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Abstract: Let (Q, * X, 6, qo, F) be a Finite Group Automaton. Let (S, * E, y, qo, T) be a Finite Sub-group
Automaton of Q. Then (Q/S, 0, X, A, qo*S, F’) is a finite group automaton. This finite group automaton is
known as the Quotient Finite Group Automaton (Quotient FGA) corresponding to the Finite Subgroup
Automaton (S, * E, y, gs, T). If a string w is accepted by (Q, *, X, J, qq, F), then w is accepted by (Q/S, 0, 2, A,
Qo*S, F’). If L is a language accepted by a finite group automaton (Q, * X, J, qo, F) , then L is accepted by (Q/S,
0,2, /\,qo*S,F,).
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Definition : Finite Automaton: A finite automaton is a 5-tuple (Q, X, 3, qo, F), where Q is a finite set of states,
¥ is a finite input alphabet, qo in Q is the initial state, F C Q is the set of final states, and 6 is the transition
function mapping Q x X to Q.
That is 8(q, a) is a state for each state and input symbol a.
Finite Sub-group Automaton: Let B= (Q, *, X, 3, qo, F) be a Finite Group Automaton, where Q is a finite set
of states, * is a mapping from QxQ to Q, X is a finite set of integers, qq in Q is the initial state and FEQ is the set
of final states and § is the transition function mapping from QxZ to Q defined by §(q,n) = q". A Finite Sub-
group Automaton S of B is a 6-tuple (R, *, E, v, qs, T), where R€Q for all p,g e R, p *q e R, gs € R is the initial
state where gs = g Or gs = 8(qo,n) for some neY, , E is the set of all n in X such thatn <m forallme X, ie , E =
{ne€X/n<m, for some me X }, y is the restriction function of § restricted to RXE—R, g in R is the initial state
and TSR and TCF.
Definition: Let (Q, (*, X, 8, qo, F)) be a Finite Group Automaton. Let (S,(*,E, v, qo, T))
be a Finite Sub-group Automaton of Q, where SCQ such that gy e Sand forall p,ge S, p*qeS, Eis the set
ofallninX suchthatn<mforallmeX iec, E={neX/n<m, forsome me X }, y is the restriction function of
d restricted to SXE—S, o in R is the initial state and T<S.
For each ain Q, we define a* S = {a*s / s €S}.
Let Q/S={a*S/aeQ}
Define an operation o on Q/S by (a*S) o (b*S) = (a*b)*S
Since a,b €Q and Q is a group under *,a*b e Q
Therefore, (a*b)*S € Q/S
Therefore, o is a binary operation on Q/S.
(@*S) o ((b*S) o (c*S)) = (a*S) o ((b*S) 0o (c*S))
= (a*S) o (b*c)*S)
= (@* (b*c))*S
= (a*b)*c))*S (Since Qisa group under *,
a*(b*c)=(a*b)*c forballab,ceQ)
=((@a*b)*S) o (c*S)
=((@a*S)o (b*S)) o (c*S)
Since Q is a group under *, there exists 0 e Q suchthata*0=a=0*3a, forallaeQ.
Therefore, 0 *S e Q/S
Also (a*S)o(0*S)=(a*0)*S
=a*S§
(0*S)o(@a*S)=(0*a)*S
=a*S§
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Therefore, (2*S)o (0*S)=(0*S)o (a*S)

Therefore, 0 * S is the identity element of Q/S.

Now for each a * S € Q/S there exists a1 * S € Q/S such that
(@*S)o(@t*S)=(@!*S)o(a*S)=0*S

Hence (Q/S, 0 ) isa group.

Consider qo*S, where qp is the initial state of B =(Q, *, %, 8, qo, F)
LetF’={f*S/feF}

Define A : Q/SX 2 — Q/Sby a(a*S,n) =8(a,n) *S

Clearly it is a well defined mapping.

We shall prove that (Q/S, 0, %, A, qo*S, F’) is a finite group automaton.
The elements of Q/S are considered as states.

The set Y’ of the same input symbols are taken

The function A : Q/Sx £ = Q/S by A(a*S, n) = 6(a, n) *S is our transition function.
Qo*S is taken as the initial state.

FP={a*S/aeF}

F’ is taken as the set of final states.

Then (Q/S, 0, %, A, qo*S, F’) is a finite group automaton.

Definition : Quotient Finite Group Automaton : Let (Q, *, X, 3, qo, F) be a Finite Group Automaton. Let (S,
* E, v, qo, T) be a Finite Sub-group Automaton of Q. Then (Q/S, 0, X, A, qo*S, F’) is a finite group automaton.
This finite group automaton is known as the Quotient Finite Group Automaton (Quotient FGA) corresponding
to the Finite Subgroup Automaton(S, *, E, vy, qs, T).

Example : Consider the Finite Binary Automaton (Q, *, X, 3, qo, F), where Q = {1,-1,i,-i}, = {1,2,3,4} qo =
i is the initial state and F, the set of final states is Q, 6 is the transition function mapping from QXX to Q defined
by 8(q,n) =q", and

* is the mapping from QxQ to Q defined as in the example 3.2.1

Initial state

Transition Diagram of (Q, *, %, 8, qo, F)

Then the Finite Binary Automaton (Q, *, X, 8, qo, F) is a Finite Group Automaton.
1) Let (S, * E,v,qs T), where S={1,-1}, E={1,2}, s =-1, T ={1,-1}

05 = (qo)*= (i) = -1.

Here * is the usual multiplication.
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Initial state -1 o 1

Transition Diagram of (S, *, E, y, qo, T)

Then (S, *, E, v, s, T) is a Finite Subgroup Automaton of the Finite group Automaton (Q, *, X, 8, qo, F).
Now S={1,-1}
1.5={11,1(-)}

={1,-1}

=S

-1.5S=4{(-1).1, (-1).(-1)}
= {'lv 1 }
= {1v -1 }
=S
Therefore, 1.S = (-1).S
.S ={(@).1, (i).(-1)}

={i, -1}
(). = {(-i).1, (-).(-1)}
={-i. i}
={i -i}
=S

Therefore, i.S=(-i).S
Now Q/S={15,-1S,i5S,-i.S}
Q/S={1S,iS}

={S,i.S

go-S=1i{1,-1}
={i,-i}
LetF’={f*S/feF}
Define A : Q/SX £ — Q/Sby A(a*S,n) =8(a,n) *S
=6(a,n)0S

A(i0S,1)=68(,1)0S

=il0S§

=i0S
A(i0S,2)=468(i,2)0S

=i20S

=(-1)0S

=-S

=S
A(10S,3)=468(i,3)0S

=i30S

=(-1)0S

=iS
A(i0S,4)=468(,4)0S

=i*0S

=10S

=S

ACGi0S,1)=8(i,1)08
=-i10S
=-i0S
=1iS

AGi0S,2)=6(-,2)08
=(-)20S
=(-1)0S
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=-S

=S
A(-i0S,3)=6(i,3)0S

=(i)30S

=(-i)0S

=1i0S
A-i0S,4)=6(i,4)0S

=(-0)*0S

=10S

=S
A(10S,1)=8(1,1)0S

=110S

=10S

=S
A(10S,2)=8(1,2)0S

=120S

=10S

=S
A(10S,3)=8(1,3)0S

=130S

=10S

=S
A(10S,4)=6(1,4)0S

=140S

=10S

=S
A(-10S,1)=8(-1,n)0S

=(-1)10S

=(-1)0S

=-S

=S
A(-10S,2)=68(-1,2)0S
(-1)20S
10S

=S
A(-10S,3)=68(1,3)0S

=(-1)30S

=(-1)0S

=-S

=S
A-10S,4)=8(-1,4)0S

=(-1)40S

=10S=S
Therefore (Q/S,0, %, A, qo*S, F) is a finite group automaton.
Now the Diagram of the Quotient Finite Group Automaton (Q/S, 0,5, A, qo*S,
F’) corresponding to the Finite Subgroup Automaton (S, *,E, v, qo, T) is given below.

3 4

Transition Diagram of Quotient Finite Group Automaton (Q/S, 0, Y, A, qo*S, F”)
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Now the Diagrams for Finite Group Automaton, the Finite Subgroup Automaton and the Quotient Finite
Group Automaton follow one by one

Finite Group Automaton

Initial state

4
Transition Diagram of (Q, *, X, 8, qq, F) 1
Finite Subgroup Automaton
1 1
Initial state -1 L 1

Transition Diagram of (B, *, E. v, qq.

Quotient Finite Group Automaton

3 4

Transition Diagram of Quotient Finite Group Automaton (Q/S, 0, >, A, qo*S, F”)

Theorem : If a string w is accepted by (Q, *, X, 8, qo, F), then w is accepted by (Q/S, 0, X, A, qo*S, F).
Proof : Let (Q, *, X, 8, qo, F) be a Finite Group Automaton.
Let (S, *, E, v, qo, T) be a Finite Sub-group Automaton of S.
Then (Q/S, 0, %, A, qo*S, F’) is a finite group automaton.
where (p*S = is the initial state of Q/S in which qy is the initial state of (Q, *, %, 8, qq, F)
T={f*S/feF}
A is defined by A : Q/SX £ — Q/S by A(a*S,n) =8(a,n) *S.
Let w be accepted by (Q, *, X, 6, qo, F)
Then 8(qo, W) € F
Let 8((10, W) =f
ThenfeF
Now A(qo*S, W) = 6(qo, W) *S
=f*SeF’
Therefore, w is accepted by Q/S.
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Theorem : If L is a language accepted by a finite group automaton (Q, *, X, 3, qo, F) , then L is accepted by
(Q/S,0 =, A, qo*S, F).

Proof : Let B=(Q, *, X, 3, qq, F) be a Finite Group Automaton.

Let L is a language accepted by (Q, *, %, 3, qo, F).

Let (S, *, E, v, qo, T) be a Finite Sub-group Automaton of Q.

Then (Q/S, 0, %, A, qo*S, F’) is a finite group automaton which is the Quotient finite group automaton.
LetwelL

Then d(qo, W) € F

By the above theorem A( qo*S, W) =8(qo, W) *S =f*SeF’

Therefore, L is accepted by (Q/S, 0, %, A, qo*S, F’) .

Conclusion

Further research can be done in Quotient Finite Group automata. Many useful results may be obtained in this
Quotient Finite Group automata.
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