Quotient Finite Group Automata

Dr.K.Muthukumaran ¹, S.Shanmugavadivoo ²

¹Associate Professor / Ramanujan Research Center in Mathematics, / Saraswathi Narayanan College, Perungudi, Madurai/Tamil Nadu, India-625022,

² Assistant Professor / Department Of Mathematics/ Madurai Kamaraj University College, Aundipatti, Theni Dt., Tamil Nadu, India.

Corresponding Author: Dr.K.Muthukumaran

Abstract: Let $(Q, *, \Sigma, \delta, q_0, F)$ be a Finite Group Automaton. Let $(S, *, E, \gamma, q_0, T)$ be a Finite Sub-group Automaton of Q. Then $(Q/S, o, \Sigma, \wedge, q_0*S, F')$ is a finite group automaton. This finite group automaton is known as the Quotient Finite Group Automaton (Quotient FGA) corresponding to the Finite Subgroup Automaton $(S, *, E, \gamma, q_s, T)$. If a string w is accepted by $(Q, *, \Sigma, \delta, q_0, F)$, then w is accepted by $(Q/S, o, \Sigma, \wedge, q_0*S, F')$. If L is a language accepted by a finite group automaton $(Q, *, \Sigma, \delta, q_0, F)$, then L is accepted by $(Q/S, o, \Sigma, \wedge, q_0*S, F')$.

Keywords: Finite Group Automaton, Finite Sub-group Automaton, Quotient Finite Group Automaton

Date of Submission: 26-04-2019 Date of acceptance: 11-05-2019

Definition : Finite Automaton: A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where Q is a finite set of states, Σ is a finite input alphabet, q_0 in Q is the initial state, $F \subseteq Q$ is the set of final states, and δ is the transition function mapping $Q \times \Sigma$ to Q.

That is $\delta(q, a)$ is a state for each state and input symbol a.

Finite Sub-group Automaton: Let $B=(Q, *, \Sigma, \delta, q_0, F)$ be a Finite Group Automaton, where Q is a finite set of states, * is a mapping from $Q \times Q$ to Q, Σ is a finite set of integers, q_0 in Q is the initial state and $F \subseteq Q$ is the set of final states and δ is the transition function mapping from $Q \times \Sigma$ to Q defined by $\delta(q,n) = q^n$. A Finite Subgroup Automaton S of B is a 6-tuple $(R, *, E, \gamma, q_s, T)$, where $R \subseteq Q$ for all $p, q \in R$, $p * q \in R, q_s \in R$ is the initial state where $q_s = q_0$ or $q_s = \delta(q_0,n)$ for some $n \in \Sigma$, $p \in R$,

Definition: Let $(Q, (*, \Sigma, \delta, q_0, F))$ be a Finite Group Automaton. Let $(S, (*, E, \gamma, q_0, T))$ be a Finite Sub-group Automaton of Q, where $S \subseteq Q$ such that $q_0 \in S$ and for all $p, q \in S$, $p * q \in S$, E is the set of all n in E such that E m for all E m for all E m, for some E m, for some E m, E is the restriction function of E restricted to E m. E m in E is the initial state and E m.

For each a in Q, we define $a^* S = \{a^*s / s \in S\}$.

```
Let Q/S = \{a*S / a \in Q\}
```

Define an operation **o** on Q/S by (a*S) **o** (b*S) = (a*b)*S

Since a,b \in Q and Q is a group under *, a * b \in Q

Therefore, $(a*b)*S \in Q/S$

Therefore, \mathbf{o} is a binary operation on Q/S.

(a*S)
$$\mathbf{o}$$
 ((b*S) \mathbf{o} (c*S)) = (a*S) \mathbf{o} ((b*S) \mathbf{o} (c*S))
= (a*S) \mathbf{o} (b*c)*S)
= (a * (b*c))*S
= (a * b)*c))*S (Since Q is a group under *,
a * (b * c) = (a * b) * c for ball a,b,c \in Q)
= ((a * b)*S) \mathbf{o} (c *S)
= ((a *S) \mathbf{o} (b * S)) \mathbf{o} (c *S)

Since Q is a group under *, there exists $0 \in Q$ such that a * 0 = a = 0 * a, for all $a \in Q$.

Therefore, $0 * S \in O/S$

Also
$$(a * S) \circ (0 * S) = (a * 0) * S$$

= $a * S$
 $(0 * S) \circ (a * S) = (0 * a) * S$
= $a * S$

Therefore, (a * S) o (0 * S) = (0 * S) o (a * S)

Therefore, 0 * S is the identity element of Q/S.

Now for each a * S \in Q/S there exists a-1 * S \in Q/S such that

$$(a * S) o (a^{-1} * S) = (a^{-1} * S) o (a * S) = 0 * S$$

Hence $(Q/S, \mathbf{o})$ is a group.

Consider q_0 *S, where q_0 is the initial state of B = $(Q, *, \Sigma, \delta, q_0, F)$

Let $F' = \{f * S / f \in F\}$

Define \land : Q/S× $\Sigma \rightarrow$ Q/S by \land (a*S, n) = δ (a, n) * S

Clearly it is a well defined mapping.

We shall prove that $(Q/S, \mathbf{o}, \Sigma, \wedge, q_0 *S, F')$ is a finite group automaton.

The elements of Q/S are considered as states.

The set Σ of the same input symbols are taken

The function $\wedge : \mathbb{Q}/\mathbb{S} \times \Sigma \to \mathbb{Q}/\mathbb{S}$ by $\wedge (a^*S, n) = \delta(a, n) * S$ is our transition function.

 q_0 *S is taken as the initial state.

 $F' = \{ a * S / a \in F \}$

F' is taken as the set of final states.

Then $(Q/S, \mathbf{o}, \Sigma, \wedge, q_0 *S, F')$ is a finite group automaton.

Definition : Quotient Finite Group Automaton : Let $(Q, *, \Sigma, \delta, q_0, F)$ be a Finite Group Automaton. Let $(S, *, E, \gamma, q_0, T)$ be a Finite Sub-group Automaton of Q. Then $(Q/S, \mathbf{o}, \Sigma, \wedge, q_0 *S, F^2)$ is a finite group automaton. This finite group automaton is known as the Quotient Finite Group Automaton (Quotient FGA) corresponding to the Finite Subgroup Automaton $(S, *, E, \gamma, q_s, T)$.

Example : Consider the Finite Binary Automaton $(Q, *, \Sigma, \delta, q_0, F)$, where $Q = \{1,-1,i,-i\}$, $\Sigma = \{1,2,3,4\}$ $q_0 = i$ is the initial state and F, the set of final states is Q, δ is the transition function mapping from $Q \times \Sigma$ to Q defined by $\delta(q,n) = q^n$, and

* is the mapping from Q×Q to Q defined as in the example 3.2.1

Transition Diagram of $(Q, *, \Sigma, \delta, q_0, F)$

Then the Finite Binary Automaton (Q, *, Σ , δ , q₀, F) is a Finite Group Automaton.

1) Let (S, *, E,
$$\gamma$$
, q_s , T), where S = { 1,-1}, E = {1,2}, q_s = -1, T = {1,-1} q_s = $(q_0)^2$ = $(i)^2$ = -1.

Here * is the usual multiplication.

Transition Diagram of (S, *, E, γ , q_0 , T) Then $(S, *, E, \gamma, q_s, T)$ is a Finite Subgroup Automaton of the Finite group Automaton $(Q, *, \Sigma, \delta, q_0, F)$. Now $S = \{ 1,-1 \}$ $1.S = \{1.1, 1(-1)\}$ $= \{1, -1\}$ = S $-1.S = \{(-1).1, (-1).(-1)\}$ $= \{-1, 1\}$ $= \{1, -1\}$ = STherefore, 1.S = (-1).S $i.S = \{(i).1, (i).(-1)\}$ $= \{i, -i\}$ $(-i).S = \{(-i).1, (-i).(-1)\}$ $= \{-i, i\}$ $= \{i, -i\}$ = STherefore, i.S = (-i).SNow $Q/S = \{ 1.S, -1.S, i.S, -i.S \}$ $Q/S = \{ 1.S, i.S, \}$ $= \{S, i.S\}$ $q_0.S = i.\{1, -1\}$ $= \{i, -i\}$ Let $F' = \{f * S / f \in F\}$ Define \land : Q/S× $\Sigma \rightarrow$ Q/S by \land (a*S, n) = δ (a, n) * S $=\delta(a,n)0S$ $\wedge(i\ 0\ S\ ,\ 1) = \delta(i\ ,\ 1)\ 0\ S$ $= i^1 0 S$ = i 0 S \wedge (i 0 S, 2) = δ (i, 2) 0 S $= i^2 0 S$ = (-1) 0 S=-S= S \wedge (i 0 S, 3) = δ (i, 3) 0 S $= i^3 0 S$ = (-i) 0 S=iS \wedge (i 0 S, 4) = δ (i, 4) 0 S

Therefore (Q/S, o , Σ, \wedge , $q_0{}^*S, \, F')$ is a finite group automaton.

Now the Diagram of the Quotient Finite Group Automaton

F') corresponding to the Finite Subgroup Automaton

 $(Q/S, \mbox{\bf 0} \ , \sum, \wedge \ , \ q_0 *S, \\ (S, *, E, \gamma, q_0, T) \mbox{ is given below}.$

Transition Diagram of Quotient Finite Group Automaton (Q/S, $\mathbf{0}$, Σ , \wedge , q_0 *S, F')

Now the Diagrams for Finite Group Automaton, the Finite Subgroup Automaton and the Quotient Finite **Group Automaton follow one by one**

Transition Diagram of $(Q, *, \Sigma, \delta, q_0, F)$

Finite Subgroup Automaton

Quotient Finite Group Automaton

Transition Diagram of Quotient Finite Group Automaton (Q/S, $\mathbf{0}$, Σ , \wedge , q_0 *S, F')

Theorem : If a string w is accepted by $(Q, *, \Sigma, \delta, q_0, F)$, then w is accepted by $(Q/S, o, \Sigma, \wedge, q_0*S, F')$.

Proof: Let $(Q, *, \Sigma, \delta, q_0, F)$ be a Finite Group Automaton.

Let $(S, *, E, \gamma, q_0, T)$ be a Finite Sub-group Automaton of S.

Then $(Q/S, \mathbf{o}, \Sigma, \wedge, q_0 *S, F')$ is a finite group automaton.

where $q_0 *S = is$ the initial state of Q/S in which q_0 is the initial state of (Q, *, Σ , δ , q_0 , F)

 $T = \{f * S / f \in F\}$

 \land is defined by \land : Q/S× $\Sigma \rightarrow$ Q/S by \land (a*S, n) = δ (a, n) * S.

Let w be accepted by $(Q, *, \Sigma, \delta, q_0, F)$

Then $\delta(q_0, w) \in F$

Let $\delta(q_0, w) = f$

Then $f \in F$

Now \land (q_0 *S, w) = δ (q_o , w) *S

 $= f * S \in F'$

Therefore, w is accepted by Q/S.

Theorem : If L is a language accepted by a finite group automaton $(Q, *, \Sigma, \delta, q_0, F)$, then L is accepted by $(Q/S, \mathbf{o} \Sigma, \wedge, q_0 *S, F)$.

Proof: Let B = $(Q, *, \Sigma, \delta, q_0, F)$ be a Finite Group Automaton.

Let L is a language accepted by $(Q, *, \Sigma, \delta, q_0, F)$.

Let $(S, *, E, \gamma, q_0, T)$ be a Finite Sub-group Automaton of Q.

Then (Q/S, \boldsymbol{o} , Σ , \wedge , q_0 *S, F') is a finite group automaton which is the Quotient finite group automaton.

Let w ∈ L

Then $\delta(q_0, w) \in F$

By the above theorem \land ($q_0 * S$, w) = $\delta(q_0, w) * S = f * S \in F'$

Therefore, L is accepted by $(Q/S, \mathbf{o}, \Sigma, \wedge, q_0 *S, F')$.

Conclusion

Further research can be done in Quotient Finite Group automata. Many useful results may be obtained in this Quotient Finite Group automata.

References

- [1]. Dr.K.Muthukumaran And S.Shanmugavadivoo, "Isomorphism On Finite Group Automata" "IOSR Journal Of Mathematics", A Journal Of "International Organization Of Scientific Research", e-ISBN:2278-5728, p-ISBN:2319-765X, Volume 15, Issue I, Ver.II (Jan.-Feb.2019), PP 04-11.
- [2]. Dr.K.Muthukumaran And S.Shanmugavadivoo, "Homomorphism On Finite Group Automata And Homomorphic Images Of Finite Group Automata" "IOSR Journal Of Mathematics", A Journal Of "International Organization Of Scientific Research" e-ISBN:2278-5728, p-ISBN:2319-765X, Volume 15, Issue I, Ver.II (Jan.-Feb.2019), PP 01-03.
- [3]. Dr.K.Muthukumaran And S.Shanmugavadivoo , "Finite Subgroup Automata" "IOSR Journal Of Mathematics", A Journal Of "International Organization Of Scientific Research", e-ISBN:2278-5728, p-ISBN:2319-765X,Volume 15, Issue I, Ver.I (Jan.-Feb.2019),PP 50-56.
- [4]. Dr.K.Muthukumaran And S.Shanmugavadivoo , "Finite Abelian Automata" "IOSR Journal Of Mathematics", A Journal Of "International Organization Of Scientific Research" e-ISBN:2278-5728, p-ISBN:2319-765X, Volume 14, Issue 2, Ver.II (March.-April.2018), PP 01-04.
- [5]. S.Shanmugavadivoo And Dr.K.Muthukumaran , "Ac Finite Binary Automata" "IOSR Journal Of Mathematics", A Journal Of "International Organization Of Scientific Research", e-ISBN:2278-5728, p-ISBN:2319-765X, Volume 14, Issue I, Ver.III (Jan.-Feb.2018), PP 19-21.
- [6]. S.Shanmugavadivoo And Dr. M.Kamaraj, "Finite Binary Automata" "International Journal Of Mathematical Archive", 7(4),2016, Pages 217-223.
- [7]. S.Shanmugavadivoo And Dr. M.Kamaraj, "An Efficient Algorithm To Design Dfa That Accept Strings Over The Input Symbol A,B,C Having Atmost X Number Of A, Y Number Of B, & Z Number Of C" "Shanlax International Journal Of Arts, Science And Humanities" Volume 3, No. 1, July 2015, Pages 13-18
- [8]. John E. Hopcroft, Jeffery D.Ullman, Introduction To Automata Theory, Languages, And Computation, Narosa Publising House,
- [9]. Zvi Kohavi, Switching And Finite Automata Theory, Tata Mcgraw-Hill Publising Co. Lid.
- [10]. John T.Moore, The University Of Florida /The University Of Western Ontario, Elements Of Abstract Algebra, Second Edition, The Macmillan Company, Collier-Macmillan Limited, London, 1967.
- [11]. J.P.Tremblay And R.Manohar, Discrete Mathematical Structures With Applications To Computer Science, Tata Mcgraw-Hill Publishing Company Limited, New Delhi, 1997.

Dr.K.Muthukumaran. "Quotient Finite Group Automata." IOSR Journal of Mathematics (IOSR-JM) 15.3 (2019): 11-16.