( ) .

n
n TI

n −∂ =
∂

A
A

A
 

By definition, the second principal invariant of the tensor A  is 2 2
2 1 1( ) ( ( ) I ( )) / 2.I I= −A A A  

Using relations (4.11) and (4.12), we obtain 

2
1

( )
( ) .TI

I
∂ = −

∂
A

A I A
A

    (4.14) 

Finally, based on the Hamilton-Cayley equality 
3 2

1 2 3( ) ( ) ( ) ,I I I− + − =A A A A A A I 0    (4.15) 

and multiplying it twice by the scalar I  (no matter from which side) and taking into consideration that 

1( ) 3,I⋅ ⋅ = =I I I  we find the third principal invariant 

3 2
3 1 1 1 2 1

1
( ) ( ( ) ( ) ( ) ( ) ( )).

3
I I I I I I= − +A A A A A A     

Using expressions (4.11) – (4.13), we have 

23
1 2

( )
( ) ( ) ( ) .T TI

I I
∂ = − +

∂
A

A A A A I
A

   (4.16) 

Transposing the Hamilton-Cayley relation (4.15) and taking into account that transposition of the sum of tensors 
is equal to the sum of the transposed tensors, we obtain 

3 2
1 2 3( ) ( ) ( ) ( ) ( ) .T T TI I I− + − =A A A A A A I 0  

By performing the scalar multiplication of this equality by ,T−A we obtain 
2

1 2 3( ) ( ) ( ) ( )T T TI I I −− + =A A A A I A A  

and then expression (4.16) can be written in a compact form 

3
3

( )
( ) .TI

I −∂ =
∂

A
A A

A
     (4.17) 

Thus, expressions (4.11), (4.14) and (4.17) define the derivatives of all three invariants of the second-
rank tensor with respect to this tensor. Note that similar expressions are given in [13-18]. 

Let ( )Φ = Φ A and ,A in its turn be a function of , ( ).=S A A S We need to find the derivative 

( ) / .∂Φ ∂A S In accordance with (4.6) 

( )
( ) .Td

∂ΦΦ = ⋅⋅∂
∂

A
A S

S
    (4.18) 

On the other hand, 
 

( ) ( ) ( )
( ) ( ) ( ) .T IV IV T

II IId d
∂Φ ∂Φ ∂Φ ∂Φ = ⋅⋅∂ = ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅∂

∂ ∂ ∂ ∂
A A A A

A A C A C S
A A A S
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Here the properties of the tensor IV
IIC in the double scalar product (see the third row of Table 1) and relation 

(5.10) of the next section are taken into account. Comparing the last expression with (4.18) we conclude that 
( ) ( )

.IV
II

∂Φ ∂Φ ∂= ⋅⋅ ⋅ ⋅
∂ ∂ ∂

A A A
C

S A S
   (4.19) 

Relation (4.19) can be interpreted as a generalization of the rule of complex function differentiation generally 
accepted in the mathematical analysis.  
 

V.   Differentiation of Tensor Functions of a Tensor Argument 
Now let Φ  be a tensor function (of second rank) of the tensor argument A (also of second rank), 
( ),=Φ Φ A  i.e. each coordinate component of the tensor Φ  is a function of nine (in general) coordinate 

components of the tensor .A Then the expression 
11 12 33( , , , )

( )
ij

i j k p
k p

a a a
d da

a

∂Φ
=

∂
i i

Φ A


 

is a generalization of expression (4.5). Using a special case of the inverse tensor attribute theorem [20] (see 
footnote on the page with expression (4.1)), the above relation can be represented in the three forms according 
to schemes (2.5) – (2.7) or (2.9) – (2.11): 

11 12 33( , , , )
( ) ( ) ( ) ,

ij
m n IV T

i j k p n m Ik p

a a a
d da d d

a

∂Φ= ⋅⋅  = ⋅⋅
∂

Φ A i i i i i i Φ A L A


  (5.1)1 

11 12 33( , , , )
( ) ( ) ( ) ( ) ( ) ,

ij
m n IV

i j k p m n Ik p

a a a
d da d d

a

∂Φ= ⋅⋅  = ⋅⋅
∂

Φ A i i i i i i Φ A L A


 (5.1)2 

11 12 33( , , , )
( ) [ ]( ) ( ) [ ] .

ij
m n IV

i k p j m n IIk p

a a a
d da d d

a

∂Φ= ⋅⋅  = ⋅⋅
∂

Φ A i i i i i i Φ A L A


 (5.1)3 

Here IV
IL is the fourth-rank tensor, representing a derivative ( ) / ,∂ ∂Φ A A which can be written in any basis 

set (in the Cartesian basis it is represented in relations (5.1)1 and (5.1)2). In particular, in the main basis of the 

initial state it is expressed as .IV ijkl
I i j k lL=L rr r r The tensor IV

IIL represents another derivative, which, in 

contrast to ,IV
IL we shall be denote as *( ( ) / ) .∂ ∂Φ A A This tensor is written in the main basis of the initial 

state as IV ijkl
II i k l jL=L rr r r and is the result of a sequential action of the two of transpose operations introduced 

in [14] on the tensor : (( ) ) ,IV IV IV ti dr
I II I=L L L where for any tensor of the fourth rank IVM  

| | | | | | | | | | | | | | | |
1234 1324 1234 1243

( ) , ( ) ,IV ti IV IV dr IV= =M M M M     (5.2) 

In view of the properties of the tensor IV
IIC  (see Table 1, IV IV T

II II⋅ ⋅ = ⋅ ⋅ =A C C A A for any second-

rank tensor A ), the operation of transposition " ti " can be represented as 
2 3

( ) ( ) .IV ti IV IV IV ti IV IV
II IIor= =M C M M M C⊙     (5.3) 

Here, 
n

⊙ is the operation of the positional double scalar multiplication ⋅ ⋅  of the tensor, which is to the left in 

this operation, by the n -th and 1n + -th basis vectors of the tensor, which is to the right in this operation: 
2

( ) .IV IV ijkl IV ijkl
II i II j k l i k j lM M= ⋅⋅ =C M r C r r r rr r r⊙  

n

 is the operation of the positional double product ⋅ ⋅  of the  tensor, which is to the right in this operation, by 

the n -th and 1n − -th basis vectors of the tensor, which is to the left in this operation:  
3

( ) .IV IV ijkl IV ijkl
II i j k II l i k j lM M= ⋅⋅ =M C r r r C r rr r r  

Using the introduced operators the transposition operation " dr " is represented as 
3

( ) ( )IV dr IV IV IV dr IV IV
II IIor= = ⋅⋅M C M M M C⊙         (5.4) 
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and with account of representations (5.3) and (5.4), we finally arrive at the following four equivalent 

expressions for the tensor IV
IIL  

3 2 3 3

(( ) ) ( ) ( )IV IV ti dr IV IV IV IV IV IV
II I II II I II I II= = = =L L C C L C L C⊙ ⊙ ⊙   

3 2

( ) ( ) .IV IV IV IV IV IV
I II II II I II= ⋅⋅ = ⋅⋅L C C C L C⊙  (5.5) 

Note that the equality of derivatives in relations (5.1)1 and (5.1)2, follows from the previously 

determined relationship between the operators ( ) IV
II⋅⋅ = ⋅ ⋅ ⋅ ⋅C  (see the remark before expression (2.2)1). 

Below we will be used expression (5.1)2 in the form 
( )

( ) Td d
∂= ⋅ ⋅

∂
Ф A

Ф A A
A

      (5.6) 

for the construction of derivatives and development of the rules for their derivation. However, before proceeding 
to their consideration it will be necessary to obtain a number of relationships required for our further discussion. 
From the chain of equalities 

[ ] ( ) ,IV ij IV ij m k p n ij k p IV IV IV
II i II j i mnkp j ijkp I II IA A L A L⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅ = = ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅A L r L r r r r r r r r r A L A C L

where A is any second-rank tensor, we obtain the following relation 

[ ] ( ) ,IV IV IV IV
II I II I⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅A L A L A C L    (5.7) 

and the chain of equalities 
(1) (2) (1) (2) (1) (2) (1) (2)[ ] ( ) ( ) ,IV IV ijkl IV ijkl m s q n ijkl s q

II II i k II l j i k mnsq l j klsq i jL L L L L⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅ =L L r r L r r r r r r r r r r rr r r

where (1) IV
IIL and (2) IV

IIL  are the two tensors IV
IIL  (different in the general case), leads to the relation  

(1) (2) (1) (2)[ ] [( ( ) ) ] .IV IV IV IV ti dr
II II I I⋅ ⋅ = ⋅ ⋅L L L L    (5.8) 

To perform transpose operations in the last equality, schemes (5.2) or relations (5.3) – (5.5) can be used. 
Based on relation (5.6) we will obtain some useful expressions. Let ( )=Φ Φ A and ,A in turn, be a 

function of , ( ).=S A A S  So, it is necessary to find the derivative ( ) / .∂ ∂Ф A S According to (5.6) we have 

( )
( ) .Td d

∂= ⋅ ⋅
∂
Ф A

Ф A S
S

    (5.9) 

On the other hand, 
( ) ( )

( ) ( )T IV
IId d d

∂ ∂= ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ =
∂ ∂
Ф A Ф A

Ф A A C A
A A

 

( ) ( )
( ) .IV IV T

II IId d
∂ ∂ ∂= ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

∂ ∂ ∂
Ф A Ф A A

C A C S
A A S

 

Here we take into account the relation (5.6) ( ) ( ) / Td d= ∂ ∂ ⋅⋅A S A S S S  and the properties of the tensor 
IV
IIC  given in Table 1, its invariability either in the magnitude or direction due to invariability of its dyad 

vectors in the Cartesian basis (see (3.6)), i.e. 0IV
IId =C  from which it follows that ( )IV

IId ⋅ ⋅ =C A  
.IV

II d= ⋅⋅C A  Comparing the last expression in the above chain of equalities with (5.9), we conclude that 

( ) ( )
.IV

II

∂ ∂ ∂= ⋅ ⋅ ⋅ ⋅
∂ ∂ ∂
Ф A Ф A A

C
S A S

       (5.10) 

Expression (5.10) can be interpreted as a generalization of the rule of complex function differentiation widely 
used in the mathematical analysis. 

Now let ( ) ( ) ( ).= ⋅Φ S A S B S Then, on the one hand, according to (5.6) 

( )
( ) ,Td d

∂= ⋅ ⋅
∂
Ф S

Ф S S
S

    (5.11) 

and on the other hand 
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( ) ( ) ( ),T Td d d d d
∂ ∂= ⋅ + ⋅ = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅
∂ ∂

A B
Ф S A B A B S B A S

S S
  (5.12) 

where the expressions of the type (5.6) are used for ( )d A S and ( ).d B S Here, we need to introduce a scheme 

of scalar products of the basis vectors of the last two summands, taking into account that derivatives entering 
into these summands are the fourth-rank tensors (with four basis vectors). The left-hand part of relation (5.13) 
given below contains a scheme of relationship (scalar product) between the basis vectors of tensors entering into 
the last summand in (5.12). The horizontal brackets indicate for which basis vectors and of which tensors the 
scalar-wise multiplication is performs. For example, the second basis vector of the second-rank tensor A is 
multiplied by the first basis vector of the fourth-rank tensor / ,∂ ∂B S whereas the third and the fourth basis 

vectors of this tensor are scalar-wise related to the second and first basis vectors of the tensor ,TdS  

respectively. The structure of relation between the basis vectors of all tensors entering into the right part of 
relation (5.13) is similar to the structure of the left-hand part. Therefore, the sign of equality is entered between 
them. As a result, we obtain a tensor of the second rank, whose first basis vector is the first basis vector of the 
tensor ,A and the second basis vector is the second basis vector of the fourth-rank tensor / .∂ ∂B S  

 
The structure of the relationship between the basis vectors of the first term in the right-hand part of relation 
(5.12) is shown below: 

 
As a result, we obtain the second-rank tensor, the first basis vector of which is the first basis vector of the 
fourth-rank tensor /∂ ∂A S  and the second basis vector is the second basis vector of the tensor .B  Earlier we 

introduced the operation of positional double scalar product. Now we use the operation of simple positional 

scalar multiplication 
n

∗  introduced in [19]. Let IVH be the tensor of the fourth rank and D  is the tensor of the 

second rank. Then the operation 
n

IV ∗H D means the scalar multiplication of the n -th basis vector of the fourth-

rank tensor IVH on the left by the second-rank tensor .D  For example, if the tensor IVH is written as 
IV ijkl

i j k lH=H rr r r  and tensor D  is written as ,mn
m nD=D r r then 

2

( ) ( ) .IV ijkl ijkl mn ijkl mn
i j k l i j m n k l jm i n k lH H D H D g∗ = ⋅ = ⋅ =H D r r D r r r r r r r r rr r r  

Using this operation, expression (5.14) is rewritten in the following form: 

 
The scheme of relationship between the basis vectors in this expression is identical to the scheme in (5.14). 
Therefore, with account of expression (5.13) and (5.15) relation (5.12) can be represented as 

2

( ) ( ) .Td d
∂ ∂= ∗ + ⋅ ⋅⋅
∂ ∂

A B
Ф S B A S

S S
 

Comparing this expression with (5.11), we may conclude that 
2( ( ) ( ))

.
∂ ⋅ ∂ ∂= ∗ + ⋅

∂ ∂ ∂
A S B S A B

B A
S S S

   (5.16) 

By its structure, (5.16) resembles, to a certain extent, a conventional rule of the mathematical analysis for 
product differentiation: 

(5.15)

2

( ) .Td
∂ ∗ ⋅ ⋅
∂

A
B S

S

(5.14)( ) .Td
∂ ⋅ ⋅ ⋅
∂

A
S B

S

(5.13)( ) ( ) .T Td d
∂ ∂⋅ ⋅ ⋅ = ⋅ ⋅ ⋅
∂ ∂

B B
A S A S

S S
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( ) ( )
( ( ) ( )) ( ) ( ) .

y x f x
y x f x f x y x

x x x

∂ ∂ ∂= +
∂ ∂ ∂

 

In the following, we will consider some simple examples. Let ( ) .=Ф A A  Then relation (5.6) yields 

T IV T
IId d d

∂= ⋅ ⋅ = ⋅ ⋅
∂

A
A A C A

A
 

(see the properties of the tensor IV
IIC in Table 1), which suggests that 

.IV
II

∂ =
∂

A
C

A
     (5.17) 

Now, let ( ) .T=Ф A A  Then, according to relation (5.6), we have 
T

T T IV T
IIId d d

∂= ⋅ ⋅ = ⋅ ⋅
∂
A

A A C A
A

 

(see the properties of the tensor IV
IIIC in Table 1), which suggests that 

.
T

IV
III

∂ =
∂
A

C
A

     (5.18) 

If 2( ) ,= = ⋅Ф A A A A then expression (5.16), taking into account (5.17), gives the following 

derivative: 
2 2 2( )

.IV IV
II II

∂ ∂ ⋅ ∂ ∂= = ∗ + ⋅ = ∗ + ⋅
∂ ∂ ∂ ∂
A A A A A

A A C A A C
A A A A

  (5.19) 

This derivative, again, can be imagined (after replacing IV
IIC in (5.19) by I and the positional multiplication by 

a simple scalar product) as being consistent with the expression of conventional mathematical analysis 
2 / 2 .x x x∂ ∂ =  

Let 1( ) .−=Ф A A  Then, on the one hand, 
1( )

0,
−∂ ⋅ =

∂
A A

A
 

since 1−⋅ =A A I and, on the other hand, by virtue of (5.16) and (5.17), 
1 12

1 .IV
II

− −
−∂ ⋅ ∂= ∗ + ⋅

∂ ∂
A A A

C A A
A A

 

From these two expressions we obtain 
1 2

1 1.IV
II

−
− −∂ = − ⋅ ∗

∂
A

A C A
A

    (5.20) 

Again, this can be conceived as being consistent with the well-known expression of conventional mathematical 

analysis 1 2/ .x x x− −∂ ∂ = −  

Finally, let ( ) ( ) ( ), ( ), ( ),= Ψ = =Ф D A Λ B A A S B B S i.e. the tensor function of a tensor 

argument is the product of a scalar function of the tensor argument ( )Ψ A and a tensor (second-rank) function 

of the tensor argument ( ).Λ B The arguments, in turn, depend on the tensor .S  We define the derivative 

( ) /∂ ∂Ф D S as 

( ) ( ( ) ( )) ( ( )) ( ) ( ) ( ( ))d d d d= Ψ = Ψ + Ψ =Ф D A Λ B A Λ B A Λ B  

( ) ( )
( ) ( ) ( ) ( )T Td d
∂Ψ ∂= ⋅⋅ + Ψ ⋅⋅ =

∂ ∂
A Λ B

S Λ B A S
S S
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( ) ( )

( ( ) ( ) ) .Td
∂Ψ ∂= + Ψ ⋅⋅

∂ ∂
A Λ B

Λ B A S
S S

  (5.21) 

This expression takes into account the fact that the expression in parentheses in the first term of the second row 
is a scalar quantity. From a comparison of (5.21) with (5.6), it follows that 

( ) ( )
( ( ) ( )) ( ) ( ) .

∂ ∂Ψ ∂Ψ = + Ψ
∂ ∂ ∂

A Λ B
A Λ B Λ B A

S S S
   (5.22) 

Note that the sequence order of the multiplicands in the tensor product in the first summand of the right-hand 
part of the last relation cannot be changed, since the tensor product is noncommutative. Of course, the scalar 
factor ( )Ψ A in the second summand can appear anywhere in this term. Taking into account equalities (4.19) 

and (5.10), (5.22) can be represented as 
( ) ( )

( ( ) ( )) ( ) ( ) ( ) ( ).IV IV
II II

∂ ∂Ψ ∂ ∂ ∂Ψ = ⋅⋅ ⋅ ⋅ + Ψ ⋅⋅ ⋅ ⋅
∂ ∂ ∂ ∂ ∂

A A Λ B B
A Λ B Λ B C A C

S A S B S
 (5.23) 

 
VI.    Rules for Differentiation of Tensor Functions of a Tensor Argument and 

Derivatives Obtained in Other Publications 
As noted above, in [8-10] (in the Introduction these publications are related to the first group) the 

operation of the double scalar product of tensors ( )⋅⋅  is used (see (2.9), scheme (2.6) and the second scheme in 

(2.8)), and the derivative of the tensor function with respect to a tensor argument IV
IL  is determined by relation 

(5.1)2. In [11-14] (in the Introduction they are referred to the second group) the operation of double scalar 
product of tensors [ ]⋅⋅  is applied (see (2.11), scheme (2.5) and the first scheme in (2.8)) and the derivative of 

the tensor function with respect to a tensor argument IV
IIL is specified by relation (5.1)3. In this work, the 

following relationships between the operators [ ], ( )⋅⋅ ⋅⋅ and ⋅ ⋅ are established and presented in Table 2. 

 
Table 2 The relationships between the operators [ ], ( )⋅⋅ ⋅⋅ and ⋅ ⋅  

Number Linkage Comment 

1. 
For a double scalar product of the second rank tensors the 
operations ( )⋅⋅ and [ ]⋅⋅  are equivalent one another Remark after relation (2.12) 

2. ( ) IV
II⋅⋅ = ⋅⋅ ⋅ ⋅C  Remark before relation (2.2)1 

3. ,IV IV T
II II⋅ ⋅ = ⋅⋅ =C A A C A  where A  is a second-rank tensor Table 1 

4. 
[ ] ( )IV IV IV IV

II I II I⋅ ⋅ = ⋅⋅ = ⋅⋅ ⋅⋅A L A L A C L for any second-rank 

tensor A  
Relation (5.7) 

5. 

(1) (2) (1) (2)[ ] [( ( ) ) ]IV IV IV IV ti dr
II II I I⋅ ⋅ = ⋅⋅L L L L for any two 

tensors IV
IIL  which are different in the general case 

Relation (5.8)). The schemes 
(5.2) or the relations (5.3) – 
(5.5) can be used to perform 
transpose  operations in the 
last equality 

 

Using these relationships, we will try to establish the correspondence between the rules for 
differentiation of the scalar and tensor functions of the tensor argument obtained in [15-18], as well as in this 
article (in the Introduction these publications are referred to the third group), and the rules obtained in the 
publications of the first two groups, and also between the resulting derivatives. As noted earlier, and follows 
from the links established in paragraphs 1 – 3 of Table 2, the rules for differentiating the scalar functions of the 
tensor argument and the resulting derivatives are identical in all publications. The correspondence between the 
rules for differentiation of the tensor functions of the tensor argument and between the derivatives obtained in 
the publications of these three groups will be varified in compliance with the order of their appearance in this 
article. 

6.1. Derivative ,( ) .Φ SA The first in this sequence is relation (4.19), which determines the derivative of 

the scalar function Φ  depending on the second rank tensor ,A which, in turn, is a function of  , ( ) :=S A A S     

, , ,( ) ( ) .IV
IIΦ = Φ ⋅⋅ ⋅ ⋅S A SA A C A  In the works of the first group this representation corresponds to the 

expression , , ,( ) ( ) ( )Φ = Φ ⋅⋅S A SA A A while in the works of the second group – to the expression 
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*
, , ,( ) ( ) [ ]Φ = Φ ⋅⋅S A SA A A  (hereinafter, notation , /= ∂ ∂SA A S  is used and in this case , ,IV

I=SA L  

*
, ,IV

II=SA L  see definitions of derivatives (5.1)1, (5.1)2 and (5.1)3). The equivalence of all these expressions 

follows from the row 4 of Table 2. 

6.2. Derivative ,( ) .SΦ A  Relation (5.10) defines the derivative of the second-rank tensor function Φ  

of the tensor argument A  (also of the second rank) which, in turn, is a function of , ( ) :=S A A S  

, , ,( ) ( ) .IV
II= ⋅ ⋅ ⋅ ⋅S A SΦ A Φ A C A  In the first group of publications, this form of representation is consistent 

with the expression , , ,( ) ( ) ( )= ⋅⋅S A SΦ A Φ A A which, according to item 2 of Table 2, is fully consistent with 

the previous one. In the works of the second group relation (5.10) corresponds to the expression 
* * *
, , ,( ) ( ) [ ]= ⋅⋅S A SΦ A Φ A A  which with account of item 5 of Table 2 can be written as 

*
, , ,( ) [( ( ) ( ) ) ]ti dr= ⋅⋅S A SΦ A Φ A A  which, in turn, according to row 2 of Table 2, can be written as 

*
, , ,( ) [( ( ) ) ] .IV ti dr

II= ⋅⋅ ⋅ ⋅S A SΦ A Φ A C A  These expressions coincide with the relation of the first group and 

relation (5.10) to within the operations of transposition " ti " and " dr ". This is just the relationship that is 

established between the derivatives IV
IIL  and IV

IL and defined by the relations (5.1)1, (5.1)2 and (5.1)3. 

6.3. Derivative ,( ( ) ( )) .⋅ SA S B S The derivative of the scalar product of two tensor (second-rank) 

functions of the same tensor argument (of the second rank, too) with respect to this argument is determined by 

relation (5.16): 
2

, , ,( ( ) ( )) .⋅ = ∗ + ⋅S S SA S B S A B A B  In the works of the first group this representation 

corresponds to the expression 

, , ,( ( ) ( )) ( ) ( ) ( ) ( ) ,T⋅ = ⋅⋅ + ⋅⋅S S SA S B S A I B I B A              (6.1) 

which, taking into account item 2 of Table 2, can be rewritten as 

, , ,( ( ) ( )) ( ) ( ) .IV T IV
II II⋅ = ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅S S SA S B S A I C B I B C A    (6.1)1 

Let us expand the first term of the last expression. Taking into account that ,ij k IV
i j k IIA= =A I rr r r C  

,, ,i j i j k l
i j ijklB= =Sr r rr B r r r r we obtain , ,( ) ,IV ij k m n

II jkmn iA B⋅ ⋅ ⋅ ⋅ = = ⋅S SA I C B rr r r A B  which 

corresponds to the second term of expression (5.16). Given that T ij k
j k iB=I B r r r r and representing ,SA  

similarly to ,SB  in the previous case, we have ,( ) .T IV ij k m n
II kimn jA B⋅ ⋅ ⋅ ⋅ =SI B C A r r r r  Using the 

operation of positional scalar multiplication introduced after relation (5.14), we can represent the last expression 

as 
2

, * ,SA B  which corresponds to the first term in (5.16). This confirms a complete correspondence between 

relation (5.16) and the relevant expression (6.1) from the works of the first group. 
In the works of the second group the derivative of the scalar product of two second-rank tensor 

functions of the same tensor argument of the second rank, too, with respect to this argument is written as 
* * *
, , ,( ( ) ( )) .⋅ = ⋅ + ⋅S S SA S B S A B A B     (6.2) 

In the coordinate representation *
,

ijkp
i k p jA=SA rr r r  (the tensor *

,SB  has a similar representation) and 

m n
mnB=B r r (the tensor A has a similar representation). As a result, *

, ,ijkp n
jn i k pA B⋅ =SA B rr r r which can 

be written as 
2

,[( * ) ] ,ti dr
SA B and *

, ,ijkp m
mi k p jA B⋅ =SA B r r r r  which can be written as ,[( ) ] .ti dr⋅ SA B  

These expressions coincide with the corresponding summands of the first group and with the summands of 
expression (5.16) to within the transpose operations " ti " and " dr ". With account of the fact that the transpose 

of a sum is the sum of the transposed variables, we obtain 
2

, ,[( ) ] ,ti dr∗ + ⋅S SA B A B which suggests that 

derivative IV
IIL  should be defined in terms of derivative IV

IL by relations (5.1)1, (5.1)2 and (5.1)3. 
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6.4. Derivatives ,AA and , .T
AA The derivative of the second-rank tensor A with respect to the tensor 

A  is defined by (5.17): , .IV
II=AA C  In the works of the first group this expression corresponds to the relation 

, =AA I I  which, by virtue of definition (3.3), is equivalent to .IV
IIC  In the works of the second group the 

expression (5.17) corresponds to relation  *
, = ⊗AA I I  which, by virtue of definition (3.2), is equivalent to 

IV
IC (note that in publication [13] the operation ⊗  is denoted as ⊙ ). Taking into account that 

( )IV IV ti
I II=C C and ( )IV dr IV

I I=C C as it follows from the schemes (1.1), expressions (3.2), (3.3) and schemes 

(5.2), we can conclude that the derivative of the tensor A with respect to the tensor A in the works of the 
second group coincides with an accuracy to the operations of transposition " ti " and " dr " with the similar 

derivative in the works of the first group. This suggests that the derivative IV
IIL is defined in terms of the 

derivative IV
IL according to relations (5.1)1, (5.1)2 and (5.1)3. 

The derivative of the second rank tensor TA with respect to the tensor A is defined by expression 

(5.18): , .T IV
III=AA C  In the works of the first group, this expression corresponds to the relation ,

T = ,AA   

where  is equivalent to IV
IIIC in accordance with Table 1. In the works of the second group expression (5.18) 

corresponds to the relation *
,( )T = ,AA  but here according to Table 1  is equivalent to .IV

IIC  Given that 

[( ) ] ,IV ti dr IV
III II=C C we conclude that the derivative of the tensor TA with respect to the tensor A in the works 

of the second group coincides with an accuracy to the operations of transposition " ti " and " dr " with the 

analogous derivative in the works of the first group, which suggests that the derivative IV
IIL  should be defined in 

terms of derivative IV
IL (see (5.1)1, (5.1)2 and (5.1)3). 

6.5. Derivative 2
, .AA The derivative 

2
2
,

IV IV
II II= ∗ + ⋅AA C A A C is determined by relation (5.19). 

This derivative follows from (5.16) at = ≡B S A taking into account (5.17). In the works of the first group it 
corresponds to the expression 

2
, ,T= +AA A I I A                                                (6.1)2 

that follows from (6.1) (or (6.1)1) at .= ≡B S A Since the equivalence of relations (5.16) and (6.1) (or (6.1)1) 
has been demonstrated in subitem 6.3 it will suffice to show that (6.1)2 indeed follows from (6.1)1 at 

,= ≡B S A i.e. it is a special case of (6.1)1. In view of the result obtained in subitem 6.4, (6.1)1 can be written 
for the case under consideration in the following way: 

2
, ( ) ( ) .IV IV T IV IV

II II II II= ⋅⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅AA A I C C I B C C     (6.1)3 

Taking into account that IV IV IV
II II III⋅ ⋅ =C C C (this can be readily shown, or none the worse, be found in [16], 

Annex I, §15), and also that IV IV IV
III⋅ ⋅ =D C D for any forth-rank tensor IVD (the latter follows from the chain 

of equalities IV IV ijkp m n ijkp IV
III i j k p n m i j k pD D⋅ ⋅ = ⋅ ⋅ = =D C rr r r r r r r rr r r D ), we conclude that (6.1)3, being a 

special case of (6.1)1, reduces to (6.1)2, which was what we set out to prove. 
In the works of the second group relation (5.19) corresponds to the expression 

2 *
,( ) ,IV IV

I I= ⋅ + ⋅AA C A A C     (6.2)1 

following from (6.2) at = ≡B S A with account of the result of subpoint 6.4 ( *
,

IV
I=AA C ). The first term in 

(6.2)1 is represented as .IV m n ij m ij
I m n i j m i jA A⋅ = ⋅ = = ⊗C A r r r r rr r r rr I A Applying successively to the 

next-to-last equality the transpose operations " dr " and " ti " (see schemes (5.2)), we obtain 

[( ) ] ( ) ,ij m dr ti ij m ti ij m
m i j m j i m j iA A A= =r r rr r r r r r r r r which, using the positional scalar multiplication 

operation introduced after relation (5.14), is transformed into 
2

.IV
II ∗C A  Indeed, 

2
IV
II ∗ =C A   
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2

( ) .n m ij n ij m ij m
m n i j m i j n m j iA A A= ∗ = ⋅ =r r r r rr r r rr r r r r r r  As a result we have IV

I ⋅ = ⊗ =C A I A  
2

[( ) ] .IV ti dr
II= ∗C A  The second term in (6.2)1 is represented as IV ij m n

I i j m nA⋅ = ⋅ =A C rr r r r r    

.ij n
i j nA= = ⊗rr r r A I  The next-to-last equality can also be written as [( ) ] .IV ti dr

II⋅A C  Indeed, 

.IV ij m n ij n
II i j n m i n jA A⋅ = ⋅ =A C rr r r r r rr r r  Taking into account the schemes of (5.2), ( )IV ti

II⋅ =A C  

( )ij n ti ij n
i n j i j nA A= =rr r r rr r r  and [( ) ] ( )IV ti dr ij n dr ij n

II i j n i j nA A⋅ = =A C rr r r rr r r  and we obtain for (6.2)1 

the following equivalent representations: 2 *
,( ) IV IV

I I= ⋅ + ⋅ = ⊗ + ⊗ =AA C A A C A I I A   
2

[( ) ] .IV IV ti dr
II II= ∗ + ⋅C A A C  Here, the last equality is written with consideration of the fact that the 

transposition of the sum is equal to the sum of the transposed quantities. This last equality satisfies the necessary 

requirement for the existence of relationship between the derivative IV
IIL and the derivative IV

IL (see (5.1)1, 

(5.1)2 and (5.1)3), by which the consistency of the derivatives 2 *
,( ) AA  and 2

,AA  is satisfied. 

6.6. Derivative 1
, .−
AA  The derivative 

2
1 1 1

,
IV
II

− − −= − ⋅ ∗AA A C A  is defined by expression (5.20). In 

the works of the first group this derivative corresponds to the expression 1 1
, .T− − −= −AA A A Using for 1−A  

the coordinate representation 1 ,ij
i jA− =A rr we obtain that 

1 ,T ij kp
i p j kA A− − =A A rr r r     (6.3) 

which, as can be easily shown, coincides with the expression 
2

1 1.IV
II

− −⋅ ∗A C A In the works of the second 

group relation (5.20) corresponds to the expression 1 * 1 1
,( ) ,− − −= − ⊗AA A A  the right-hand part of which has 

(up to sign) coordinate representation .ij kp
i j k pA A rr r r This tensor is obtained by a sequential transposition " ti " 

and " dr " of the right-hand part of equality (6.3), which is consistent with relation (5.20). As a result, 
2

1 * 1 1 1 1 1
, ,( ) [( ) ] [( ) ]IV ti dr ti dr

II
− − − − − −= − ⊗ = − ⋅ ∗ =A AA A A A C A A  and the necessary requirement for the 

coincidence of derivative IV
IIL  and IV

IL is satisfied (see (5.1)1, (5.1)2 and (5.1)3). 

6.7. Derivative ,( ( ) ( )) .Ψ AA Λ A In our paper, this derivative is determined by relation (5.22): 

, , ,( ( ) ( )) ( ) ( ) ( ) ( ) .Ψ = Ψ + ΨA A AA Λ A Λ A A A Λ A In the works of the first group this derivative 

corresponds to the expression , , ,( ( ) ( )) ( ) ( ) ( ) ( ) ,Ψ = ⊗ Ψ + ΨA A AA Λ A Λ A A A Λ A  which, when 

considering the remark that following equations (3.1), coincides with (5.22) completely. In the works of the 

second group * *
, , ,

ˆ( ( ) ( )) ( ) ( ) ( ) ( ) .Ψ = Ψ + ΨA A AA Λ A Λ A A A Λ A Taking into account the chain of 

equalities ˆ[( ) ] ( ) ,ti dr dr⊗ = =A B A B A B   where A and B are the second-rank tensors, we arrive at 

the equality *
, ,[(( ( ) ( )) ) ] ( ( ) ( )) ,ti drΨ = ΨA AA Λ A A Λ A  which satisfies the requirement for the relationship 

between the derivative IV
IIL and the derivative IV

IL ( see (5.1)1, (5.1)2 and (5.1)3). 

Table 3 summarizes the relations obtained in this article and in the publications by other authors, which 
have been discussed in the subitems of this Section. 
 

Table 3 Correspondence between the rules for differentiation of the tensor argument functions 
obtained in different publications, and also between the resulting derivatives 

Item Proposed relations Relations of the I group [8-10] Relations of the II group [11-14] 

6.1. 
, , ,( ) ( ) IV

IIΦ = Φ ⋅⋅ ⋅ ⋅S A SA A C A  , , ,( ) ( ) ( )Φ = Φ ⋅⋅S A SA A A  *
, , ,( ) ( ) [ ]Φ = Φ ⋅⋅S A SA A A  

6.2. , , ,( ) ( ) IV
II= ⋅⋅ ⋅ ⋅S A SΦ A Φ A C A  , , ,( ) ( ) ( )= ⋅⋅S A SΦ A Φ A A  * * *

, , ,( ) ( ) [ ]= ⋅⋅S A SΦ A Φ A A  
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6.3. 
,

2

, ,

( ( ) ( ))⋅ =

= ∗ + ⋅

S

S S

A S B S

A B A B
 

, ,

,

( ( ) ( )) ( ) ( )

( ) ( )T

⋅ = ⋅⋅ +

+ ⋅⋅
S S

S

A S B S A I B

I B A





 

*
,

* *
, ,

( ( ) ( ))⋅ =

= ⋅ + ⋅
S

S S

A S B S

A B A B
 

6.4. 
,

IV
II=AA C  

,
T IV

III=AA C  

, =AA I I

,
ˆT =AA I I  

*
, = ⊗AA I I  
*
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VII. Conclusion 

The rules for constructing derivatives of the scalar and tensor functions of the tensor argument with 
respect to a tensor and the form of representation of these derivatives depend on the accepted scheme of the 
interaction between the basis vectors during the operation of double scalar product of two tensors. Today, three 
groups of rules and representation forms have been developed and used. In the works of the first group, these 
rules are based on a widely used scheme of the basis vector interaction in a double scalar product of the second 
and fourth ranks tensors, which however, results sometimes in rather exotic forms of representation of 
derivatives, which essentially differ from representation of derivatives generally used in conventional 
mathematical analysis. In the works of the second group, the rules for constructing the derivatives of the scalar 
and tensor functions of tensor argument with respect to a tensor and the forms of their representation do not 
differ from the rules of constructing derivatives and the forms of their representation used in conventional 
mathematical analysis. However, in this case their construction is based on a special scheme of the interaction 
between the basis vectors in the double scalar product of the second- and fourth-rank tensor. The works of the 
third group also operate with a widespread scheme of the interaction between the basis vectors, which, however, 
is different from that used in the works of the first group, while the resulting rules for constructing derivatives of 
the scalar and tensor functions of the tensor argument with respect to a tensor and the form of derivative 
representation differ quite insignificantly from the rules for constructing derivatives and the forms of 
representation generally used in conventional mathematical analysis. For any of these groups, the derivatives of 
the scalar functions of the tensor argument with respect to a tensor are similar. The derivatives of the tensor 
functions of the tensor argument obtained in the works of the first and third groups represent the same tensor 

object which is the fourth-rank tensor ,IV
IL  determining the derivative ,( ) ,AΦ A and differ only in the form of 

representation. A fourth-rank tensor ,IV
IIL  which defines the derivative *

,( ) AΦ A of the tensor function of the 

tensor argument obtained in the works of the second group, differs from the tensor IV
IL and is the result of 

successive transposition of " ti " and " dr " of the latter one. One should also keep in mind the peculiarities of 

the [ ]⋅⋅ operation, which is consistently used by the authors of the second group of publications. Taking all this 

into account, the ambiguity in the determination of derivatives of the tensor function of the tensor argument in 
the works of different groups, as noted earlier, will not be critical to analysis in solid mechanics, which are one 
of the main consumers of the results of this article. 
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