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Abstract: In this paper, mathematical model of Human Papilloma Virus (HPV) with chemotherapy as 

treatment is formulated and analyzed. The cancer cells have been divided into four compartments SITR. The 

well possedness of the formulated model equations was proved and the equilibrium points of the model have 

been identified. In addition, the basic reproduction number is derived using next generation matrix method and 

analyzed the stability of the equilibrium points using Routh Hurwitz criterion. From the analytic and numerical 

simulation studies it is observed that if the basic reproduction is less than one then the solution converges to the 

disease free steady state i.e.,  disease will wipe out and thus the treatment is said to be successful. On the other 

hand, if the basic reproduction number is greater than one then the solution converges to endemic equilibrium 

point and thus the infectious cells continue to replicate i.e.,  disease will persist and thus the treatment is said to 

be unsuccessful. Sensitivity analysis of the model is analyzed. Finally, the model formulated in the present study 

effectively addresses the treatment of Human Papilloma Virus. 
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I. Introduction 
Cancer is a general name that refers to a group of such diseases in which normal cells divide 

uncontrollably i.e., grow more rapidly than normal cells and may eventually spread to other parts of the body by 

a process called metastasis [1]. According to the National Cancer Registry [2] cancer kills more people than 

HIV/AIDS, malaria and tuberculosis combined. Statistics show that 18.1 million new cases, 9.6 million cancer 

related deaths, and 43.8 million people living with cancer in 2018. The number of new cases is expected to rise 

from 18 million to 22 million by 2030 and the number of global cancer deaths is projected to increase by 45% in 

the period from 2007 to 2030 [3]. The most common types of cancer include: Cervical cancer, Breast cancer, 

Prostate cancer, Brain cancer, Lung cancer and Skin cancer among others. 

According to Cervical Cancer Action [4] Report Card 2011, cervical cancer is the most common cancer 

in women in most developing countries and most common cause of cancer deaths.  Human Papilloma Virus 

(HPV) is the family name of a collection of viruses that include more than 100 different types; more than 30 of 

these viruses are sexually transmitted. Most of the HPV infections are asymptomatic and can fed away without 

treatment over the course of only some years. For illustration, about 70% of HPV infections fed away within a 

year and 90% within two years. However, in some people disease can persist for many years and can cause 

warts (low risk genotype of HPV), while other types lead to different kinds of cancers (high risk genotype of 

HPV) including cervical cancer. Although HPV itself cannot be treated, the cellular changes that come from any 

HPV infection can be treated. For examples, genital warts, cervical, anal, and genital cancers can be treated if 

the infection is diagnosed during the early stage of development. Pre-cancerous cell changes caused by HPV can 

be detected by Pap tests and treat individuals who are found already infected.  Persistent infection with high-risk 

types of HPV is the most important risk factor for cervical cancer; the development of cervical cancer is always 

preceded by infection with one of these viruses [5]. 

Cervical cancer is a disease of the female reproductive organs, with the burden of it borne 

disproportionately by women in their perimenopausal (the time when the ovaries stop releasing eggs) years: 

peak cancer incidence occurs at age 50-54 [6].  Cancer is caused by chemical substances, alcoholic beverages, 

excessive solar radiation, genetic differences, and so on [7]. Various methods are used to cure or inhibit the 

growth of cancer. Now-a-days various types of treatments are available such as surgery, radiation therapy, 

chemotherapy, target therapy, immunotherapy, hormonal therapy, and the latest is a gene therapy. However, 
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each treatment  has  side  effects attributed to it, for example, vomiting,  pressing  the blood  production,  

fatigue,  hair  loss  and  mouth  sores. 

Mathematical modeling of infectious diseases began in 1760s with Daniel Bernoulli's modeling of 

smallpox. Since then, mathematical models have been developed to simulate the spread of a wide range of 

infectious diseases, such as HIV, tuberculosis, malaria and influenza to name but a few examples. These 

mathematical models have been developed to address a range of questions that cannot be answered through the 

use of traditional epidemiological methods. 

Many mathematical models have been developed to analyze the dynamics of transmission of HPV 

infection and its associated health problems, and as well study the impact of some control strategies against the 

virus [8]. It is an essential and effective way to totally understand the real-world problems by establishing 

mathematical models and analyzing their dynamical behaviors. 

Old and recent studies such as [9-11] are used vaccination and screening for preventing cancer and 

some other recent studies [8, 12] are used radiation therapy, chemotherapy and so on as treatment. However, 

Kermack and McKendrick [1] develop SIR cancer model and some other recent studies by Akram et al [8] 

develop the mathematical model that describe interaction between uninfected tumor cells and infected tumor 

cell. These studies use viral therapy as treatment. But much has not been assumed the treated individual by 

Chemotherapy as variable for a control or therapy on tumor cells and developed a model treatment for general 

cancer. So in this study the model in [8] is modified by adding the assumption of treated individuals by 

chemotherapy and recovery class specifically for Human Papilloma Virus (HPV). 

This paper is organized as follows: In section 2, construction of the mathematical model of the problem 

is presented. Also, model assumptions, description, well possedness and reproduction number are included. In 

section 3, the equilibrium of the model is determined and the stability analysis is conducted. In section 4, 

numerical simulations of the study are performed. The outcome and discussion are given in section 5. Finally, in 

Section 6, conclusions are drawn and the results are discussed for the given model.  

 

II. Model Formulation 
In the present model describing Human Papilloma Virus (HPV) with treatment the total cells are 

divided into four classes: (i) Susceptible class denoted by  𝑺  consists of cells which are capable of becoming 

infected (ii) Infected class denoted by   𝑰  consists of cells which are infected with virus and are also infectious 

(iii) Treatment class denoted by  𝑻  consists of cells being treated by chemotherapy and (iv) Recovered class 

denoted by   𝑹  consists of recovered cells.  

Here, a mathematical model of the Human Papilloma Virus is constructed based on the following assumptions:  

(i) The total population size is assumed to be constant. 

(ii) Both the number of births and death are equal. 

(iii) Human Papilloma Virus HPV model classifies the cell population into four compartments at any time 

SITR. 

(iv) Susceptible cells are recruited into the compartment 𝑆 𝑡  at a constant rate 𝜋. 

(v)  Susceptible cells are infected  when they come into effective contact with infectious cells and the disease 

transmitted at the rate  𝛽. 

(vi) The infected cells join treatment class at a rate 𝛼 and are treated by chemotherapy. 

(vii)  The treated cells join the recovery class at a rate 𝜔 after treatment and reduce the transmission of HPV in 

the community. 

(viii) Recovered cells revert to the susceptible class after losing their immunity at a rate  𝜑.  

(ix) All types of cells suffer natural mortality at a rate  𝜇. 

(x) Infected cells die of infection at a rate  𝛾.  

(xi) All parameters in the model are positive. 

 

Table 1 Notations and description of model variables 
Variable Description 

𝐒 𝐭  Population size of susceptible cells 

𝐈 𝐭  Population size of infected and infectious cells 

𝐓 𝐭  Population size of cells under treatment 

𝐑 𝐭  Population size of recovered cells 

 

Table 2 Notations and description of model parameters 
Parameter Description 

𝝅 Recruited rate of susceptible cells. With this rate new cells will born and they will 
enter into susceptible class 

𝜷 

 

Transmission rate of infection. With this rate cells transfer from compartment  𝑆   to  𝐼   
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𝜶 With this rate cells transfer from compartment  𝐼   to  𝑇  
𝝎 

 

Treatment rate. With this rate cells transfer from compartment   𝑇   to   𝑅   

𝝋 Recovery rate. With this rate cells transfer from compartment  𝑅  to  𝑆  

𝜸 Death rate due to infection. With this rate cells of  𝐼  compartment die of the disease. 

𝝁 Natural death rate. With this rate cells of all the compartments die naturally. 

         

Upon including the basic assumptions together with the description of both model variables and parameters the 

schematic diagram of the modified model can be given as in Figure 1. 

 
Figure 1 Schematic diagram of compartmental structure of the model 

 

Based on the model assumptions, the notations of variables and parameters and the schematic diagram, the 

model equations are formulated and given as follows:  

                                                                     𝑑𝑆 𝑑𝑡 = 𝜋 − 𝜇𝑆 −  𝛽𝐼𝑆 𝑁  + 𝜑R                                      (1) 

                                                     𝑑𝐼 𝑑𝑡 =  𝛽𝐼𝑆 𝑁  −  𝛼 + 𝜇 + 𝛾 𝐼                                        (2)                       

                                                     𝑑𝑇 𝑑𝑡 = 𝛼𝐼 −  𝜔 + 𝜇 𝑅                                                       (3) 

                                                    𝑑𝑅 𝑑𝑡 = 𝜔𝑇 −  𝜑 + 𝜇 𝑅                                                      (4)                                          

The non-negative initial conditions of the system of model equations  1 − (4) are denoted by   𝑆 0 >
0,   𝐼 0 ≥ 0, 𝑇 0 ≥ 0, 𝑅(0) ≥ 0. This system consists of four first order non-linear ordinary differential 

equations. 

III. Mathematical analysis of the model 
In this section mathematical analysis of the improved and modified model is conducted. The analysis 

consists of the following features:  (i) Existence, positivity and boundedness of solutions (ii) Steady states (iii) 

Disease free equilibrium points (iv) Endemic equilibrium points (v) Basic reproduction number (vi) Stability 

analysis of the disease free equilibrium points (vii) Local stability of disease free equilibrium point (viii) Global 

stability of disease free equilibrium point (ix) Stability analysis of endemic equilibrium point and (x) Local 

stability of endemic equilibrium point. These mathematical aspects are presented and discussed in the following 

sub-sections respectively. 

 

3.1 Existence, Positivity and Boundedness of solution 

In order to show that the model is biologically valid, it is required to prove that the solutions of the system of 

differential equations (1) – (4) are both positive and bounded for all time. It is done starting with proving 

Lemma 1. 

Lemma 1 (Positivity) Solutions of the model equations (1) – (4) together with the initial conditions  𝑆 0 >
0, 𝐼 0 ≥ 0, 𝑇 0 ≥ 0, 𝑅(0) ≥ 0 are always positive (OR) the model variables  𝑆 𝑡 ,   𝐼 𝑡 , 𝑇 𝑡 ,  and 𝑅(𝑡) are 

positive for all 𝑡  and will remain in  ℝ+
4 .  

Proof Positivity of the model variables is shown separately for each of the model variables  𝑆 𝑡 ,   𝐼 𝑡 , 𝑇 𝑡 ,  
and  𝑅(𝑡). 
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Positivity of  𝑆 𝑡 : The model equation (1) given by  𝑑𝑆 𝑑𝑡 = 𝜋 − 𝜇𝑆 −  𝛽𝐼𝑆 𝑁  + 𝜑𝑅  can be expressed 

without loss of generality, after eliminating the positive terms   (𝜋 + 𝜑𝑅) which are appearing on the right hand 

side, as an inequality as  𝑑𝑆 𝑑𝑡 ≥ − 𝜇 +  𝛽𝐼 𝑁   𝑆. Using variables separable method and on applying 

integration, the solution of the foregoing differentially inequality can be obtained as   𝑆 𝑡 ≥ 𝑒−𝜇𝑡− 𝛽 𝑁   𝐼𝑑𝑡 . 

Recall that an exponential function is always non–negative irrespective of the sign of the exponent, i.e., the 

exponential function  𝑒−𝜇𝑡− 𝛽 𝑁   𝐼𝑑𝑡   is a non-negative quantity. Hence, it can be concluded that  𝑆 𝑡 ≥ 0.                               

Positivity of  𝐼 𝑡 : The model equation (2) given by 𝑑𝐼 𝑑𝑡 =  𝛽𝐼𝑆 𝑁  −  𝛼 + 𝜇 + 𝛾 𝐼 can be expressed 

without loss of generality, after eliminating the positive term (𝛽𝐼𝑆 𝑁)  which are appearing on the right hand 

side, as an inequality as  𝑑𝐼 𝑑𝑡 ≥ − 𝛼 + 𝜇 + 𝛾 𝐼. Using variables separable method and on applying 

integration, the solution of the foregoing differentially inequality can be obtained as    𝐼(𝑡) ≥ 𝑒− 𝛼+𝜇 +𝛾 𝑡 . Recall 

that an exponential function is always non–negative irrespective of the sign of the exponent, i.e., the exponential 

function 𝑒− 𝛼+𝜇+𝛾 𝑡  is a non-negative quantity. Hence, it can be concluded that  𝐼 𝑡 ≥ 0.  

Positivity of  𝑇 𝑡 : The model equation (3) given by  𝑑𝑇 𝑑𝑡 = 𝛼𝐼 −  𝜔 + 𝜇 𝑇 can be expressed without loss of 

generality, after eliminating the positive term  𝛼𝐼  which are appearing on the right hand side, as an inequality 

as  𝑑𝑇 𝑑𝑡 ≥ − 𝜔 + 𝜇 𝑇 . Using variables separable method and on applying integration, the solution of the 

foregoing differentially inequality can be obtained as  𝑇(𝑡) ≥ 𝑒− 𝜔+𝜇 𝑡 . Recall that an exponential function is 

always non–negative irrespective of the sign of the exponent, i.e., the exponential function 𝑒− 𝜔+𝜇 𝑡  is a non-

negative quantity. Hence, it can be concluded that  𝑇 𝑡 ≥ 0.    
Positivity of  𝑅 𝑡 : The model equation (4) given by  𝑑𝑅 𝑑𝑡 = 𝜔𝑇 −  𝜑 + 𝜇 𝑅  can be expressed without loss 

of generality, after eliminating the positive term  𝜔𝑇  which are appearing on the right hand side, as an 

inequality as   𝑑𝑅 𝑑𝑡 ≥  − 𝜑 + 𝜇 𝑅  . Using variables separable method and on applying integration, the 

solution of the foregoing differentially inequality can be obtained as 𝑅(𝑡) ≥ 𝑒− 𝜑+𝜇 𝑡 . Recall that an exponential 

function is always non–negative irrespective of the sign of the exponent, i.e., the exponential function  𝑒− 𝜑+𝜇 𝑡   
is a non-negative quantity. Hence, it can be concluded that  𝑅 𝑡 ≥ 0.  

Thus, the model variables 𝑆 𝑡 , 𝐼 𝑡 , 𝑇 𝑡 ,  and 𝑅(𝑡)  representing population sizes of various types of cells are 

positive quantities and will remain in  ℝ+
4   for all  𝑡. 

Lemma 2 (Boundedness) The positive solutions of the system of model equations (1) – (4) are bounded. That 

is, the model variables  𝑆 𝑡 ,   𝐼 𝑡 , 𝑇 𝑡 ,  and   𝑅(𝑡) are bounded for all  𝑡. 

Proof: Recall that each population size is bounded if and only if the total population size is bounded. Hence, in 

the present case it is sufficient to prove that the total population size 𝑁 = 𝑆 𝑡 + 𝐼 𝑡 +  𝑇 𝑡 +  𝑅(𝑡)  is 

bounded for all  𝑡. It can be begun by showing that all feasible solutions are uniformly bounded in a proper 

subset  Ω ∈ ℝ+
4   where the feasible region Ω is given by   Ω =    𝑆, 𝐼, 𝑇, 𝑅  ∈ ℝ+

4 ; N ≤  π μ   .  
Now, summation of all the four equations (1) – (4) of the model gives   dN(t) dt = π − μN t − γI . It can be 

expressed without loss of generality, after eliminating the negative term  −γI   which is appearing on the right 

hand side, as an inequality as     dN(t) dt ≤  π − μN t  . Equivalently this inequality can be expressed as a 

linear ordinary differential inequality as dN(t) dt + μN t ≤ π giving general solution upon solving as  N t ≤
 π μ  + 𝑐𝑒−𝜇𝑡 . But, the term  𝑁(0) denotes the initial values of the respective variable i.e., N t = N 0   at 

 t = 0. Thus, the particular solution can be expressed as  N t ≤  π μ  +  N 0 −  π μ   𝑒−𝜇𝑡 . Further, it can be 

observed that 𝑁(𝑡) →   π μ   as  𝑡 → ∞. That is, the total population size  𝑁 𝑡  takes off from the value N 0  at 

the initial time t = 0 and ends up with the bounded value    π μ   as the time  𝑡 grows to infinity. Thus it can be 

concluded that 𝑁 𝑡  is bounded as 0 ≤ 𝑁(𝑡) ≤  π μ  . 

Therefore,  π μ   is an upper bound of 𝑁(𝑡). Hence, feasible solution of the system of model equations (1) – (4) 

remains in the region Ω which is positively invariant set. Thus, the system is biologically meaningful and 

mathematically well posed in the domain  Ω . Further, it is sufficient to consider the dynamics of the populations 

represented by the model system (1) – (4) in that domain. 

Therefore, it can be summarized the result of Lemma 2 as “the model variables  𝑆 𝑡 ,   𝐼 𝑡 , 𝑇 𝑡 ,  and   𝑅(𝑡) 

are bounded for all  𝑡.”  

Lemma 3 (Existence) Solutions of the model equations (1) – (4) together with the initial conditions  𝑆 0 >
0, 𝐼 0 ≥ 0, 𝑇 0 ≥ 0, 𝑅(0) ≥ 0 exist in  ℝ+

4  i.e., the model variables 𝑆 𝑡 ,   𝐼 𝑡 , 𝑇 𝑡 ,  and   𝑅(𝑡)  exist for all 

𝑡  and will remain in  ℝ+
4 . 

Proof Let the right hand sides of the system of equations (1) – (4) can be expressed as follows: 

𝑓1 = 𝜋 − 𝜇𝑆 −  𝛽𝐼𝑆 𝑁  + 𝜑𝑅 

𝑓2 =  𝛽𝐼𝑆 𝑁  −  𝛼 + 𝜇 + 𝛾 𝐼 

𝑓3 = 𝛼𝐼 −  𝜔 + 𝜇 𝑇 

𝑓4 = 𝜔𝑇 − (𝜑 + 𝜇)𝑅 
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According to Derrick and Groosman theorem, let Ω  denote the region Ω =    𝑆, 𝐼, 𝑇, 𝑅  ∈ ℝ+
4 ; N ≤

πμ. Then equations (1) – (4) have a unique solution if 𝜕𝑓𝑖𝜕𝑥𝑗,  𝑖,𝑗=1,2,3,4 are continuous and bounded in  Ω. 

Here, 𝑥1 = 𝑆,   𝑥2 = 𝐼, 𝑥3 = 𝑇,   𝑥4 = 𝑅 

The continuity and the boundedness are verified as here under: 

For  𝑓1: 

   𝜕𝑓1  𝜕𝑆   =   − 𝜇 +  𝛽𝐼 𝑁    < ∞ 

   𝜕𝑓1  𝜕𝐼   =   − 𝛽𝑆 𝑁   < ∞ 

  𝜕𝑓1  𝜕𝑇   =  0 < ∞ 
  𝜕𝑓1  𝜕𝑅   =  𝜑 < ∞. 

For  𝑓2: 

  𝜕𝑓2  𝜕𝑆   =  𝛽𝐼 𝑁  < ∞ 

   𝜕𝑓2  𝜕𝐼   =   𝛽𝑆 𝑁  −  𝛼 + 𝜇 + 𝛾  < ∞ 
  𝜕𝑓2  𝜕𝑇   =  0 < ∞ 

  𝜕𝑓2  𝜕𝑅   =  0 < ∞ 

For  𝑓3: 

  𝜕𝑓3  𝜕𝑆   =  0 < ∞ 

   𝜕𝑓3  𝜕𝐼   =  𝛼 < ∞ 

   𝜕𝑓3  𝜕𝑇   =  − 𝜔 + 𝜇  < ∞ 

  𝜕𝑓3  𝜕𝑅   =  0 < ∞ 

For  𝑓4:  

  𝜕𝑓4  𝜕𝑆   =  0 < ∞ 

  𝜕𝑓4  𝜕𝐼   =  0 < ∞ 
  𝜕𝑓4  𝜕𝑇   =  𝜔 < ∞ 

   𝜕𝑓4  𝜕𝑅   =  −(𝜑 + 𝜇) < ∞ 

Thus, all the partial derivatives   𝜕𝑓𝑖  𝜕𝑥𝑗  ,   𝑖, 𝑗 = 1,2,3,4    exist, continuous and bounded in  Ω. Hence, by 

Derrick and Groosman theorem, a solution for the model (1) – (4) exists and is unique. 

 

3.2 Steady State 

     In order to understand the dynamics of the model, it is necessary to determine equilibrium points of the 

solution region. An equilibrium solution is a steady state solution of the model equations (1) – (4) in the sense 

that if the system begins at such a state, it will remain there for all times. In other words, the population sizes 

remain unchanged and thus the rate of change for each population vanishes. Equilibrium points of the model are 

found, categorized, stability analysis is conducted and the results have been presented in the following sub-

sections: 

 

3.2.1 Disease free equilibrium points 

         Disease free equilibrium points are steady state solutions where there is no disease in the population. In 

the absence of the disease this implies that 𝐼(𝑡) = 𝑇(𝑡) = 𝑅(𝑡) = 0 and the right hand side of the model is equal 

to zero. We have; 

𝜋 − 𝜇𝑆 = 0 

𝑆0 =  π μ  . 

Thus, the disease-free equilibrium point of the model equation in (1) – (4) above is given by 

                 𝐸0 =  𝑆0, 𝐼0 , 𝑇0, 𝑅0 = { π μ  , 0,0,0}    
3.2.2 Endemic Equilibrium 

The endemic equilibrium point 𝐸1 = {𝑆1, 𝐼1, 𝑇1 , 𝑅1} is a steady state solution where the disease persists in the 

population. The endemic equilibrium point is obtained by setting rates of changes of variables with respect to 

time in model equations (1) – (4) to zero. That is, setting 𝑑𝑆 𝑑𝑡 = 𝑑𝐼 𝑑𝑡 = 𝑑𝑇 𝑑𝑡 = 𝑑𝑅 𝑑𝑡 = 0 the model 

equations take the form as 
𝜋 − 𝜇𝑆 −  𝛽𝐼𝑆 𝑁  + 𝜑𝑅 = 0                          (5)

 𝛽𝐼𝑆 𝑁  − 𝑎𝐼 = 0                                           (6)

𝛼𝐼 − 𝑏𝑇 = 0                                                      (7)

𝜔𝑇 − 𝑐𝑅 = 0                                                         (8)

 

Where  𝑎 = 𝛼 + 𝜇 + 𝛾, 𝑏 = 𝜔 + 𝜇, 𝑐 = 𝜑 + 𝜇 

Now, (6) can be rearranged as    𝛽𝑆 𝑁  − 𝑎 𝐼 = 0  leading to the solutions  𝛽𝑆 𝑁  − 𝑎 = 0  or  𝐼 = 0 or both. 

However,  𝐼  does not vanish since the disease is assumed to persist. Thus, it leads to the only meaningful 

solution  𝛽𝑆 𝑁  − 𝑎 = 0 or equivalently 𝑆 = 𝑎𝑁 𝛽 . 

                 𝑆1 = 𝑎𝑁 𝛽                                                 (9)   

Similarly, solving (7) and (8) gives expression for 𝑇 and  𝑅 as 
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                                 𝑇 = 𝛼𝐼 𝑏                                   (10) 

                                  𝑅 = 𝜔𝛼𝐼 𝑏𝑐                               (11) 

Further, substituting equations (9) and (11) into (5) gives 𝜋 − 𝜇 𝑎𝑁 𝛽  − 𝛽𝐼 𝑎𝑁 𝛽𝑁  + 𝜑 𝜔𝛼𝐼 𝑏𝑐  = 0  But, 

since  𝑁 =  𝜋 𝜇  , after some algebraic simplifications an expression for  𝐼 can be obtained as 

                  𝐼1 = [𝜋𝑏𝑐 (𝜑𝜔𝛼 − 𝑎𝑏𝑐 )]  𝑎 𝛽  − 1                      (12) 

Finally, substitution of  𝐼 in (10) and (11) respectively gives the expressions for 𝑇and  𝑅 in terms of parameters 

as  

                 𝑇1 = [𝛼𝜋𝑐 (𝜑𝜔𝛼 − 𝑎𝑏𝑐)]   𝑎 𝛽  − 1                          (13) 

                       𝑅1 = [𝜔𝛼𝜋 (𝜑𝜔𝛼 − 𝑎𝑏𝑐)]   𝑎 𝛽  − 1                   (14) 

Therefore, the endemic equilibrium point is given by 𝐸1 = {𝑆1, 𝐼1, 𝑇1 , 𝑅1} where 

 𝑆1 =  𝑎𝑁 𝛽   

                𝐼1 = [𝜋𝑏𝑐 (𝜑𝜔𝛼 − 𝑎𝑏𝑐 )]  𝑎 𝛽  − 1  
                𝑇1 = [𝛼𝜋𝑐 (𝜑𝜔𝛼 − 𝑎𝑏𝑐)]   𝑎 𝛽  − 1  

                                                      𝑅1 = [𝜔𝛼𝜋 (𝜑𝜔𝛼 − 𝑎𝑏𝑐)]   𝑎 𝛽  − 1        
 

3.3 Basic Reproduction Number 

           The basic reproduction number denoted by 𝑅0 and is defined as the expected number of people getting 

secondary infection among the whole susceptible population [13]. This number determines the potential for the 

spread of disease within a population. When  𝑅0 < 1 each infected individual produces on average less than one 

new infected individual so that the disease is expected to die out. On the other hand if  𝑅0 > 1 then each 

individual produces more than one new infected individual so that the disease is expected to continue spreading 

in the population. This means that the threshold quantity for eradicating the disease is to reduce the value of 𝑅0   

to less than one.   

  The basic reproductive number 𝑅0 can be determined using the next generation matrix. In this method, 

𝑅0  is defined as the largest eigenvalue of the next generation matrix. The formulation of this matrix involves 

classification of all compartments of the model in to two classes: infected and non-infected. That is, the basic 

reproduction number cannot be determined from the structure of the mathematical model alone but depends on 

the definition of infected and uninfected compartments.  

Assume that there are 𝑛 compartments in the model of which the first 𝑚 compartments are with 

infected individuals [3].  From the system (1) – (4) the first three equations are considered and decomposed into 

two groups; 𝐹 contains newly infected cases and V contains the remaining terms. Let 𝑋 =  [𝐼  𝑇  𝑆]𝑡  be a 

column vector and the differential equations of the first three compartments are rewritten as 𝐹(𝑋) –  𝑉(𝑋).  
Now, let   𝐹(𝑋)  =  [𝐹1  𝐹2  𝐹3]𝑡 . Here (i) 𝐹1 =  (𝛽𝑆𝐼  𝑁) denote newly infected cases which arrive into the 

infected compartment; (ii) 𝐹2 = 0 denotes newly infected cases arrived into the treated compartment; and (iii) 

 𝐹3 = 0 denotes newly infected case from susceptible compartment.  

 Further, let  𝑉(𝑋)  =  [𝑉1  𝑉2  𝑉3]𝑡 . Here 𝑉1  =  𝑎𝐼; 𝑉2  =  −𝛼𝐼 + 𝑏𝑇 and  𝑉3 =  −𝜋 + (𝛽𝑆𝐼  𝑁) + 𝜇𝑆. The 

parameters 𝑎 and 𝑏 denote 𝑎 =  (𝛼 + 𝛾 + 𝜇)   and 𝑏 =  (𝜔 + 𝜇) respectively.  

The next step is the computation of the square matrices 𝐹 and 𝑉 of order 𝑚 ×  𝑚 , where 𝑚 is the number of 

infected classes, defined by 𝐹 =  [𝜕𝐹𝑖(𝐸0)/𝜕𝑥𝑗 ] and 𝑉 =  [𝜕𝑉𝑖(𝐸0)/𝜕𝑥𝑗 ] with 1 ≤  𝑖, 𝑗 ≤  𝑚 , such that 𝐹 is 

non-negative, 𝑉 is a non-singular matrix and 𝐸0 is the disease free equilibrium point DFE.  

Since 𝐹 is non-negative and 𝑉 non-singular then 𝑉−1 
is non-negative and thus 𝐹𝑉−1  

is also non-negative. Also, 

the matrix 𝐹𝑉−1  
 is called the next generation matrix for the model. Finally, the basic reproduction number 𝑅0 is 

given by 𝑅0 = 𝜌(F𝑉−1).  Here, 𝜌(𝐴) denotes the spectral radius of matrix 𝐴 and the spectral radius is the 

biggest non-negative eigenvalue of the next generation matrix.  

  The Jacobian matrices for 𝐹(𝑋) and 𝑉(𝑋) at  𝐼, 𝑇, 𝑆  can be constructed as 

𝐽𝐹(𝑋) =  
 𝛽𝑆 𝑁  0  𝛽𝐼 𝑁  

0 0 0
0 0 0

      and   𝐽𝑉(𝑋) =  
𝑎 0 0

−∝ 𝑏 0
 𝛽𝑆 𝑁  0  𝜇 + 𝛽𝐼 

 . 

The Jacobian of 𝐹 and 𝑉 at the disease free equilibrium point 𝐸0 takes the form respectively as 

𝐽𝐹(𝐸0) =  
𝛽 0 0
0 0 0
0 0 0

      and   𝐽𝑉(𝐸0) =  
𝑎 0 0

−∝ 𝑏 0
𝛽 0 𝜇

 . 

It can be verified that the matrix 𝐽𝑉 𝐸0  is non-singular as its determinant 𝑑𝑒𝑡 𝐽𝐹 𝐸0  = 𝑎𝑏𝜇   is non-zero and 

after some algebraic computations its inverse matrix is constructed as 

 𝐽𝑉(𝐸0) −1 =  

 1 𝑎  0 0
 𝛼 𝑎𝑏   1 𝑏  0
 𝛽 𝜇𝑎  0  1 𝜇  

 . 

The product of the matrices 𝐽𝐹(𝐸0) and  𝐽𝑉(𝐸0) −1can be computed as 
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  𝐽𝐹 𝐸0   𝐽𝑉 𝐸0  
−1 =  

𝛽 0 0
0 0 0
0 0 0

  

 1 𝑎  0 0
 𝛼 𝑎𝑏   1 𝑏  0
 𝛽 𝜇𝑎  0  1 𝜇  

 . =  
 𝛽 𝑎  0 0

0 0 0
0 0 0

  

Now it is possible to calculate the eigenvalue to determine the basic reproduction number 𝑅0 by taking the 

spectral radius of the matrix  𝐽𝐹 𝐸0   𝐽𝑉 𝐸0  
−1. Thus, the eigenvalues are computed by evaluating 

 𝑑𝑒𝑡  𝐽𝐹 𝐸0   𝐽𝑉 𝐸0  
−1 − 𝜆𝐼 = 0 or equivalently solving 

 
 𝛽 𝑎  − 𝜆 0 0

0 −𝜆 0
0 0 −𝜆

 = 0 

It reduces to the cubic equation for  𝜆 as   𝜆2  𝛽 𝑎  − 𝜆 = 0 giving the three eigenvalues 

as 𝜆1 =  𝛽 𝑎   ,   𝜆2 = 0,    𝜆3 = 0. However, the largest eigenvalue here is  𝜆1 =  𝛽 𝑎   and is the spectral 

radius as the threshold value or the basic reproductive number.  

Thus, it can be concluded that the reproduction number of the model is  𝑅0 =  𝛽 𝑎  . 

 

 

3.4 Stability analysis of the disease free equilibrium 

In absence of the infectious disease, the model populations have a unique disease free steady state  𝐸0. To find 

the local stability of  𝐸0, the Jacobian of the model equations evaluated at DEF 𝐸0  is used.  Also, to determine 

the global stability at  𝐸0 comparison theorem given in [14] is used. It is already shown that the DFE of model 

(1) – (4) is given by  𝐸0 =  𝜋 𝜇 , 0, 0, 0 . Now, the stability analysis of DEF is conducted and the results 

are presented in the form of theorems and proofs as follows: 

3.4.1 Local Stability of Disease Free Equilibrium point 

Theorem 1: The DFE  𝐸0 of the system (1) – (4) is locally asymptotically stable if 𝑅0 < 1 and unstable 

if  𝑅0 > 1. 

Proof Consider the right hand side expressions of the equations (1) – (4) as functions so as to find the Jacobian 

matrix as follows:  

𝑑𝑆/𝑑𝑡 = 𝜋 − 𝜇𝑆 −  𝛽𝐼𝑆/𝑁 + 𝜑𝑅 ≡  𝑓 𝑆, 𝐼, 𝑇, 𝑅  

𝑑𝐼/𝑑𝑡 =  𝛽𝐼𝑆/𝑁 − (𝛼 + 𝜇 + 𝛾)𝐼 ≡  𝑔 𝑆, 𝐼, 𝑇, 𝑅  

𝑑𝑇/𝑑𝑡 = 𝛼𝐼 − (𝜔 + 𝜇)𝑇   ≡  𝑕 𝑆, 𝐼, 𝑇, 𝑅  
 𝑑𝑅/𝑑𝑡 = 𝜔𝑇 − (𝜑 + 𝜇)𝑅 ≡  𝑟 𝑆, 𝐼, 𝑇, 𝑅   

Now, the Jacobian matrix of  (𝑓, 𝑔, 𝑕, 𝑟)  with respect to   𝑆, 𝐼, 𝑇, 𝑅  is given by 

𝐽 =   

−𝜇 −  𝛽𝐼 𝑁   𝛽𝑆 𝑁  0 𝜑
 𝛽𝐼 𝑁   𝛽𝑆 𝑁  − 𝑎 0 0

0 𝛼 −𝑏 0
0 0 𝜔 𝑐

       (15) 

Therefore, the Jacobian matrix  𝐽  of model at the disease free equilibrium 𝐸0 reduces to  

 𝐽(𝐸0) =  

−𝜇 −𝛽 0 𝜑

0  𝛽 − 𝑎 0 0
0 𝛼 −𝑏 0
0 0 𝜔 𝑐

  

Now, the eigenvalues of  𝐽 𝐸0  are required to be found. The characteristic equation 𝑑𝑒𝑡 𝐽 𝐸0 − 𝜆𝐼 = 0 is 

expanded and simplified as follows: 

  

−𝜇 − 𝜆 −𝛽 0 𝜑

0  𝛽 − 𝑎 − 𝜆 0 0
0 𝛼 −𝑏 − 𝜆 0
0 0 𝜔 𝑐 − 𝜆

 = 0 

 −(𝜇 + 𝜆)  
 𝛽 − 𝑎 − 𝜆 0 0

𝛼 −𝑏 − 𝜆 0
0 𝜔 𝑐 − 𝜆

 = 0 

 (𝜇 + 𝜆)(𝑐 + 𝜆)[(𝛽 − 𝑎 − 𝜆)(−𝑏 − 𝜆)] = 0 

 (𝜇 + 𝜆)(𝑐 + 𝜆)[𝜆2 +  𝑎 + 𝑏 − 𝛽 𝜆 + 𝑎𝑏(1 − 𝑅0)] = 0 

(𝜇 + 𝜆) = 0,          (𝑐 + 𝜆) = 0,          𝜆2 +  𝑎 + 𝑏 − 𝛽 𝜆 + 𝑎𝑏(1 − 𝑅0) = 0 
Thus, the four eigenvalues of the matrix are determined as  

𝜆1 = −𝜇 

    𝜆2 = −𝑐 

𝜆3 =
− 𝑎 + 𝑏 − 𝛽 +  (𝑎 + 𝑏 − 𝛽)2 − 4𝑎𝑏(1 − 𝑅0)

2
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 𝜆4 =
− 𝑎 + 𝑏 − 𝛽 −  (𝑎 + 𝑏 − 𝛽)2 − 4𝑎𝑏(1 − 𝑅0)

2
 

It can be observed that the first two eigenvalues  𝜆1  and  𝜆2 are absolutely negative quantities. However, the 

remaining two 𝜆3 and  𝜆4 are also negatives so long as the following restrictions on the parameters are 

valid:  𝑎 + 𝑏 > 𝛽 and  (𝑎 + 𝑏 − 𝛽)2 > 4𝑎𝑏(1 − 𝑅0)  when  𝑅0 < 1. 

Therefore, it is concluded that the DFE 𝐸0 of the system of differential equations (1) – (4) is locally 

asymptotically stable if 𝑅0 < 1 and unstable if  𝑅0 > 1. 

 

3.4.2 Global Stability of Disease Free Equilibrium Point 

Theorem 2: The disease free equilibrium point  𝐸0   of the model is globally asymptotically stable if  𝑅0 < 1 and 

unstable if  𝑅0 > 1. 

Proof Using the comparison theorem as given in [14], the rate of change of the variables representing the 

disease classes of the model can be rewritten as  

                                
𝐼0

𝑇0

𝑅0

 =  𝐹 − 𝑉  
𝐼
𝑇
𝑅
 − 𝑀𝜃  

𝐼
𝑇
𝑅
                              (16) 

Here in (16), the matrices 𝐹 and 𝑉 at the disease free equilibrium 𝐸0 are defined as 

𝐹 = 𝐽𝐹(𝐸0) =  
𝛽 0 0
0 0 0
0 0 0

      and   𝑉 = 𝐽𝑉 𝐸0 =  
𝑎 0 0

−∝ 𝑏 0
𝛽 0 𝜇

 . 

Also, and  𝜃  is non-negative matrix. However, 𝑀 =  1 −  𝑆0 𝑁0   = 0 since 𝑆0 =  𝜋 𝜇   and   𝑁0 =  𝜋 𝜇  .  

Therefore, the equation (16) reduces to the simplified form as 

 
𝐼0

𝑇0

𝑅0

 ≤  𝐹 − 𝑉  
𝐼
𝑇
𝑅
  

Now, (𝐹 − 𝑉) can be computed as 

𝐹 − 𝑉 =  
𝛽 0 0
0 0 0
0 0 0

 −  
𝑎 0 0

−∝ 𝑏 0
𝛽 0 𝜇

 =  
𝛽 − 𝑎 0 0

𝛼 −𝑏 0
−𝛽 0 −𝜇

              (17) 

The eigenvalues of the matrix (17) are found by evaluating the characteristic equation  det  𝐹 − 𝑉 − 𝜆𝐼 = 0 

as follows: 

 
𝛽 − 𝑎 − 𝜆 0 0

𝛼 −𝑏 − 𝜆 0
−𝛽 0 −𝜇 − 𝜆

 = 0 

 𝛽 − 𝑎 − 𝜆  −𝑏 − 𝜆  −𝜇 − 𝜆 = 0 
 𝛽 − 𝑎 − 𝜆 = 0,  −𝑏 − 𝜆 = 0,  −𝜇 − 𝜆 = 0 

𝜆1 = − 𝑎 − 𝛽 , 𝜆2 = −𝑏, 𝜆3 = −𝜇 

The notations a, b and c have been defined earlier. Here it can be observed that all the three eigenvalue of (17) 

have negative real parts and hence the matrix is stable for 𝑅0 < 1.  
Therefore by the comparison theorem, it follows that  𝐼, 𝑇, 𝑅 →  0, 0, 0  and the remaining equations 

of model (1) – (4) give the solution  𝐸0 =  𝜋 𝜇 , 0, 0, 0 . Thus,  𝑆, 𝐼, 𝑇 𝑅 → 𝐸0 as  𝑡 → ∞. Hence, 

the disease free equilibrium point  𝐸0  is globally asymptotically stable if 𝑅0 < 1  and unstable if   𝑅0 > 1. 

 

3.5 Stability Analysis of Endemic Equilibrium Point 

By definition it is true that at the endemic equilibrium point  𝐸1 =  𝑆1, 𝐼1 , 𝑇1 , 𝑅1  the disease persists or 

exists. To analyze the local stability of  𝐸1, Jacobian of the model evaluated at that equilibrium point is used. 

Further, recall that the endemic equilibrium point of the given model (1) – (4)   is already computed as  

𝐸1 =  𝑎𝑁 𝛽 , [𝜋𝑏𝑐 (𝜑𝜔𝛼 − 𝑎𝑏𝑐 )]  1 𝑅0  − 1 , [𝛼𝜋𝑐 (𝜑𝜔𝛼 − 𝑎𝑏𝑐)]   1 𝑅0  − 1 ,
[𝜔𝛼𝜋 (𝜑𝜔𝛼 − 𝑎𝑏𝑐)]   1 𝑅0  − 1   

Here in  𝐸1 , the expression for the reproduction number is used as 𝑅0 =  𝛽 𝑎  . 

 

 

3.5.1 Local Stability of Endemic Equilibrium Point 

      The local stability of endemic equilibrium point is stated and proved in Theorem 3. 

Theorem 3: The endemic equilibrium point 𝐸1 =  𝑆1, 𝐼1 , 𝑇1, 𝑅1  is locally asymptotically stable if and 

only if  𝑅0 > 1. 
Proof The stability analysis of  𝐸1  is conducted by following the similar procedure adopted as in the case that 

of  𝐸0. Thus, the procedure starts with the construction of Jacobian matrix at  𝐸1 . Now, the Jacobian matrix of 

the model given in (15) at endemic equilibrium point   𝐸1   takes the form as 
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 𝐽 𝐸1 =

 
 
 
 
 
−𝜇 −  𝛽 𝑁  ([𝜋𝑏𝑐 (𝜑𝜔𝛼 − 𝑎𝑏𝑐 )]  1 𝑅0  − 1 ) − 𝛽 𝑁  (𝑎𝑁 𝛽 ) 0 𝜑

 𝛽 𝑁  ([𝜋𝑏𝑐 (𝜑𝜔𝛼 − 𝑎𝑏𝑐 )]  1 𝑅0  − 1 )  𝛽 𝑁  (𝑎𝑁 𝛽 ) − 𝑎 0 0

0 𝛼 −𝑏 0

0 0 𝜔 𝑐 
 
 
 
 

 

 

𝐽 𝐸1 =

 
 
 
 
 
−𝜇 − [𝛽𝜇𝑏𝑐 (𝜑𝜔𝛼 − 𝑎𝑏𝑐 )]  1 𝑅0  − 1 ) −𝑎 0 𝜑

[𝛽𝜇𝑏𝑐 (𝜑𝜔𝛼 − 𝑎𝑏𝑐 )]  1 𝑅0  − 1 0 0 0

0 𝛼 −𝑏 0

0 0 𝜔 𝑐  
 
 
 
 

 

The characteristic equation 𝑑𝑒𝑡 𝐽(𝐸1) − 𝜆𝐼 = 0 of the matrix 𝐽 𝐸1  is expanded and simplified as follows: 

 

 

−𝜇 − [𝛽𝜇𝑏𝑐 (𝜑𝜔𝛼 − 𝑎𝑏𝑐 )]  1 𝑅0  − 1 ) − 𝜆 −𝑎 0 𝜑

[𝛽𝜇𝑏𝑐 (𝜑𝜔𝛼 − 𝑎𝑏𝑐 )]  1 𝑅0  − 1 −𝜆 0 0

0 𝛼 −𝑏 − 𝜆 0

0 0 𝜔 𝑐 − 𝜆

 

 
=0 

−𝜔  
−𝜇 − [𝛽𝜇𝑏𝑐 (𝜑𝜔𝛼 − 𝑎𝑏𝑐 )]  1 𝑅0  − 1 − 𝜆 −𝑎 𝜑

[𝛽𝜇𝑏𝑐 (𝜑𝜔𝛼 − 𝑎𝑏𝑐 )]  1 𝑅0  − 1 −𝜆 0
0 𝛼 0

 + (𝑐

− 𝜆)  
−𝜇 − [𝛽𝜇𝑏𝑐 (𝜑𝜔𝛼 − 𝑎𝑏𝑐 )]  1 𝑅0  − 1 − 𝜆 −𝑎 0

[𝛽𝜇𝑏𝑐 (𝜑𝜔𝛼 − 𝑎𝑏𝑐 )]  1 𝑅0  − 1 −𝜆 0

0 𝛼 −𝑏 − 𝜆

 = 0 

−𝜔𝜑  
[𝛽𝜇𝑏𝑐 (𝜑𝜔𝛼 − 𝑎𝑏𝑐 )]  1 𝑅0  − 1 −𝜆

0 𝛼
 

+   𝑐 − 𝜆  −𝑏 − 𝜆  
−𝜇 − [𝛽𝜇𝑏𝑐 (𝜑𝜔𝛼 − 𝑎𝑏𝑐 )]  1 𝑅0  − 1 − 𝜆 −𝑎

[𝛽𝜇𝑏𝑐 (𝜑𝜔𝛼 − 𝑎𝑏𝑐 )]  1 𝑅0  − 1 −𝜆
 = 0 

−𝜔𝜑𝛼𝑘  1 𝑅0  − 1 +  𝑐 − 𝜆  −𝑏 − 𝜆   −𝜆  −𝜇 − 𝑘  1 𝑅0  − 1 − 𝜆 + 𝑎𝑘  1 𝑅0  − 1  = 0 

                Here  𝑘 =  𝛽𝜇𝑏𝑐 (𝜑𝜔𝛼 − 𝑎𝑏𝑐)  . Also observe that   𝑘 < 0     whenever  𝜑𝜔𝛼 < 𝑎𝑏𝑐 

 

 

`After some simplification, the fourth order characteristic equation can be expressed as 

𝜆4 +  𝜇 + 𝑏 − 𝑐 − (1 + 𝑎)𝑘  1 𝑅0  − 1  𝜆3 −  𝑐𝑏 +  𝑏 − 𝑐  𝜇 + (1 + 𝑎)𝑘  1 𝑅0  − 1   𝜆2

+ 𝑐𝑏 𝜇 + (1 + 𝑎)𝑘  1 𝑅0  − 1  𝜆 + 𝜔𝜑𝛼𝑘  1 𝑅0  − 1 = 0 

Equivalently, the characteristic equation can be expressed in the general form as 

𝜆4 + 𝑒1𝜆
3 + 𝑒2𝜆

2 + 𝑒3𝜆 + 𝑒4 = 0 
Where                                  

                                                      𝑒1 = 𝜇 + 𝑏 − 𝑐 − (1 + 𝑎)𝑘  1 𝑅0  − 1  

                                                      𝑒2 = −  𝑐𝑏 +  𝑏 − 𝑐  𝜇 + (1 + 𝑎)𝑘  1 𝑅0  − 1    

                                                        𝑒3 = 𝑐𝑏 𝜇 + 𝑘(1 + 𝑎)  1 𝑅0  − 1   

𝑒4 = 𝜔𝜑𝛼𝑘  1 𝑅0  − 1  
Now, the signs of the solutions i.e., the signs of the eigenvalues of the characteristic equation are determined 

using Routh-Hurwitz criterion given in [15]. According to the Routh-Hurwitz criteria, 𝐸1 is locally 

asymptotically stable if the four conditions (1)  𝑒1 > 0 , (2) 𝑒3 > 0, (3)  𝑒4 > 0     and (4)  𝑒1𝑒2𝑒3  >
  𝑒3

2 +  𝑒1
2𝑒4    are satisfied. The satisfaction of these conditions is verified here under. 

(1)  𝑒1 > 0  holds true whenever 𝑏 > 𝑐,   𝑅0 > 1 and 𝑘 < 0 

(2)  𝑒3 > 0    holds true whenever 𝑘 < 0 

(3)   𝑒4 > 0  holds true whenever 𝑘 < 0 

(4)   𝑒1𝑒2𝑒3 > 𝑒3
2 + 𝑒1

2𝑒4 holds true whenever 𝑘 < 0 

Hence, following Routh-Hurwitz criteria it can be concluded that the endemic equilibrium point  𝐸1 is locally 

asymptotically stable if and only if   𝑅0 > 1. 

 

IV. Numerical Simulation 
           In this section, the numerical simulation study of model equations (1) – (4) is carried out using the 

software DE Discover 2.6.4. To conduct the study, a set of meaningful values are assigned to the model 
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parameters. These values are either taken from literature or assumed. These sets of parametric values are given 

in Tables 3 and 4. 

 

Table 3 Parameter values used in Figure 2 

Parameter Value Reference 

𝜋 0.0500 assumed 

𝜇 0.0020 [5] 

𝛽 0.0100 [3] 

𝜑 0.0410 assumed 

𝛼 0.0780 assumed 

𝛾 0.0001 assumed 

𝜔 0.0001 assumed 

 
Using the parameter values given in Table 2 and the initial conditions 𝑆 0 = 60, 𝐼 0 = 80, 𝑅 0 = 60 and 

𝑇 0 = 50 in the model equations (1) – (4) a simulation study is conducted and the results are given in Figure 2. 

In this case the steady state is disease free equilibrium point and 𝑅0 = 0.1248 < 1 i.e. disease will wipe out and 

thus the treatment is said to be successful. 

 

 
Figure 2: Numerical simulation of disease free equilibrium point 

  
In Figure 2, it can be observed that as the treatment  𝑇  increases the infection  𝐼  decreases. Also, since the 

recovered cells loose immunity and they go to susceptible class, the susceptible  𝑆  is increasing while the 

recovered  𝑅  is decreasing. 

Table 4: Parameter Values 
Parameter   Value   Reference 

𝝅 0.0310 assumed 

𝝁 0.0020 [5] 

𝜷 0.5780 assumed 

𝝋 0.0750 assumed 

𝜶 0.0380 assumed 

𝜸 0.0220 assumed 

𝝎 0.2530 assumed 

 
By considering the parameter values in Table 3 and the initial conditions 𝑆 0 = 120, 𝐼 0 = 70, 𝑅 0 = 60 

and 𝑇 0 = 100 we obtain the results in Figure 3. In this case the steady state is endemic equilibrium point 

and  𝑅0 = 9.3226 > 1. Thus, the infectious cells continue to replicate and it means that the therapy is not 

successful. 
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Figure 3: Numerical simulation of endemic equilibrium point 

 

In Figure 3, it can be observed that as the treatment  𝑇  decreases the infection  𝐼  increases. Also, as a result 

both the susceptible  𝑆  and the recovered  𝑅  are decreasing. The scenario here is just opposite to that which is 

illustrated in Figure 2. 

 

Both similarities and diffences of the existing and modified model are compared in following two tables 

respectively: 

Table 4 Diffences of existing and modified model. 
Differences 

SN Existing model [8] Modified model 

1 Tumor cell already exists Tumor cell exists after susceptible 

2 Used only tumor cell as target cell and classify as uninfected and 
infected tumor cell 

Assumed  different cell as target cell and classify as 
Susceptible cell, infected cell, treated cell and recovery  

3 Assumed only natural mortality Assumed both death due to sick and natural mortality 

4 Treatments assumed for all cancer  Treatments assumed only for HPV 

5 The treatments are through infection of virus OR Oncolytic virus The treatments are through Chemotherapy 

6 There is no treatment representation as parameter or variable Treatment taken as Variable (class) 

7 Has no recovery class Has recovery class 

8 Analysis done by comparing the two classes Analysis done using reproduction number 

 
Table 5 Similarities of existing and modified model. 

Similarities 

Both existing and modified model have:  

  transmission rate 

  natural mortality 
 Infected cell 

 Treatment successful and in some case not successful 

 Equilibrium point 
 Numerical simulation 

 

V. Sensitivity Analysis 
Sensitivity analysis is used to determine how “sensitive” a model is to changes in the value of the 

parameters of the model and to changes in the structure of the model. It is used to discover parameters that have 

a high impact on 𝑅0  and should be targeted by intervention strategies. More precisely, sensitivity indices’s 

allows to measure the relative change in a variable when parameter changes. If the result is negative, then the 

relationship between the parameters and 𝑅0 is inversely proportional. In this case, we will take the modulus of 

the sensitivity index so that we can deduce the size of the effect of changing that parameter. On the other hand, a 

positive sensitivity index means an increase in the value of a parameter.  



Impact of Chemotherapy treatment on SITR Compartmentalization and Modeling of Human  

 

DOI: 10.9790/5728-1503011729                                         www.iosrjournals.org                                     28 | Page 

The explicit expression of 𝑅0 is given by 𝑅0 =  𝛽 𝑎  . Since 𝑅0 depends only on four parameters, we derive an 

analytical expression for its sensitivity to each parameter using the normalized forward sensitivity index as by 

Chitnis [16] as follows: 

Υ𝛽
𝑅0 =  𝜕𝑅0 𝛽  ×  𝛽 𝑅0  = 1 

Υ𝛼
𝑅0 =  𝜕𝑅0 𝛼  ×  𝛼 𝑅0  = −𝛼 𝑎  

Υ𝜇
𝑅0 =  𝜕𝑅0 𝜇  ×  𝜇 𝑅0  = −𝜇 𝑎  

Υ𝛾
𝑅0 =  𝜕𝑅0 𝛾  ×  𝛾 𝑅0  = −𝛾 𝑎  

 

Table 6 Sensitivity of 𝑅0 evaluated for the parameter values given in Table 4. 
Parameter Sensitivity index 

𝜷 +1 

𝜶 -0.6129 

𝝁 -0.0322 

𝜸 -0.3548 

 

From Table 6, we obtain Υ𝛽
𝑅0 = 1, this means that an increase in  𝛽 will cause an increase of exactly the same 

proportion in  𝑅0 . Similarly, a decrease in 𝛽 will cause a decrease in  𝑅0, as they are directly proportional. We 

also note that 𝛼 or  𝜇 or 𝛾 < 0 hence these parameters are inversely proportional to  𝑅0.  

We can arrange these parameters in the order of their magnitude from largest to the smallest as follows: 𝛼, 𝛾 and 

the least sensitive parameter is  𝜇. It can also be noted that there is a need to minimize contact between the 

susceptible and the infected so as to limit the spread of HPV; it is customary to quarantine the infected 

individual with the main purpose of minimizing contact rate hence reducing the outbreak of HPV. 

 

VI. Result and  Discussion 
In this study, a mathematical model describing the dynamics of Human Papilloma Virus (HPV) with 

treatment by chemotherapy is formulated and analyzed. The model is developed based on biologically 

reasonable assumptions made about Human Papilloma Virus (HPV) and its treatment. The mathematical 

analysis has shown that if the reproduction number 𝑅0 < 1 then the disease free equilibrium point is locally and 

globally asymptotically stable implying that the disease wipes out and the treatment is successful. Also, if 

  𝑅0 > 1 then the disease free equilibrium point is unstable implying that the treatment is not successful. These 

theoretical results have been supported by the simulation study as it is shown in Figure 2. Furthermore, the 

endemic equilibrium point is stable if 𝑅0 > 1 resulting that the infectious cells continue to replicate. This fact 

has also been supported by Figure 3.  

 

VII. Conclusion 
In this paper, a mathematical model of Human Papilloma Virus (HPV) using chemotherapy as 

treatment has been formulated. Moreover, existence, positivity and boundedness of the formulated model is 

verified to illustrate that the model is biologically meaningful and mathematically well posed. In particular, the 

stability analyses of the model were investigated using the basic reproduction number and Routh Hurwitz 

criterion. And also, the solution of the model equation is numerically supplemented and sensitivity analysis of 

the model is analyzed. Furthermore, results of the research work presented in this paper reveal that the model 

formulated here effectively addresses the treatment of cervical cancer. 
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