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I. Introduction 
Given a matrix n nM ×∈  and a vector nq∈ , the standard linear complementarity problem (LCP) is 

to find a pair of vectors 2( , ) nx s ∈  such that  
, 0, ( , ) 0,s Mx q xs x s= + = ≥  

where xs  denotes the coordinatewise product of the vectors x  and s . It is well known that the Karush-Kuhn-
Tucker optimality conditions for linear optimization and convex quadratic optimization can be written as LCPs. 
In addition, many important practical problems in such areas as economics theory (equilibrium problems), game 
theory, transportation planning (assignment problems), optimal control, engineering etc. can be formulated as 
LCPs. For a comprehensive treatment of LCPs theory and applications, we refer the reader to the monographs of 
Cottle et al. [1] and Kojima et al. [5]. 

We call LCP the *( )P κ -LCP if the matrix M  is a *( )P κ -matrix, i.e.,   

( )
4 ( ) , ,T n

i i
i I x

x Mx x Mx xκ
+∈

≥ − ∀ ∈∑   

where ( ) { : ( ) 0}i iI x i x Mx+ = >  and ( ) { : ( ) 0}i iI x i x Mx− = < . The union of all the *( )P κ -matrices is defined 
by 

* *
0

( ),P P
κ

κ
≥

=


 

i.e., M  is a *P -matrix if *( )M P κ∈  for some 0κ ≥ . There are many solution approaches for *( )P κ -LCP. 
Among them, kernel-function based interior-point methods (IPMs) gain much more attention. For some other 
related kernel-function based IPMs we refer to the monograph [18] and the references [6,7,14-17,19,20]. 

The aim of the paper is to propose the implementation of IPMs for *( )P κ -LCP based on the following 
kernel function, namely, 

2( ) ( 1) / 2t tϕ = − ,                                                                     (1) 
which has a finite value at the boundary of feasible region and first considered by Liu and Sun [11]. The search 
direction decided by the kernel function (1) coincides with the equivalent reformulation of the central path by 
Zhang and Xu [24], and is only up to a constant comparing with the equivalent algebraic transformation 

( )t tϕ =  considered by Darvay [2]. The numerical example serves to demonstrate the influence of the update 
parameters θ  and the dimension of the problem on the number of the iterations. 

The outline of the paper is as follows. In Section 2, we briefly recall the kernel-based IPMs for *( )P κ -
LCP. In Section 3, we report some preliminary numerical results to demonstrate the computational performance 
of the proposed methods.  Finally, some conclusions and remarks are made in Section 4. 
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II. The Generic Kernel-Based IPMs 
In this section, we briefly recall the outline of the kernel-based IPMs for *( )P κ -LCP, which includes 

the central path, the new search directions and the generic kernel-based IPMs for *( )P κ -LCP. The detailed can 
be found in [8,13,14]. 

Throughout the paper, we assume that *( )P κ -LCP satisfy the interior-point condition (IPC), i.e., there 

exists a pair 0 0( , ) 0x s >  such that 0 0s Mx q= + , which implies the existence of a solution for *( )P κ -LCP. In 
fact, the IPC can be assumed without loss of generality. For this and some other properties mentioned below, we 
refer to Kojima et al. [5] 

Finding an approximate solution of *( )P κ -LCPs is equivalent to solving the following system 

, , 0.
0

Mx s q
x s

xs
− +   

= ≥   
   

                                                              (2) 

The standard approach is to replace the second equation in (2), the so-called complementarity condition for 

*( )P κ -LCPs, by the parameterized equation xs eµ= , with 0µ > . This leads to the following system 

, , 0.
Mx s q

x s
xs eµ

− +   
= ≥   

   
                                                              (3) 

 
From Lemma 4.3 in [5], the parameterized system (3) has a unique solution for each 0µ >  due to the fact that 
M  is a *( )P κ -matrix and the IPC holds. We denote this solution as ( ( ), ( ))x sµ µ  and call it the µ -center of 

*( )P κ -LCP. The set of µ -centers gives a homotopy path, which is called the central path of *( )P κ -LCP. 
If 0µ → , then the limit of the central path exists and since the limit points satisfy the complementarity 
condition, i.e., 0xs = , the limit yields a solution for *( )P κ -LCP (cf. Theorem 4.4 in [5]). 

IPMs follow the central path approximately and find an approximate solution of *( )P κ -LCP as µ  goes 
to zero. A natural way to define a search direction is to follow Newton's approach and linearize the second 
equation in (3). This yields to the following system 

0
.

M x s
s x x s e xsµ
− ∆ + ∆   

=   ∆ + ∆ −   
                                                           (4) 

It follows from Lemma 4.1 in [5] that the modified Newton-system (4) has a unique solution. 
Let 

: ,xsv
µ

=                                                                                 (5) 

and 

: , : .x s
v x v sd d

x s
∆ ∆

= =                                                                   (6) 

Then, we have 

1

0
,x s

x s

Md d
v vd d −

 − +  
=   −+   

                                                              (7) 

where :M DMD=  with
1 1
2 2: , ( )diag:D X S X x

−
= =  and dia: ( )gS s= . It is obvious that the right-hand side 

1v v− −  in the second equation of the system (7) equals minus the derivative of the classic barrier function 
( )c vΦ , i.e., 

1
( ) : ( ),

n
n

c c i
i

v v vϕ ++
=

Φ = ∈∑                                                            (8) 

where 
2 1( ) : log
2c

tt tϕ −
= −  
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is the kernel function of the classic barrier function ( )c vΦ . Thus, the system (7) can be rewritten as the 
following system. 

0
.

( )
x s

cx s

Md d
vd d

 − +  
=   −∇Φ+   

                                                         (9) 

For obtain the new search directions, we define the barrier function ( ) : nv ++ +Φ → 
 based on the 

parametric kernel function given by (1) as follows 

1
( , ; ) : ( ) : ( ).

n

i
i

x s v vµ ϕ
=

Φ = Φ =∑                                                             (10) 

Due to the properties of the kernel function ( )tϕ  given by (1), we can conclude that ( )vΦ  is a strictly convex 
function and attains minimal value at v e=  and ( ) 0eΦ = , i.e., 

( ) 0 ( ) 0 .v v v e∇Φ = ⇔Φ = ⇔ =                                                         (11) 
By replacing the right-hand side of the second equation in (9) by ( )v−∇Φ , we have 

0
.

( )
x s

x s

Md d
vd d

 − +  
=   −∇Φ+   

                                                              (12) 

The new search directions xd  and sd  are obtained by solving (12) so that x∆  and s∆  are computed through 

(6).  We can conclude that x∆  and s∆  both vanish if and only if ,v e=  i.e., if and only if ( ), ( )x x s sµ µ= = . 
Otherwise, we will use ( , )x s∆ ∆  as the new search direction. Then, we have 

: , : ,x x x s s sα α+ += + ∆ = + ∆                                                                 (13) 
where α  is the default step size defined by some line search rules. Furthermore, we can easily verify that 

0 ( ) 0 ( ) 0 .x sd d v v v e= = ⇔∇Φ = ⇔Φ = ⇔ =                                           (14) 
This implies that the value of ( )vΦ  can be considered as a measure for the distance between the given pair 
( , )x s  and the corresponding µ -center ( ( ), ( ))x sµ µ . 

Now we can outline the generic kernel-based IPMs that uses the barrier function defined by (10). 
Suppose that ( ( ), ( ))x sµ µ  is known for some positive µ  and is in the τ -neighborhood of the corresponding 
µ -center, i.e., ( )v τΦ ≤ . For example, due to the above assumption we may assume this for 1µ = , 
with (1) (1)x s e= = . Then, we decrease µ  to : (1 )µ θ µ= −  with (0,1)θ ∈ , which changes the value of v  
according to (5) and defines a new µ -center ( ( ), ( ))x sµ µ . This may cause the increase of the value of the 
barrier function above the threshold value of τ , i.e., ( )v τΦ > . Now we start the inner iteration by solving the 

scaled Newton system (12) and via (6) to get the new search direction ( , )x s∆ ∆ . The new iterate ( , )x s+ +  is 
calculated by (13). If necessary, we repeat the procedure until we find iterates that are in the neighborhood of 
( ( ), ( ))x sµ µ . During the inner iteration the value of µ  is kept constant. At this point we start a new outer 
iteration by reducing the value of µ  again. Then we apply Newton's method targeting at the new µ -centers, 
and so on. This process is repeated until µ  is small enough, say until nµ ε< , at this stage we have found an 
ε -solution of *( )P κ -LCPs. The generic form of kernel-based IPMs is shown in Fig. 1. 

 

Generic Kernel-Based IPMs for *( )P κ -LCP 

Inputs： 
a threshold parameter 1;τ ≥   
an accuracy parameter 0;ε >   
a fixed barrier update parameter ,  0 1;θ θ< <   

a strictly feasible point 0 0( , )x s  and 0 0 0( ) /Tx s nµ =  such that 0 0 0( , ; ) .x s µ τΦ ≤   
begin 

0 0 0: ; : ; : ;x x s s µ µ= = =   
while nµ ε≥  do  
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begin   
: (1 ) ;µ θ µ= −  

while  ( , ; )x s µ τΦ >  do  
begin 
compute the search directions ( , )x s∆ ∆ ; 
choose a suitable step sizeα ; 
update ( , ) : ( , ) ( , ).x s x s x sα= + ∆ ∆   
end 
end 
end 

Figure 1: Algorithm 
 

III. Numercal Results 
In this section, we give an implementation of the kernel-based IPMs for *( )P κ -LCP, which 

demonstrates to reveal the influence of the update parameters θ  and the dimension of the problem on the 
number of the iterations. 

All our numerical experiments are carried out on a PC with Intel (R) Core (TM) i7-6700 Duo CPU @ 
2.60 GHz and 20.0 GB of physical memory. The PC runs MATLAB version: 9.2.0.538062 (R2017a) on 
Windows 10 Home 64-bit operating system. In all test problems, we use 610ε −=  and = nτ  as our default 
accuracy parameter.  

In general, though exists 0 0( , ) 0x s >  for *( )P κ -LCP satisfies the IPC, we don't know the value of 
0 0( , )x s . To overcome this difficulty, we replace the system (12) by the following system 

M x s q Mx s
s x x s e xsµ
− ∆ + ∆ + −   

=   ∆ + ∆ −   
                                                              (15)  

to compute the search directions. Noting that ( )ce xs v vµ µ− = − ∇Φ , as describe in Section 2, we will replace 

( )c v∇Φ  by ( )v∇Φ  in the second equation of system (15). Then we have 

( )
M x s q Mx s

s x x s v vµ
− ∆ + ∆ + −   

=   ∆ + ∆ ∇Φ   
.                                                             (16) 

 
It should be noted that the step size selected during each inner iteration is small enough for analyzing 

the algorithm, while in practice the step size during each inner iteration should be large enough for the 
efficiency of the algorithm. Then the step sizes xα  and sα  during each inner iteration in this experiment are 
chosen according to the following strategy (see, e.g., [12]).  

First, compute the maximum allowable step sizes by the following strategy [12] 

1,2,..., 1,2,...,

1 1 .
1, 1,

max max
x s

i i
i n i n

i i

x smax max
x s

α α

= =

= =
   ∆ ∆

− −   
   

,  

Then the maximum allowable step sizes are slightly reduced by a fixed factor 00 1p< <  to prevent hitting the 

boundary, i.e., 0
max

x xpα α=  and 0
max

s spα α= . In this paper, we choose 0 0.90p = . The new iteration point is 
defined by 

, .x sx x x s s sα α+ += + ∆ = + ∆  
In this paper, we consider the following five examples. 
Problem 1 (Random *(0)P -LCP)  

By taking TM AA= , where ( , )A rand n n=  is an n -by- n  matrix containing pseudorandom values 
drawn from the standard uniform distribution on the open interval (0,1) , x s e= =  and q s Mx= − . We can 

easily verify that 0 0x s e= =  are strictly feasible initial point and satisfies the condition ( ) 0v nτΦ = ≤ = . 
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Problem 2 ( * )(1/ 4P -LCP, Lee's example in [6]) 

0 1 2
,

2 0 3
M q   

= =   −   
 

with the strictly feasible initial points 0 (0.4,0.45)Tx =  and 0 (2.45,2.2)Ts = . 
Problem 3 ( *(0)P -LCP, Fathi's example in [3]) 

1 2 2 2 1
2 5 6 6 1
2 6 9 10 , 1

2 6 10 4 3 1

M q

n

−   
   −   
   = = −
   
   
   − −   







     



. 

Problem 4 ( *(0)P -LCP, Waston's third example in [22]) 

6 4 2 0 1
4 6 4 0 1

2 4 6 0 , 1

0 0 0 6 1

M q

− −   
   − − −   
   = − = −
   
   
   −   







     



. 

Problem 5 ( *(0)P -LCP, Murty's example in [11]) 

1 2 2 2 1
0 1 2 2 1
0 0 1 2 , 1

0 0 0 1 1

M q

−   
   −   
   = = −
   
   
   −   







     



. 

The above five test problems are solved by applying the proposed kernel-based IPMs, some 
preliminary numerical results are provided to demonstrate the dependency of the iteration number (It.) with 
respect to the update parameters θ  and the dimension (DIM) of the problem. For Problems 3-5, we use 

0 0x s e= =  as their starting points, which may not satisfy the condition ( )v nτΦ ≤ = . The numerical results 
are reported in Tables 1-2. 

θ  

0.1 0.3 0.5 0.7 0.9 
25 22 24 18 14 

 DIM=10 
 

θ  

0.1 0.3 0.5 0.7 0.9 
56 53 37 31 26 

 DIM=200 
 

θ  

0.1 0.3 0.5 0.7 0.9 
39 32 25 24 18 

 DIM=50 
 

θ  

0.1 0.3 0.5 0.7 0.9 
71 56 45 34 27 

 DIM=600 

Table 1 Numbers of iterations of Problem 1 for several choices of θ  and DIM 
 

It is clear from Tables 1-2 that the iteration number of the algorithm depends on the update parameter 
θ  and the dimension of the problem. It is quite surprising that the larger θ  gives the lowest iteration count in 
all cases. The iteration number of the algorithm increases as the dimension of the problem is increased. 
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θ  

0.1 0.3 0.5 0.7 0.9 
16 15 14 12 11 

Problem 2 
 

θ  

0.1 0.3 0.5 0.7 0.9 
48 52 30 31 25 

Problem 4 with DIM=120 
 

θ  

0.1 0.3 0.5 0.7 0.9 
42 41 27 25 21 

Problem 3 with DIM=120 
 

θ  

0.1 0.3 0.5 0.7 0.9 
42 45 26 27 21 

Problem 5 with DIM=120 

Table 2 Numbers of iterations of Problems 2-5 for several choices of θ  and DIM 
 

IV. Conclusion 
In this paper, we have proposed an implementation of the kernel-based IPMs for *( )P κ -LCPs based on 

the kernel function ( )tϕ  given by (1). Some preliminary numerical results are provided to reveal the influence 
of the update parameters θ  and the dimension of the problem on the number of iterations. 

Some interesting topics remain for further research. Such as the extensions to general nonlinear 
complementarity problems or symmetric complementarity problems deserve to be investigated. 
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